1
|
Li X, Wang C, Li S, Zhang L, Liao X, Lu L. Low protein diet influences mineral absorption and utilization in medium-growing yellow-feathered broilers from 1 to 30 days of age. Poult Sci 2024; 103:104512. [PMID: 39522350 PMCID: PMC11585675 DOI: 10.1016/j.psj.2024.104512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/10/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Reduced-protein diet can save protein ingredients and reduce nitrogen (N) losses. However, the effect of low protein diet on the mineral uptake and utilization in broilers needs to be explored. The aim of this study was to investigate the effect of low-protein diet on the growth performance, N deposition, mineral contents in serum, tissues and excreta, and the activities and gene expression of related enzymes in tissues of medium-growing yellow-feathered broilers, so as to elucidate the relationship between dietary protein level and the absorption and utilization of minerals in broilers. A total of 72 1-d-old Spotted-Brown male broilers were randomly allotted to 1 of 2 treatments with 6 replicate cages of 6 birds per cage for each treatment. The dietary crude protein (CP) levels for the two treatments were 21 % (the control treatment) and 19 % (low protein treatment), respectively. The experimental period was 30 d. The results showed that no differences (P > 0.05) were detected in average daily gain, average daily feed intake and feed: gain ratio of broilers during 1 to 30 d between the two treatments. However, low protein intake increased (P < 0.05) N retention rate, serum P, Cu and Mn, and excreta Cu, Mn and Zn, and decreased (P < 0.05) liver P and excreta P. In addition, birds fed low protein diet had higher (P < 0.05) manganese superoxide dismutase, and total superoxide dismutase activities in liver, and total antioxidant capacity and malondialdehyde content in heart, and lower (P < 0.05) copper-zinc superoxide dismutase (CuZnSOD) and succinate dehydrogenase activities in liver and CuZnSOD mRNA level in heart. In conclusion, the reduction of dietary CP content from 21 % to 19 % improved N retention, the absorption of P, Cu and Mn, as well as the antioxidant ability of liver and heart, and influenced metabolic utilization of P, Cu, Zn, Fe and Mn in medium-growing yellow-feathered broilers from 1 to 30 d of age.
Collapse
Affiliation(s)
- Xiaoran Li
- Mineral Nutrition Research Division, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chong Wang
- Mineral Nutrition Research Division, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shunying Li
- Mineral Nutrition Research Division, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiudong Liao
- Mineral Nutrition Research Division, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lin Lu
- Mineral Nutrition Research Division, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Wang S, Wu B, Zhu L, Zhang W, Zhang L, Wu W, Wu J, Hu Y, Li T, Cui X, Luo X. The chemical characteristics of different sodium iron ethylenediaminetetraacetate sources and their relative bioavailabilities for broilers fed with a conventional corn-soybean meal diet. J Anim Sci Biotechnol 2024; 15:16. [PMID: 38287436 PMCID: PMC10826250 DOI: 10.1186/s40104-023-00969-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/04/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Our previous studies demonstrated that divalent organic iron (Fe) proteinate sources with higher complexation or chelation strengths as expressed by the greater quotient of formation (Qf) values displayed higher Fe bioavailabilities for broilers. Sodium iron ethylenediaminetetraacetate (NaFeEDTA) is a trivalent organic Fe source with the strongest chelating ligand EDTA. However, the bioavailability of Fe when administered as NaFeEDTA in broilers and other agricultural animals remains untested. Herein, the chemical characteristics of 12 NaFeEDTA products were determined. Of these, one feed grade NaFeEDTA (Qf = 2.07 × 108), one food grade NaFeEDTA (Qf = 3.31 × 108), and one Fe proteinate with an extremely strong chelation strength (Fe-Prot ES, Qf value = 8,590) were selected. Their bioavailabilities relative to Fe sulfate (FeSO4·7H2O) for broilers fed with a conventional corn-soybean meal diet were evaluated during d 1 to 21 by investigating the effects of the above Fe sources and added Fe levels on the growth performance, hematological indices, Fe contents, activities and gene expressions of Fe-containing enzymes in various tissues of broilers. RESULTS NaFeEDTA sources varied greatly in their chemical characteristics. Plasma Fe concentration (PI), transferrin saturation (TS), liver Fe content, succinate dehydrogenase (SDH) activities in liver, heart, and kidney, catalase (CAT) activity in liver, and SDH mRNA expressions in liver and kidney increased linearly (P < 0.05) with increasing levels of Fe supplementation. However, differences among Fe sources were detected (P < 0.05) only for PI, liver Fe content, CAT activity in liver, SDH activities in heart and kidney, and SDH mRNA expressions in liver and kidney. Based on slope ratios from multiple linear regressions of the above indices on daily dietary analyzed Fe intake, the average bioavailabilities of Fe-Prot ES, feed grade NaFeEDTA, and food grade NaFeEDTA relative to the inorganic FeSO4·7H2O (100%) for broilers were 139%, 155%, and 166%, respectively. CONCLUSIONS The bioavailabilities of organic Fe sources relative to FeSO4·7H2O were closely related to their Qf values, and NaFeEDTA sources with higher Qf values showed higher Fe bioavailabilities for broilers fed with a conventional corn-soybean meal diet.
