1
|
Sun Y, Liang Y, Li K, Zhang L, Zhong R, Chen L, Zhang H. Fermentation and exogenous enzymes can increase ileal, hindgut, and total tract energy digestibility of palm kernel cake in growing pigs. Arch Anim Nutr 2025; 79:14-26. [PMID: 40079531 DOI: 10.1080/1745039x.2025.2467762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/07/2025] [Indexed: 03/15/2025]
Abstract
This study assessed how fermentation and exogenous enzymes affect nutrient digestibility and energy values of palm kernel cake (PKC) in growing pigs. Eighteen pigs were fed six diets: a basal diet, PKC (100 or 200 g/kg), fermented PKC (FPKC; 100 or 200 g/kg), or enzymolysis PKC (EPKC; 100 g/kg). Chromium oxide was used to determine digestibility coefficients. Results showed that PKC inclusion linearly reduced apparent total tract digestibility (ATTD) of dry matter (DM), crude protein (CP), and gross energy (GE), while fermentation or enzymatic hydrolysis mitigated these effects. The regression-estimated digestible energy (DE) values were 11.39 MJ/kg DM for PKC and 12.84 MJ/kg DM for FPKC; metabolisable energy (ME) values were 11.03 and 12.60 MJ/kg DM, respectively. Hindgut fermentation contributed 5.42 MJ/kg DM (PKC) and 4.11 MJ/kg DM (FPKC). Fermentation and enzymatic treatments improved PKC energy utilisation, suggesting their potential as cost-effective alternatives in pig diets.
Collapse
Affiliation(s)
- Yaowei Sun
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yuxiang Liang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lianhua Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Hong J, Halbur J, Petry AL, Doung T, Llamas-Moya S, Kitt S, Bertram M, Weaver E. Effects of a fiber-degrading enzyme on ileal digestibility of amino acids and fiber and total tract digestibility of energy and fiber in growing pigs fed diets with high level of corn distillers grains with solubles. J Anim Sci 2025; 103:skaf076. [PMID: 40096523 PMCID: PMC12019968 DOI: 10.1093/jas/skaf076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/14/2025] [Indexed: 03/19/2025] Open
Abstract
Dietary enzyme supplementation may enhance the digestibility and utilization of non-starch polysaccharides (NSP) in fiber-rich feedstuffs, which are increasingly being used in swine diets. The objective of this study was to evaluate the efficacy of a carbohydrase enzyme (CE) containing xylanase and cellulase on apparent total tract digestibility (ATTD) and apparent ileal digestibility (AID) of nutrients and fiber fractions in growing pigs. Twelve ileal-cannulated pigs (initial body weight (BW) = 31.7 ± 3.04 kg) were allocated to 1 of 2 experimental groups differing on CE (cellulase and xylanase) supplementation to a corn-soybean meal (SBM)-corn distillers grains with solubles (cDDGS) diet in a completely randomized design. Pigs were housed in individual metabolic crates for 21 d (period 1) and subsequently transferred to individual floor pens for an additional 28 d (period 2). Thus, experimental treatments included a corn-SBM-based diet with 30% cDDGS without (Control) or with CE at a dose of 0.2 g/kg of the diet. The diets were fed to pigs at 3 times their maintenance energy requirements based on their BW, which contained 0.3% titanium dioxide as an indigestible marker. In period 1, pigs had 14 d of adaptation, followed by 4 d of fecal and urine collection using the total collection method and 2 d of ileal digesta collection. In period 2, pigs had 23 d of adaptation, followed by 2 d of fecal collection and 2 d of ileal digesta collection. Data were subjected to ANOVA using the MIXED procedure of SAS, and the model included the period as a repeated term. Dietary CE supplementation improved (P < 0.05) the AID of Ile (77.3% vs. 80.0%), Thr (73.8% vs. 77.8%), Trp (83.2 vs. 86.6), crude protein (CP, 71.1% vs. 75.9%), gross energy (GE, 61.5% vs. 67.6%), neutral detergent fiber (22.0% vs. 29.1%), insoluble dietary fiber (30.9% vs. 37.9%), total dietary fiber (29.2% vs. 37.1%), and cellulose (12.5% vs. 22.0%). The CE also improved (P < 0.05) the ATTD of dry matter (75.4% vs. 78.9%), organic matter (80.3% vs. 82.8%), CP (80.8% vs. 85.7%), crude ash (44.4% vs. 57.0%), calcium (58.5% vs. 66.1%), GE (76.5% vs. 79.4%), acid detergent fiber (40.7% vs. 48.2%), and total NSP (49.3% vs. 53.0%). In conclusion, supplementing a corn-SBM-30% cDDGS diet with carbohydrase enzyme with xylanase and cellulase activities increased the availability of nutrients and fiber fractions at the ileum, enhancing further the degradation in the total tract of growing pigs.