Collapse
Affiliation(s)
- Shengchen Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Bingxin Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Ling Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Weiyun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Liyang Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - We Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Jiaqi Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Yun Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Tingting Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Xiaoyan Cui
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Xugang Luo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China.
| |
Collapse
|
3
|
Hu Y, Huang Y, Wang C, Zhang W, Qu Y, Li D, Wu W, Gao F, Zhu L, Wu B, Zhang L, Cui X, Li T, Geng Y, Liao X, Luo X. The organic zinc with moderate chelation strength enhances the expression of related transporters in the jejunum and ileum of broilers. Poult Sci 2023; 102:102477. [PMID: 36680861 PMCID: PMC10014343 DOI: 10.1016/j.psj.2023.102477] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/21/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023] Open
Abstract
Our previous study demonstrated that the zinc (Zn) proteinate with moderate chelation strength (Zn-Prot M) enhanced the Zn absorption in the small intestine partially via increasing the expression of some Zn and amino acid transporters in the duodenum of broilers. However, it remains unknown whether the Zn-Prot M could also regulate the expression of related transporters in the jejunum and ileum of broilers in the above enhancement of Zn absorption. The present study was conducted to investigate the effect of the Zn-Prot M on the expression of related transporters in the jejunum and ileum of broilers compared to the Zn sulfate (ZnS). Zinc-deficient broilers (13-d-old) were fed with the Zn-unsupplemented basal diets (control) or the basal diets supplemented with 60 mg Zn/kg as ZnS or Zn-Prot M for 26 d. The results showed that in the jejunum, compared to the control, supplementation of the organic or inorganic Zn increased (P < 0.05) mRNA and protein expression of b0,+-type amino acid transporter (rBAT), Zn transporter 10 (ZnT10), and peptide-transporter 1 (PepT1) mRNA expression and Zn transporter 7 (ZnT7) protein expression on d 28, while y+L-type amino transporter 2 (y+LAT2) mRNA and protein expression, and protein expression of ZnT7 and ZnT10 on 28 d and zrt-irt-like protein 3 (ZIP3) and zrt-irt-like protein 5 (ZIP5) on d 39 were higher (P < 0.05) for Zn-Prot M than for ZnS. In the ileum, Zn addition regardless of Zn source up-regulated (P < 0.05) mRNA expression of Zn transporter 9 (ZnT9) and ZIP3, ZIP5, and y+LAT2 protein expression on d 28, and PepT1 mRNA and protein expression, ZIP3 and y+LAT2 mRNA expression and ZnT10 protein expression on d 39. Furthermore, Zn transporter 4 (ZnT4) and ZnT9 mRNA expression and Zn transporter 1 (ZnT1) protein expression on d 28, and y+LAT2 mRNA expression and ZnT10 and PepT1 protein expression on d 39 were higher (P < 0.05) for Zn-Prot M than for ZnS. It was concluded that the Zn-Prot M enhanced the expression of the ZnT1, ZnT4, ZnT9, ZnT10, ZIP3, ZIP5, y+LAT2, and PepT1 in the jejunum or ileum of broilers compared to the ZnS.
Collapse
Affiliation(s)
- Yun Hu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, People's Republic of China
| | - Yanhui Huang
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, People's Republic of China
| | - Chuanlong Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Weiyun Zhang
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, People's Republic of China
| | - Yicheng Qu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Ding Li
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, People's Republic of China
| | - Wei Wu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, People's Republic of China
| | - Feiyu Gao
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, People's Republic of China
| | - Ling Zhu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, People's Republic of China
| | - Bingxin Wu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, People's Republic of China
| | - Liyang Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Xiaoyan Cui
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, People's Republic of China
| | - Tingting Li
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, People's Republic of China
| | - Yanqiang Geng
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, People's Republic of China
| | - Xiudong Liao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, People's Republic of China.
| |
Collapse
|
4
|
Hu Y, Wang C, Wu W, Qu Y, Zhang W, Li D, Zhu L, Gao F, Wu B, Zhang L, Cui X, Li T, Geng Y, Luo X. Organic zinc with moderate chelation strength enhances zinc absorption in the small intestine and expression of related transporters in the duodenum of broilers. Front Physiol 2022; 13:952941. [PMID: 35936908 PMCID: PMC9355254 DOI: 10.3389/fphys.2022.952941] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/27/2022] [Indexed: 11/27/2022] Open
Abstract
Our previous study demonstrated that the absorption of zinc (Zn) from the organic Zn proteinate with moderate chelation strength was significantly higher than that of Zn from the inorganic Zn sulfate in the in situ ligated duodenal segment of broilers, but the underlying mechanisms are unknown. The present study aimed to determine the effect of organic Zn with moderate chelation strength and inorganic Zn on the Zn absorption in the small intestine and the expression of related transporters in the duodenum of broilers. The Zn-deficient broilers (13 days old) were fed with the Zn-unsupplemented basal diets (control) containing 25.72 and 25.64 mg Zn/kg by analysis or the basal diets supplemented with 60 mg Zn/kg as the Zn sulfate or the Zn proteinate with moderate chelation strength (Zn-Prot M) for 26 days. The results showed that the plasma Zn contents from the hepatic portal vein of broilers at 28 days and 39 days of age were increased (p < 0.05) by Zn addition and greater (p < 0.05) in the Zn-Prot M than in the Zn sulfate. On d 28, Zn addition upregulated (p < 0.05) mRNA expression of zinc transporter 1 (ZnT1), Zrt-irt-like protein 5 (ZIP5), y + L-type amino transporter 2 (y + LAT2) and b0,+-type amino acid transporter (rBAT), zinc transporter 4 (ZnT4) protein expression, and zinc transporter 9 (ZnT9) mRNA and protein expression in the duodenum. Moreover, ZnT9 mRNA expression, ZnT4, ZIP5, and rBAT protein expression, zinc transporter 7 (ZnT7), and y + LAT2 mRNA and protein expression in the duodenum of broilers on 28 days were higher (p < 0.05) in the Zn-Prot M than in the Zn sulfate. On d 39, supplemental Zn increased (p < 0.05) peptide-transporter 1 (PepT1) mRNA expression and y + LAT2 protein expression, while the mRNA expression of ZnT7 and Zrt-irt-like protein 3 (ZIP3) were higher (p < 0.05) for the Zn-Prot M than for the Zn sulfate in the duodenum. It was concluded that the Zn-Prot M enhanced the Zn absorption in the small intestine partially via upregulating the expression of ZnT4, ZnT7, ZnT9, ZIP3, ZIP5, y + LAT2, and rBAT in the duodenum of broilers.