Collapse
Affiliation(s)
- Jinsu Hong
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | - Joseph Halbur
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | - Amy L Petry
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | | - Steve Kitt
- First Choice Livestock, LLC, Johnston, IA 50131, USA
| | - Mark Bertram
- First Choice Livestock, LLC, Johnston, IA 50131, USA
| | - Eric Weaver
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
3
|
Shipman GL, Perez-Palencia JY, Hong J, Niu Y, Rogiewicz A, Patterson R, Levesque CL. Effects of multienzyme supplementation on energy and nutrient digestibility in various feed ingredients for pregnant gilts. J Anim Sci 2025; 103:skaf017. [PMID: 39878943 PMCID: PMC12032578 DOI: 10.1093/jas/skaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/28/2025] [Indexed: 01/31/2025] Open
Abstract
The utilization of exogenous fiber-degrading enzymes in commercial swine diets is a strategy to increase the nutrient and energy density of poorly digestible ingredients. In a prior set of studies, dietary multienzyme blend (MEblend) supplementation increased the apparent total tract digestibility (ATTD) of nutrients, non-starch polysaccharides, and energy in complete high-fibrous gestation diets by 6% when fed to gestating sows. The current study aimed to determine the effects of MEblend (containing xylanase, β-glucanase, cellulase, amylase, protease, pectinase, and invertase activities) supplementation on ATTD of energy and nutrients of individual feedstuffs commonly used in gestating sow diets across major pork-producing regions worldwide, which differ in their fibrous components. Twenty-seven gilts (initial body weight 176 ± 6.6 kg), in a crossover design with 4 periods (periods 1, 2, 3, and 4 from days 41 to 55, 56 to 70, 71 to 85, and 86 to 100 of gestation, respectively), were allocated to one of 7 diets (with or without MEblend supplementation at 0.1% inclusion; 7 to 8 observations per treatment) to determine the ATTD of energy and neutral detergent fiber. Three diets contained corn, wheat, and sorghum as the sole source of energy. In the other diets, soybean meal (SBM), field peas (FP), canola meal (CM), and sugar beet pulp (SBP) each replaced 25% of the corn in the corn diet to determine the energy value of individual feedstuffs. Data were analyzed using a Student's t-test to evaluate the effect of enzyme supplementation on these feedstuffs. The MEblend increased the metabolizable and net energy of corn (P = 0.10) and wheat (P < 0.01) by 2% and 3%, respectively. The energy content of sorghum was not impacted by MEblend. Furthermore, a 6%, 4%, and 25% increase was observed in metabolizable and net energy of SBM, FP, and CM, respectively (P ≤ 0.05). The energy value in SBP was not affected by MEblend supplementation. In conclusion, supplementing diets with a multienzyme blend increased the energy content of corn, wheat, soybean meal, FP, and CM fed to gestating sows by approximately 2% to 25%, depending on the feedstuffs. The energy value of sorghum and SBP was not affected by the multienzyme blend. This should be considered when formulating fibrous diets for gestating sows to increase nutrient utilization of feedstuffs.
Collapse
Affiliation(s)
- Garrin L Shipman
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | | | - Jinsu Hong
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | - Yanxing Niu
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - Anna Rogiewicz
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | | | - Crystal L Levesque
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
4
|
Goo D, Lee J, Paneru D, Sharma MK, Rafieian-Naeini HR, Mahdavi FS, Gyawali I, Gudidoddi SR, Han G, Kim WK. Effects of branched-chain amino acid imbalance and dietary valine and isoleucine supplementation in modified corn-soybean meal diets with corn distillers dried grains with solubles on growth performance, carcass quality, intestinal health, and cecal microbiome in Cobb 500. Poult Sci 2024; 103:104483. [PMID: 39510006 PMCID: PMC11577229 DOI: 10.1016/j.psj.2024.104483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
One important feature of corn distillers dried grains with solubles (DDGS) is its high leucine:lysine ratio, which can inhibit chicken growth by causing branched-chain amino acid (BCAA) antagonism. The current study was conducted to investigate the effects of BCAA imbalance of inclusion of DDGS and whether additional dietary valine and isoleucine could alleviate the negative effects in broilers. A total of 640 0-d-old male Cobb 500 broilers were allocated into 4 treatments with 8 replicates and reared until d 42. The four different dietary groups were as follows: 1) control (CON) group (corn-soybean meal-based diet); 2) 30% DDGS (30D) group (replacing soybean meal with 30% DDGS); 3) 30D + additional valine and isoleucine (30DB) group; and 4) the group of 30DB + additional valine and isoleucine to provide the same leucine:valine and leucine:isoleucine ratios as the CON group (30DBB). The analyzed leucine:lysine ratios of the CON group were 1.36/1.41/1.46 (starter/grower/finisher phase), whereas the average leucine:lysine ratios of the 30% DDGS groups were 1.61/1.70/1.78 (starter/grower/finisher phase). The 30% DDGS groups (30D, 30DB, and 30DBB) negatively affected body weight (BW) from d 7 to 42 and BW gain (BWG), feed intake, carcass weight, breast muscle weight, and jejunal and ileal villus height:crypt depth during the overall period (d 0 to 42) (P < 0.05). Furthermore, the 30% DDGS groups significantly altered expression levels of jejunal tight junction proteins, breast muscle mechanistic target of rapamycin (mTOR) pathway-related genes, BCAA catabolism genes, and AA transporters compared to the CON (P < 0.01). The 30% DDGS groups showed differences in beta-diversity indices compared to the CON group (P < 0.05). The 30DBB group showing the lowest d 21 and 42 BW and overall BWG had the largest differences compared to the CON group in most measurements. In conclusion, excessive replacement of soybean meal with DDGS can significantly increase leucine levels, which may negatively affect chicken growth. Additionally, inappropriate ratios of valine and isoleucine can further decrease growth performance.
Collapse
Affiliation(s)
- Doyun Goo
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Jihwan Lee
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Deependra Paneru
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Milan K Sharma
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | | - Fatemeh S Mahdavi
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Ishwari Gyawali
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | | - Gippeum Han
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States.