Collapse
Affiliation(s)
- Yun Hu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Chuanlong Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Wu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yicheng Qu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiyun Zhang
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ding Li
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ling Zhu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Feiyu Gao
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Bingxin Wu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Liyang Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyan Cui
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tingting Li
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanqiang Geng
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- *Correspondence: Xugang Luo,
| |
Collapse
|
5
|
Han M, Fu X, Xin X, Dong Y, Miao Z, Li J. High Dietary Organic Iron Supplementation Decreases Growth Performance and Induces Oxidative Stress in Broilers. Animals (Basel) 2022; 12:1604. [PMID: 35804503 PMCID: PMC9264942 DOI: 10.3390/ani12131604] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Although Iron (Fe) is an essential nutrient that plays a vital role in respiratory processes, excessive Fe in the diet can affect the health of broilers. We investigated the effects of diet supplemented with high levels of iron chelates with lysine and glutamic acid (Fe−LG) on the growth performance, serum biochemical parameters, antioxidant status, and duodenal mRNA expression of Fe transporters in broilers. A total of 800 1-day-old male Arbor Acres broilers were assigned to 5 groups, with 8 replicates each. Broilers were fed a corn−soybean meal basal diet or basal diets supplemented with 40, 80, 400, or 800 mg Fe/kg as Fe−LG for 6 weeks. The body weight (BW) was increased in the 80 mg Fe/kg treatment group, but decreased in the 800 mg Fe/kg treatment group on day 21. During days 1−21, compared with the control group, the supplementation of the 80 mg Fe/kg increased the average daily gain (ADG) and average daily feed intake (ADFI); however, the supplementation of the 800 mg Fe/kg group decreased the ADG and increased the FCR in broilers (p < 0.05). The heart, liver, spleen, and kidney indices were reduced in the 800 mg Fe/kg treatment group (p < 0.05). The supplementation of the 800 mg Fe/kg group increased the serum aspartate aminotransferase activity and the levels of creatinine and urea nitrogen on day 42 (p < 0.05). The broilers had considerably low liver total superoxide dismutase activity and total antioxidant capacity in the 800 mg Fe/kg treatment group (p < 0.05). Serum and liver Fe concentrations were elevated in the 400 and 800 mg Fe/kg treatment groups, but were not affected in the 40 and 80 mg Fe/kg treatment groups. The duodenal Fe transporters divalent metal transporter 1 (DMT1) and ferroportin 1 (FPN1) were downregulated in the Fe−LG treatment groups (p < 0.05). We conclude that a high dietary supplement of 800 mg Fe/kg in broilers leads to detrimental health effects, causing kidney function injury and liver oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianhui Li
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China; (M.H.); (X.F.); (X.X.); (Y.D.); (Z.M.)
| |
Collapse
|
6
|
Lu L, Dong X, Ma X, Zhang L, Li S, Luo X, Liao X. Metabolic utilization of intravenously injected iron from different iron sources in target tissues of broiler chickens. ANIMAL NUTRITION 2022; 9:74-83. [PMID: 35949984 PMCID: PMC9344292 DOI: 10.1016/j.aninu.2021.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 11/15/2022]
Abstract
No information is available regarding the utilization of iron (Fe) from different Fe sources at a target tissue level. To detect differences in Fe metabolic utilization among Fe sources, the effect of intravenously injected Fe on growth performance, hematological indices, tissue Fe concentrations and Fe-containing enzyme activities and gene expressions of Fe-containing enzymes or protein in broilers was investigated. On d 22 post-hatching, a total of 432 male chickens were randomly allotted to 1 of 9 treatments in a completely randomized design. Chickens were injected with either a 0.9% (wt/vol) NaCl solution (control) or a 0.9% NaCl solution supplemented with Fe sulphate or 1 of 3 organic Fe sources. The 3 organic Fe sources were Fe chelates with weak (Fe-MetW), moderate (Fe-ProtM) or extremely strong (Fe-ProtES) chelation strength. The 2 Fe dosages were calculated according to the Fe absorbabilities of 10% and 20% every 2 d for a duration of 20 d. Iron injection did not affect (P > 0.05) ADFI, ADG or FCR during either 1 to 10 d or 11 to 20 d after injections. Hematocrit and Fe concentrations in the liver and kidney on d 10 after Fe injections, and Fe concentrations in the liver or pancreas and ferritin heavy-chain (FTH1) protein expression level in the liver or spleen on d 20 after Fe injections increased (P ≤ 0.05) as injected Fe dosages increased. When the injected Fe level was high at 20% Fe absorbability, the chickens injected with Fe-ProtES had lower (P < 0.001) liver or kidney Fe concentrations and spleen FTH1 protein levels than those injected with Fe-MetW or Fe-ProtM on d 20 after injections. And they had lower (P < 0.05) liver cytochrome C oxidase mRNA levels on d 20 after injections than those injected with Fe-MetW or Fe sulphate. The results from this study indicate that intravenously injected Fe from Fe-ProtES was the least utilizable and functioned in the sensitive target tissue less effectively than Fe from Fe sulfate, Fe-MetW or Fe-ProtM.