| |
Collapse
|
5
|
Stas EB, DeRouchey JM, Goodband RD, Tokach MD, Woodworth JC, Gebhardt JT. Nutritional guide to feeding wheat and wheat co-products to swine: a review. Transl Anim Sci 2024; 8:txae106. [PMID: 39346699 PMCID: PMC11439155 DOI: 10.1093/tas/txae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/15/2024] [Indexed: 10/01/2024] Open
Abstract
Inclusion of wheat grain can offer feeding opportunities in swine diets because of its high starch, crude protein (CP), amino acid (AA), and phosphorus (P) content. High concentrations of starch within wheat grain makes it a good energy source for swine. Mean energy content of wheat was 4,900 and 3,785 kcal/kg dry matter (DM) for digestible energy and metabolizable energy, respectively. CP concentration can vary based on the class of wheat which include hard red winter, hard red spring, soft red winter, hard white, soft white, and durum. The average CP of all wheat data collected in this review was 12.6% with a range of 8.5% to 17.6%. The AA concentration of wheat increases with increasing CP with the mean Lys content of 0.38% with a standardized ileal digestibility (SID) of 76.8%. As CP of wheat increases, the SID of AA in wheat also increases. Mean P of wheat was 0.27% and median P was 0.30%. Off-quality wheat is often associated with sprouts, low-test weight, or mycotoxin-contamination. Sprouted and low-test weight wheat are physical abnormalities associated with decreased starch within wheat kernel that leads to reductions in energy. The assumed energy value of wheat grain may need to be reduced by up to 10% when the proportion of sprouted to non-sprouted wheat is up to 40% whereas above 40%, wheat's energy may need to be reduced by 15% to 20%. Low-test weight wheat appears to not influence pig performance unless it falls below 644 kg/m3 and then energy value should be decreased by 5% compared to normal wheat. Deoxynivalenol (DON) contamination is most common with wheat grain. When content is above the guidance level of 1 mg/kg of DON in the complete diet, each 1 mg/kg increase in a DON-contaminated wheat-based diet will result in a 11% and 6% reduction in ADG and ADFI for nursery pigs, and a 2.7% and 2.6% reduction in ADG and ADFI, in finishing pigs, respectively. Wheat co-products are produced from the flour milling industry. Wheat co-products include wheat bran middlings, millrun, shorts, and red dog. Wheat co-products can be used in swine diets, but application may change because of differences in the final diet energy concentration due to changes in the starch and fiber levels of each wheat co-product. However, feeding wheat co-products are being evaluated to improve digestive health. Overall, wheat and wheat co-products can be fed in all stages of production if energy and other nutrient characteristics are considered.
Collapse
Affiliation(s)
- Ethan B Stas
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Robert D Goodband
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Mike D Tokach
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-0201, USA
| |
Collapse
|
6
|
Rivas MÁ, Ruiz-Moyano S, Vázquez-Hernández M, Benito MJ, Casquete R, Córdoba MDG, Martín A. Impact of Simulated Human Gastrointestinal Digestion on the Functional Properties of Dietary Fibres Obtained from Broccoli Leaves, Grape Stems, Pomegranate and Tomato Peels. Foods 2024; 13:2011. [PMID: 38998517 PMCID: PMC11241623 DOI: 10.3390/foods13132011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
This study aimed to analyse the impact of a simulated human digestion process on the composition and functional properties of dietary fibres derived from pomegranate-peel, tomato-peel, broccoli-stem and grape-stem by-products. For this purpose, a computer-controlled simulated digestion system consisting of three bioreactors (simulating the stomach, small intestine and colon) was utilised. Non-extractable phenols associated with dietary fibre and their influence on antioxidant capacity and antiproliferative activity were investigated throughout the simulated digestive phases. Additionally, the modifications in oligosaccharide composition, the microbiological population and short-chain fatty acids produced within the digestion media were examined. The type and composition of each dietary fibre significantly influenced its functional properties and behaviour during intestinal transit. Notably, the dietary fibre from the pomegranate peel retained its high phenol content throughout colon digestion, potentially enhancing intestinal health due to its strong antioxidant activity. Similarly, the dietary fibre from broccoli stems and pomegranate peel demonstrated anti-proliferative effects in both the small and the large intestines, prompting significant modifications in colonic microbiology. Moreover, these fibre types promoted the growth of bifidobacteria over lactic acid bacteria. Thus, these results suggest that the dietary fibre from pomegranate peel seems to be a promising functional food ingredient for improving human health.
Collapse
Affiliation(s)
- María Ángeles Rivas
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| | - Santiago Ruiz-Moyano
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| | - María Vázquez-Hernández
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| | - María José Benito
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| | - Rocío Casquete
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| | - María de Guía Córdoba
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| | - Alberto Martín
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| |
Collapse
|
7
|
Choi H, Duarte YG, Pasquali GAM, Kim SW. Investigation of the nutritional and functional roles of a combinational use of xylanase and β-glucanase on intestinal health and growth of nursery pigs. J Anim Sci Biotechnol 2024; 15:63. [PMID: 38704593 PMCID: PMC11070102 DOI: 10.1186/s40104-024-01021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/05/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Xylanase and β-glucanase combination (XG) hydrolyzes soluble non-starch polysaccharides that are anti-nutritional compounds. This study aimed to evaluate the effects of increasing levels of XG on intestinal health and growth performance of nursery pigs. METHODS Forty pigs (6.5 ± 0.4 kg) were assigned to 5 dietary treatments and fed for 35 d in 3 phases (11, 9, and 15 d, respectively). Basal diets mainly included corn, soybean meal, and corn distiller's dried grains with solubles, contained phytase (750 FTU/kg), and were supplemented with 5 levels of XG at (1) 0, (2) 280 TXU/kg xylanase and 125 TGU/kg β-glucanase, (3) 560 and 250, (4) 840 and 375, or (5) 1,120 and 500, respectively. Growth performance was measured. On d 35, all pigs were euthanized and jejunal mucosa, jejunal digesta, jejunal tissues, and ileal digesta were collected to determine the effects of increasing XG levels and XG intake on intestinal health. RESULTS Increasing XG intake tended to quadratically decrease (P = 0.059) viscosity of jejunal digesta (min: 1.74 mPa·s at 751/335 (TXU/TGU)/kg). Increasing levels of XG quadratically decreased (P < 0.05) Prevotellaceae (min: 0.6% at 630/281 (TXU/TGU)/kg) in the jejunal mucosa. Increasing XG intake quadratically increased (P < 0.05) Lactobacillaceae (max: 40.3% at 608/271 (TXU/TGU)/kg) in the jejunal mucosa. Increasing XG intake quadratically decreased (P < 0.05) Helicobacteraceae (min: 1.6% at 560/250 (TXU/TGU)/kg) in the jejunal mucosa. Increasing levels of XG tended to linearly decrease (P = 0.073) jejunal IgG and tended to quadratically increase (P = 0.085) jejunal villus height to crypt depth ratio (max: 2.62 at 560/250 (TXU/TGU)/kg). Increasing XG intake tended to linearly increase the apparent ileal digestibility of dry matter (P = 0.087) and ether extract (P = 0.065). Increasing XG intake linearly increased (P < 0.05) average daily gain. CONCLUSIONS A combinational use of xylanase and β-glucanase would hydrolyze the non-starch polysaccharides fractions, positively modulating the jejunal mucosa-associated microbiota. Increased intake of these enzyme combination possibly reduced digesta viscosity and humoral immune response in the jejunum resulting in improved intestinal structure, and ileal digestibility of nutrients, and finally improving growth of nursery pigs. The beneficial effects were maximized at a combination of 550 to 800 TXU/kg xylanase and 250 to 360 TGU/kg β-glucanase.
Collapse
Affiliation(s)
- Hyunjun Choi
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Yesid Garavito Duarte
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA.
| |
Collapse
|
8
|
Petry AL, Huntley NF, Bedford MR, Patience JF. Unveiling the influence of adaptation time on xylanase and arabinoxylan-oligosaccharide efficacy: a study on nutrient digestibility, viscosity, and scanning electron microscopy in the small and large intestine of growing pigs fed insoluble fiber. J Anim Sci 2024; 102:skad378. [PMID: 37991108 PMCID: PMC10783243 DOI: 10.1093/jas/skad378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023] Open
Abstract
The experiment objective was to evaluate the impact of xylanase over time on viscosity and digestibility in growing pigs fed corn-based fiber. Twenty gilts with an initial body weight of 30.6 ± 0.2 kg (n = 5 per dietary treatment) were fitted with t-cannulae in the medial jejunum and terminal ileum, housed individually, and randomly assigned to one of four dietary treatments: low-fiber control (LF) with 10.4% total dietary fiber (TDF), 30% corn bran high-fiber control (HF; 26.4% TDF), HF + 100 mg xylanase/kg (XY; Econase XT 25P; AB Vista, Marlborough, UK), and HF + 50 mg arabinoxylan-oligosaccharide/kg (AX). Gilts were limit fed for three 17 d periods (P1, P2, P3); each included 5 d adaptation, 2 d fecal collection, 3 d ileal collection, 3 d jejunal collection, and 4 d related rate of passage study. Data were analyzed as repeated measures using a linear mixed model with surgery date as a random effect, and dietary treatment, period, and their interaction as fixed effects. Jejunal and ileal digesta viscosity did not differ among dietary treatments or periods (P > 0.10). There was a dietary treatment × period interaction for the apparent jejunal digestibility (AJD) of dry matter (DM), gross energy (GE), insoluble dietary fiber (IDF), neutral detergent fiber (NDF), total arabinoxylan (T-AX), total non-starch polysaccharide (T-NSP), and TDF (P≤ 0.05). In P1, LF had the greatest AJD of DM (15.5%), and relative to HF and AX, XY decreased it (9.3%, 10.1 %, and 6.3%, respectively). In P2, the AJD of DM in XY was greater than HF (11.7% vs. 9.1%) but did not differ from AX (10.5%). Relative to HF, in P3, XY increased AJD of DM (11.7 vs 15.3%), and AX decreased it (7.2%). For the AJD of NDF, AX performed intermediately in P1; in P2, relative to HF, XY, and AX increased the AJD of NDF (8.4%, 13.1%, and 11.7%, respectively), and in P3, XY, and LF did not differ (13.6 vs. 14.4%). A similar response was observed for the AJD of IDF and TDF, except for XY having the greatest AJD of IDF, T-AX, T-NSP, and TDF in P3 (P < 0.05). Compared to LF, irrespective of period, HF decreased the apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of IDF, TDF, and NDF (P < 0.05). Relative to HF, XY partially mitigated this effect, improving the AID and ATTD of TDF, IDF, and NDF (P < 0.05). Increased corn-based fiber decreased nutrient digestibility, but XY partially mitigated that effect in the small intestine through enhanced fiber digestibility when given sufficient adaptation time.
Collapse
Affiliation(s)
- Amy L Petry
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Nichole F Huntley
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Michael R Bedford
- AB Vista Feed Ingredients, Marlborough, Wiltshire SN8 4AN, United Kingdom
| | - John F Patience
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
9
|
Du Z, Gao L, Wang Y, Xie J, Zeng S, Zhao J, Sa R, Zhao F. A comparative study on in vitro and in vivo stomach-small intestinal and large intestinal digestion of plant protein meals in growing pigs. J Anim Sci 2023; 101:skad170. [PMID: 37226537 PMCID: PMC10290501 DOI: 10.1093/jas/skad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023] Open
Abstract
This experiment evaluated the difference between computer-controlled simulated digestion and in vivo stomach-small intestinal or large intestinal digestion for growing pigs. Five diets including a corn-soybean meal basal diet and four experimental diets with rapeseed meal (RSM), cottonseed meal (CSM), sunflower meal (SFM), or peanut meal (PNM) were assigned to each group of five barrows installed terminal ileal cannula or distal cecal cannula in a 5 × 5 Latin square design. Ileal digesta and feces were collected for the determination of digestibility of dry matter (DM) and gross energy (GE) as well as digestible energy (DE) at terminal ileum and total tract. The large intestinal digestibility and DE were calculated by the difference between measurements obtained at the terminal ileum and those obtained from total tract. In vitro stomach-small intestinal digestibility and DE for diets and plant protein meals were determined by stomach-small intestinal digestion in a computer-controlled simulated digestion system (CCSDS). The in vitro large intestinal digestibility and DE of diets were determined in a CCSDS using ileal digesta and enzymes extracted from cecal digesta of pigs. The in vitro large intestinal digestibility and DE of four plant protein meals were determined by the difference between stomach-small intestinal and total tract digestion in the CCSDS. For the experimental diets, the in vitro ileal digestibility and DE were not different from corresponding in vivo values in basal diet and PNM diet, but greater than corresponding in vivo values for diets with RSM, CSM, and SFM (P < 0.05). No difference was observed between in vitro and in vivo large intestinal digestibility and DE in five diets. For the feed ingredients, the in vitro ileal digestibility and DE did not differ from corresponding in vivo ileal values in RSM and PNM but were greater than the in vivo ileal values in CSM and SFM (P < 0.05). The in vitro large intestinal GE digestibility and DE were not different from in vivo large intestinal values in RSM, CSM, and PNM, but lower than in vivo large intestinal values in SFM. This finding may relate to the higher fiber content of plant protein meals resulting in shorter digestion time of in vivo stomach-small intestine thus lower digestibility compared to in vitro, indicating it is necessary to optimize in vitro stomach-small intestinal digestion time.