Collapse
Affiliation(s)
- Lin Lu
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xueyu Dong
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Department of Animal Science, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Xuelian Ma
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Sufen Li
- Department of Animal Science, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
- Corresponding authors.
| | - Xiudong Liao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Corresponding authors.
| |
Collapse
|
7
|
Bai S, Yang Y, Ma X, Liao X, Wang R, Zhang L, Li S, Luo X, Lu L. Dietary calcium requirements of broilers fed a conventional corn-soybean meal diet from 1 to 21 days of age. J Anim Sci Biotechnol 2022; 13:11. [PMID: 35109932 PMCID: PMC8812165 DOI: 10.1186/s40104-021-00652-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Background The current calcium (Ca) recommendation for broilers is primarily based on studies conducted more than 30 years ago with birds of markedly different productive potentials from those which exist today. And the response indicators in these studies are mainly growth performance and bone ash percentage. Therefore, the present study was carried out to investigate the effect of dietary Ca level on growth performance, serum parameters, bone characteristics and Ca metabolism-related gene expressions, so as to estimate dietary Ca requirements of broilers fed a conventional corn-soybean meal diet from 1 to 21 days of age. Methods A total of 420 1-day-old Arbor Acres male broilers were randomly assigned to 1 of 7 treatments with 6 replicates (10 birds per cage) and fed the corn-soybean meal diets containing 0.60%, 0.70%, 0.80%, 0.90%, 1.00%, 1.10% or 1.20% Ca for 21 days. Each diet contained the constant non-phytate phosphorus content of about 0.39%. Results The average daily gain decreased linearly (P < 0.001) as dietary Ca level increased. The serum and tibia alkaline phosphatase (ALP) activities, tibia bone mineral density (BMD), middle toe BMD, tibia ash percentage, tibia breaking strength, and tibia ALP protein expression level were affected (P < 0.05) by dietary Ca level, and showed significant quadratic responses (P < 0.02) to dietary Ca levels. The estimates of dietary Ca requirements were 0.80 to 1.00% based on the best fitted broken-line or quadratic models (P < 0.03) of the above serum and bone parameters, respectively. Conclusions The results from the present study indicate that the Ca requirements would be about 0.60% to obtain the best growth rate, and 1.00% to meet all of the Ca metabolisms and bone development of broilers fed a conventional corn-soybean meal diet from 1 to 21 days of age.
Collapse
Affiliation(s)
- Shiping Bai
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China.,Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yunfeng Yang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xuelian Ma
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiudong Liao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Runlian Wang
- Department of Animal Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Sufen Li
- Department of Animal Science, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China.