Collapse
Affiliation(s)
- Zhongyuan Du
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lixiang Gao
- Wen’s Food Group Co. Ltd., Guangdong 527439, China
| | - Yuming Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingjing Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuli Zeng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | - Renna Sa
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Feng Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
10
|
Boontiam W, Phaenghairee P, Van Hoeck V, Vasanthakumari BL, Somers I, Wealleans A. Xylanase Impact beyond Performance: Effects on Gut Structure, Faecal Volatile Fatty Acid Content and Ammonia Emissions in Weaned Piglets Fed Diets Containing Fibrous Ingredients. Animals (Basel) 2022; 12:3043. [PMID: 36359167 PMCID: PMC9654035 DOI: 10.3390/ani12213043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
Abstract
The addition of xylanase to piglet diets is known to improve performance and nutrient digestibility. The present study aimed to assess the impact of new xylanase on the growth performance, nutrient digestibility, and gut function of weaned piglets. A total of 144 pigs, weaned at 28 days (7.48 kg initial body weight, IBW), were assigned to 36 pens and 9 pens per treatment. Dietary treatments were a basal complex control diet, and the basal diet supplemented with 45,000, 90,000 and 135,000 U/kg xylanase. Performance was measured at days 0, 14 and 35. At day 35, samples were collected for assessment of intestinal histology, and volatile fatty acid and ammonia concentrations. After two weeks post-weaning, additional 12 piglets (11.34 kg IBW) were placed in metabolic crates for assessment of apparent total tract nutrient digestibility using a dietary marker. The addition of xylanase at 90,000 and 135,000 U/kg significantly improved average daily gain (333.6 g/day control, 364.86 g/day, 90,000 U/kg, 405.89 g/day, 135,000 U/kg, p < 0.05), G:F (0.557 control, 0.612 90,000 U/kg, 0.692 135,000 U/kg, p < 0.05), and reduced diarrhoea. This was driven improved nutrient digestibility and villus height in the jejunum (372.87 µm control, 432.53 µm 45,000 U/kg, 465.80 µm 90,000 U/kg, 491.28 µm 135,000 U/kg, p < 0.05). Xylanase supplementation also linearly increased faecal butyrate levels and had a quadratic relationship with propionate concentrations. 135,000 U/kg xylanase also reduced ammonia emissions. In conclusion, dietary supplementation with xylanase improved growth performance and feed efficiency in weaning piglets, likely driven by improvements to gut structure and function.
Collapse
Affiliation(s)
- Waewaree Boontiam
- Faculty of Agriculture, Division of Animal Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pheeraphong Phaenghairee
- Faculty of Agriculture, Division of Animal Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Veerle Van Hoeck
- Kemin Europa N.V., Animal Nutrition and Health EMENA, Toekomstlaan 42, 2200 Herentals, Belgium
| | | | - Ingrid Somers
- Kemin Europa N.V., Animal Nutrition and Health EMENA, Toekomstlaan 42, 2200 Herentals, Belgium
| | - Alexandra Wealleans
- Kemin Europa N.V., Animal Nutrition and Health EMENA, Toekomstlaan 42, 2200 Herentals, Belgium
| |
Collapse
|
11
|
Oliveira M, Espinosa C, Blavi L, Mortada M, Almeida F, Stein H. Effects of a mixture of xylanase and glucanase on digestibility of energy and dietary fiber in corn- or sorghum based diets fed to growing pigs. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
12
|
Corassa A, Silva DRD, Ton APS, Kiefer C, Sbardella M, Brito CDO, Teixeira ADO, Rothmund VL. Digestibility, performance and economic efficiency of diets containing phytase and distillers dried grains with solubles for growing pigs. REVISTA BRASILEIRA DE SAÚDE E PRODUÇÃO ANIMAL 2022. [DOI: 10.1590/s1519-9940202200092022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT This study aimed to evaluate the effects of phytase enzyme and distillers dried grains with solubles (DDGS) on the digestibility, performance and economic viability of growing pigs. Two experiments were conducted with a reference diet (RD) based on corn and soybean meal: RD with 200 g kg -1 DDGS (DDGS); RD + 1,000 units of phytase (PHY); and RD + 200 g kg-1 DDGS + 1,000 units of phytase (D+P). In experiment 1, eight castrated male pigs weighing 29.35 ± 5.74 kg were used through the total collection method and replicates in time for digestibility evaluation. In experiment 2, 40 castrated male pigs 47.65 ± 3.99 kg, with five replicates of two animals per experimental unit, were used for performance and economic evaluation. DDGS increased the excretion of nitrogen and energy in feces and urine, impairing the digestibility coefficients and metabolizability of dietary energy. The animals that consumed diets with DDGS presented the worst performance, while phytase did not influence the results. Diets with the inclusion of 200 g kg -1 DDGS and 1,000 units of phytase did not differ in cost per kilogram compared to the control diet.
Collapse
|
13
|
Tang X, Zhang L, Fan C, Wang L, Fu H, Ren S, Shen W, Jia S, Wu G, Zhang Y. Dietary Fiber Influences Bacterial Community Assembly Processes in the Gut Microbiota of Durco × Bamei Crossbred Pig. Front Microbiol 2021; 12:688554. [PMID: 34956107 PMCID: PMC8693415 DOI: 10.3389/fmicb.2021.688554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/08/2021] [Indexed: 01/17/2023] Open
Abstract
Several studies have shown that dietary fiber can significantly alter the composition and structure of the gut bacterial community in humans and mammals. However, few researches have been conducted on the dynamics of the bacterial community assembly across different graded levels of dietary fiber in different gut regions. To address this, 24 Durco × Bamei crossbred pigs were randomly assigned to four experimental chows comprising graded levels of dietary fiber. Results showed that the α-and β-diversity of the bacterial community was significantly different between the cecum and the jejunum. Adding fiber to the chow significantly increased the α-diversity of the bacterial community in the jejunum and cecum, while the β-diversity decreased. The complexity of the bacterial network increased with the increase of dietary fiber in jejunal content samples, while it decreased in cecal content samples. Furthermore, we found that stochastic processes governed the bacterial community assembly of low and medium dietary fiber groups of jejunal content samples, while deterministic processes dominated the high fiber group. In addition, deterministic processes dominated all cecal content samples. Taken together, the variation of gut community composition and structure in response to dietary fiber was distinct in different gut regions, and the dynamics of bacterial community assembly across the graded levels of dietary fiber in different gut regions was also distinct. These findings enhanced our knowledge on the bacterial community assembly processes in gut ecosystems of livestock.
Collapse
Affiliation(s)
- Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Chao Fan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining, China
| | - Haibo Fu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shi'en Ren
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenjuan Shen
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Guofang Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining, China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| |
Collapse
|
14
|
Aiewviriyasakul K, Bunterngsook B, Lekakarn H, Sritusnee W, Kanokratana P, Champreda V. Biochemical characterization of xylanase GH11 isolated from Aspergillus niger BCC14405 (XylB) and its application in xylooligosaccharide production. Biotechnol Lett 2021; 43:2299-2310. [PMID: 34718907 DOI: 10.1007/s10529-021-03202-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To develop an endo-β-1,4-xylanase with high specificity for production of prebiotic xylooligosaccharides that optimally works at moderate temperature desirable to reduce the energy cost in the production process. RESULTS The xylB gene, encoding for a glycosyl hydrolase family 11 xylanase from a thermoresistant fungus, Aspergillus niger BCC14405 was expressed in a methylotrophic yeast P. pastoris KM71 in a secreted form. The recombinant XylB showed a high specific activity of 3852 and 169 U mg-1 protein on beechwood xylan and arabinoxylan, respectively with no detectable side activities against different forms of cellulose (Avicel Ò PH101 microcrystalline cellulose, phosphoric acid swollen cellulose and carboxymethylcellulose). The enzyme worked optimally at 45 °C, pH 6.0. It showed a specific cleavage pattern by releasing xylobiose (X2) as the major product from xylooligosaccharides (X3 to X6) substrates. The highest XOS yield of 708 mg g-1 substrate comprising X2, X3 and X6 was obtained from beechwood xylan hydrolysis. CONCLUSION The enzyme is potent for XOS production and for saccharification of lignocellulosic biomass.
Collapse
Affiliation(s)
- Katesuda Aiewviriyasakul
- Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani, 12120, Thailand
| | - Benjarat Bunterngsook
- Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani, 12120, Thailand.
| | - Hataikarn Lekakarn
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Phahonyothin Road, Khlong Luang, Pathumthani, 12120, Thailand
| | - Wipawee Sritusnee
- Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani, 12120, Thailand
| | - Pattanop Kanokratana
- Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani, 12120, Thailand
| | - Verawat Champreda
- Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani, 12120, Thailand
| |
Collapse
|
15
|
Chassé É, Dickner-Ouellet L, Guay F, Pomar C, Létourneau-Montminy MP. Impact of diet type and xylanase supplementation on the ileal digestibility of nutrients, and growth performance in growing-finishing pigs. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2021-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the experiment, six pigs fitted with a T-cannula at the distal ileum were fed six diets in a 6 × 6 Latin square design. Treatments were corn-soybean meal diet (CS), diet containing wheat by-products (WBP), and diet containing corn distillers dried grains with solubles and canola meal (DDCM) without or with xylanase (X) supplementation (CS-X, WBP-X, and DDCM-X). The WBP and DDCM diets had higher apparent ileal digestibility (AID) of lipids and acid detergent fiber (ADF) (P < 0.05) than CS diets. A xylanase × diet interaction was observed for the AID of neutral detergent fiber (NDF) (P < 0.05) showing larger impact of xylanase in WBP than in the other diets. Using similar dietary treatments except for CS-X, growth and body composition of the sixty males (83.0 kg) at the end of the 28-day growing phase showed that pig fed the CS diet had greater average daily feed intake (ADFI) (P = 0.004) and average daily gain (ADG) (P = 0.014) for period 0–14 d but not from 15–28 d. Overall performance (0–28 d) showed higher ADFI (9.5%; P = 0.015) in CS but no difference was observed for ADG and gain to feed ratio (G:F). These results showed that diets containing a high proportion of by-products can give equivalent performance to a CS diet and that adding xylanase for this short period had limited effects.