| | - Lin Lu
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
8
|
Maurya M, Nag TC, Kumar P, Roy TS. Expression patterns of iron regulatory proteins after intense light exposure in a cone-dominated retina. Mol Cell Biochem 2021; 476:3483-3495. [PMID: 33983563 DOI: 10.1007/s11010-021-04175-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Iron is implicated in ocular diseases such as in age-related macular degeneration. Light is also considered as a pathological factor in this disease. Earlier, two studies reported the influence of constant light environment on the pattern of expressions of iron-handling proteins. Here, we aimed to see the influence of light in 12-h light-12-h dark (12L:12D) cycles on the expression of iron-handling proteins in chick retina. Chicks were exposed to 400 lx (control) and 5000 lx (experimental) light at 12L:12D cycles and sacrificed at variable timepoints. Retinal ferrous ion (Fe2+) level, ultrastructural changes, lipid peroxidation level, immunolocalization and expression patterns of iron-handling proteins were analysed after light exposure. Both total Fe2+ level (p = 0.0004) and lipid peroxidation (p = 0.002) significantly increased at 12-, 48- and 168-h timepoint (for Fe2+) and 48- and 168-h timepoint (for lipid peroxidation), and there were degenerative retinal changes after 168 h of light exposure. Intense light exposure led to an increase in the levels of transferrin and transferrin receptor-1 (at 168-h) and ferroportin-1, whereas the levels of ferritins, hephaestin, (at 24-, 48- and 168-h timepoint) and ceruloplasmin (at 168-h timepoint) were decreased. These changes in iron-handling proteins after light exposure are likely due to a disturbance in the iron storage pool evident from decreased ferritin levels, which would result in increased intracellular Fe2+ levels. To counteract this, Fe2+ is released into the extracellular space, an observation supported by increased expression of ferroportin-1. Ceruloplasmin was able to convert Fe2+ into Fe3+ until 48 h of light exposure, but its decreased expression with time (at 168-h timepoint) resulted in increased extracellular Fe2+ that might have caused oxidative stress and retinal cell damage.
Collapse
Affiliation(s)
- Meenakshi Maurya
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Tapas C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Pankaj Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Tara Sankar Roy
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
9
|
Bai S, Cao S, Ma X, Li X, Liao X, Zhang L, Zhang M, Zhang R, Hou S, Luo X, Lu L. Organic iron absorption and expression of related transporters in the small intestine of broilers. Poult Sci 2021; 100:101182. [PMID: 34198093 PMCID: PMC8253913 DOI: 10.1016/j.psj.2021.101182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/03/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
An experiment was conducted to investigate the effect of organic and inorganic Fe sources on Fe absorption and expression of related transporters in the small intestine of broilers. Iron-deficient intact broilers (7-day-old) were fed an Fe-unsupplemented corn-soybean meal basal diet or the basal diet supplemented with 60 mg Fe/kg as Fe sulfate (FeSO4•7H2O), Fe-Met with weak chelation strength (Fe-Met W), Fe-proteinate with moderate chelation strength (Fe-Prot M) or Fe-proteinate with extremely strong chelation strength (Fe-Prot ES) for 14 d. The plasma Fe contents were enhanced (P < 0.02) by Fe addition, and greater (P < 0.0002) in Fe-Prot M and Fe-Prot ES groups than in Fe-Met W and FeSO4 groups. Supplemental Fe decreased (P < 0.03) the divalent metal transporter 1 (DMT1) mRNA levels in the duodenum and jejunum, and ferroportin 1 (FPN1) mRNA levels in the duodenum on d 21, but no differences (P > 0.20) were detected among different Fe sources. Regardless of Fe source, the mRNA levels of DMT1 and FPN1 were higher (P < 0.02) in the duodenum than in the jejunum and ileum, and in the jejunum than in the ileum (P < 0.05). However, Fe addition did not affect (P > 0.10) the mRNA levels of amino acid transporters and protein levels of DMT1 and FPN1 in the small intestine of broilers. These results indicate that organic Fe sources with stronger chelation strength showed higher Fe absorption in broilers in vivo; the mRNA expression of Fe and amino acid transporters varied along with the extension of the small intestine; the absorption of Fe as organic Fe chelates was not mediated by the amino acid transporters in intact chicks in this study.
Collapse
Affiliation(s)
- Shiping Bai
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China; Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, P.R. China
| | - Sumei Cao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China; Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - Xuelian Ma
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Xiaofei Li
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Xiudong Liao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Liyang Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Minhong Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Rijun Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - Shuisheng Hou
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, P.R. China
| | - Lin Lu
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China.
| |
Collapse
|