Collapse
Affiliation(s)
- Élisabeth Chassé
- Département des sciences animales, Université Laval, 2425 rue de l’Agriculture, Québec, QC G1V 0A6, Canada
| | - Laurie Dickner-Ouellet
- Département des sciences animales, Université Laval, 2425 rue de l’Agriculture, Québec, QC G1V 0A6, Canada
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, 2000 College St., Sherbrooke, QC J1M 0C8, Canada
| | - Frédéric Guay
- Département des sciences animales, Université Laval, 2425 rue de l’Agriculture, Québec, QC G1V 0A6, Canada
| | - Candido Pomar
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, 2000 College St., Sherbrooke, QC J1M 0C8, Canada
| | | |
Collapse
|
16
|
Fiber digestibility in growing pigs fed common fiber-rich ingredients: a systematic review. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
The application of high-fiber ingredients in the swine feed industry has some limitations considering that high amounts of fiber are resistant to endogenous enzymatic degradation in the pig’s gut. However, there is growing interest in fiber fermentation in the intestine of pigs due to their functional properties and potential health benefits. Many strategies have been applied in feed formulations to improve utilization efficiency of fiber-rich ingredients and stimulate their prebiotic effects in pigs. This manuscript reviews chemical compositions, physical properties, and digestibility of fiber-rich diets formulated with fibrous ingredients for growing pigs. Evidences presented in this review indicate there is a great variation in chemical compositions and physical properties of fibrous ingredients, resulting in the discrepancy of energy and fiber digestibility in pig intestine. In practice, fermentation capacity of fiber components in the pig’s intestine can be improved using strategies, such as biological enzymes supplementation and feed processing technologies. Soluble dietary fiber (SDF) and insoluble dietary fiber (IDF), rather than neutral detergent fiber (NDF) and acid detergent fiber (ADF), are recommended in application of pig production to achieve precise feeding. Limitations of current scientific research on determining fiber digestibility and short chain fatty acids (SCFA) production are discussed. Endogenous losses of fiber components from non-dietary materials that result in underestimation of fiber digestibility and SCFA production are discussed in this review. Overall, the purpose of our review is to provide a reference for feeding the pig by choosing the diets formulated with different high-fiber ingredients.
Collapse
|
17
|
Petry AL, Huntley NF, Bedford MR, Patience JF. The influence of xylanase on the fermentability, digestibility, and physicochemical properties of insoluble corn-based fiber along the gastrointestinal tract of growing pigs. J Anim Sci 2021; 99:6278312. [PMID: 34009363 PMCID: PMC8259831 DOI: 10.1093/jas/skab159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/14/2021] [Indexed: 11/30/2022] Open
Abstract
In theory, supplementing xylanase in corn-based swine diets should improve nutrient and energy digestibility and fiber fermentability, but its efficacy is inconsistent. The experimental objective was to investigate the impact of xylanase on energy and nutrient digestibility, digesta viscosity, and fermentation when pigs are fed a diet high in insoluble fiber (>20% neutral detergent fiber; NDF) and given a 46-d dietary adaptation period. A total of 3 replicates of 20 growing gilts were blocked by initial body weight, individually housed, and assigned to 1 of 4 dietary treatments: a low-fiber control (LF) with 7.5% NDF, a 30% corn bran high-fiber control (HF; 21.9% NDF), HF + 100 mg xylanase/kg (HF + XY [Econase XT 25P; AB Vista, Marlborough, UK]) providing 16,000 birch xylan units/kg; and HF + 50 mg arabinoxylan-oligosaccharide (AXOS) product/kg (HF + AX [XOS 35A; Shandong Longlive Biotechnology, Shandong, China]) providing AXOS with 3–7 degrees of polymerization. Gilts were allowed ad libitum access to fed for 36-d. On d 36, pigs were housed in metabolism crates for a 10-d period, limit fed, and feces were collected. On d 46, pigs were euthanized and ileal, cecal, and colonic digesta were collected. Data were analyzed as a linear mixed model with block and replication as random effects, and treatment as a fixed effect. Compared with LF, HF reduced the apparent ileal digestibility (AID), apparent cecal digestibility (ACED), apparent colonic digestibility (ACOD), and apparent total tract digestibility (ATTD) of dry matter (DM), gross energy (GE), crude protein (CP), acid detergent fiber (ADF), NDF, and hemicellulose (P < 0.01). Relative to HF, HF + XY improved the AID of GE, CP, and NDF (P < 0.05), and improved the ACED, ACOD, and ATTD of DM, GE, CP, NDF, ADF, and hemicellulose (P < 0.05). Among treatments, pigs fed HF had increased hindgut DM disappearance (P = 0.031). Relative to HF, HF + XY improved cecal disappearance of DM (162 vs. 98 g; P = 0.008) and NDF (44 vs. 13 g; P < 0.01). Pigs fed xylanase had a greater proportion of acetate in cecal digesta and butyrate in colonic digesta among treatments (P < 0.05). Compared with LF, HF increased ileal, cecal, and colonic viscosity, but HF + XY decreased ileal viscosity compared with HF (P < 0.001). In conclusion, increased insoluble corn-based fiber decreases digestibility, reduces cecal fermentation, and increases digesta viscosity, but supplementing xylanase partially mitigated that effect.
Collapse
Affiliation(s)
- Amy L Petry
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Nichole F Huntley
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | | - John F Patience
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
18
|
Shurson GC, Hung YT, Jang JC, Urriola PE. Measures Matter-Determining the True Nutri-Physiological Value of Feed Ingredients for Swine. Animals (Basel) 2021; 11:1259. [PMID: 33925594 PMCID: PMC8146707 DOI: 10.3390/ani11051259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 01/10/2023] Open
Abstract
Many types of feed ingredients are used to provide energy and nutrients to meet the nutritional requirements of swine. However, the analytical methods and measures used to determine the true nutritional and physiological ("nutri-physiological") value of feed ingredients affect the accuracy of predicting and achieving desired animal responses. Some chemical characteristics of feed ingredients are detrimental to pig health and performance, while functional components in other ingredients provide beneficial health effects beyond their nutritional value when included in complete swine diets. Traditional analytical procedures and measures are useful for determining energy and nutrient digestibility of feed ingredients, but do not adequately assess their true physiological or biological value. Prediction equations, along with ex vivo and in vitro methods, provide some benefits for assessing the nutri-physiological value of feed ingredients compared with in vivo determinations, but they also have some limitations. Determining the digestion kinetics of the different chemical components of feed ingredients, understanding how circadian rhythms affect feeding behavior and the gastrointestinal microbiome of pigs, and accounting for the functional properties of many feed ingredients in diet formulation are the emerging innovations that will facilitate improvements in precision swine nutrition and environmental sustainability in global pork-production systems.
Collapse
Affiliation(s)
- Gerald C. Shurson
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA; (Y.-T.H.); (J.C.J.); (P.E.U.)
| | | | | | | |
Collapse
|
19
|
Petry AL, Patience JF, Huntley NF, Koester LR, Bedford MR, Schmitz-Esser S. Xylanase Supplementation Modulates the Microbiota of the Large Intestine of Pigs Fed Corn-Based Fiber by Means of a Stimbiotic Mechanism of Action. Front Microbiol 2021; 12:619970. [PMID: 33841350 PMCID: PMC8024495 DOI: 10.3389/fmicb.2021.619970] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/04/2021] [Indexed: 01/22/2023] Open
Abstract
This research tested the hypothesis that xylanase modulates microbial communities within the large intestine of growing pigs fed corn-based fiber through a stimbiotic mechanism(s) of action (MOA). Sixty gilts were blocked by initial body weight, individually housed, and randomly assigned to one of four dietary treatments (n = 15): a low-fiber (LF) control, a high-fiber (HF) control containing 30% corn bran, HF+100 mg/kg xylanase (HF+XY), and HF+50 mg/kg arabinoxylan-oligosaccharide (HF+AX). Pigs were fed dietary treatments for 46 days. On day 46, pigs were euthanized, and mucosa and lumen contents were collected from the cecum and the colon. The V4 region of 16S rRNA genes was sequenced and clustered into 5,889, 4,657, 2,822, and 4,516 operational taxonomic units (OTUs), in the cecal contents and mucosa and colonic contents and mucosa, respectively. In cecal contents, HF+XY increased measures of α-diversity compared to LF (p < 0.001). Relative to LF, HF increased the prevalence of 44, 36, 26, and 8, and decreased 19, 9, 21, and 10, of the 200 most abundant OTUs from the cecal contents and mucosa and colonic contents and mucosa, respectively (Q < 0.05). Compared to LF, HF increased the abundance of OTUs from the Treponema_2, Ruminococcus_1 genera, from the Lachnospiraceae, Ruminococcaceae, and Prevotellaceae families. In contrast, relative to LF, HF decreased Turicibacter and Lactobacillus in the cecal contents, and Megasphaera and Streptococcus in the mucosa. Relative to HF, HF+XY increased 32, 16, 29, and 19 and decreased 27, 11, 15, and 10 of the 200 most abundant OTUs from the cecal contents and mucosa and colonic contents and mucosa, respectively (Q < 0.05). The addition of xylanase to HF further increased the abundance of OTUs from the Lachnospiraceae and Ruminococcaceae families across the large intestine. Compared to HF, HF+XY increased the abundance of Lactobacillus, Bifidobacterium, and Faecalibacterium among all locations (Q < 0.05). However, HF+AX did not increase the prevalence of these genera in the large intestine. Supplementing xylanase to HF increased hidden-state predictions of microbial enzymes associated with arabinoxylan degradation, xylose metabolism, and short-chain fatty acid production. These data suggest xylanase elicits a stimbiotic MOA in the large intestine of pigs fed corn-based fiber.
Collapse
Affiliation(s)
- Amy L Petry
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - John F Patience
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Iowa Pork Industry Center, Iowa State University, Ames, IA, United States
| | - Nichole F Huntley
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Lucas R Koester
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | | | | |
Collapse
|
20
|
Petry AL, Patience JF. Xylanase supplementation in corn-based swine diets: a review with emphasis on potential mechanisms of action. J Anim Sci 2021; 98:5911008. [PMID: 32970148 PMCID: PMC7759750 DOI: 10.1093/jas/skaa318] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/19/2020] [Indexed: 12/31/2022] Open
Abstract
Corn is a common energy source in pig diets globally; when financially warranted, industrial corn coproducts, such as corn distiller's dried grains with solubles (DDGS), are also employed. The energy provided by corn stems largely from starch, with some contribution from protein, fat, and non-starch polysaccharides (NSP). When corn DDGS are used in the diet, it will reduce starch within the diet; increase dietary protein, fat, and NSP levels; and alter the source profile of dietary energy. Arabinoxylans (AXs) comprise the majority of NSP in corn and its coproducts. One strategy to mitigate the antinutritive effects of NSP and improve its contribution to energy is by including carbohydrases within the diet. Xylanase is a carbohydrase that targets the β-1,4-glycosidic bonds of AX, releasing a mixture of smaller polysaccharides, oligosaccharides, and pentoses that could potentially be used by the pig. Xylanase is consistently effective in poultry production and moderately consistent in wheat-based swine diets, but its efficacy in corn-based swine diets is quite variable. Xylanase has been shown to improve the digestibility of various components of swine-based diets, but this seldom translates into an improvement in growth performance. Indeed, a review of xylanase literature conducted herein suggests that xylanase improves the digestibility of dietary fiber at least 50% of the time in pigs fed corn-based diets, but only 33% and 26% of the time was there an increase in average daily gain or feed efficiency, respectively. Intriguingly, there has been an abundance of reports proposing xylanase alters intestinal barrier integrity, inflammatory responses, oxidative status, and other health markers in the pig. Notably, xylanase has shown to reduce mortality in both high and low health commercial herds. These inconsistencies in performance metrics, and unexpected health benefits, warrant a greater understanding of the in vivo mechanism(s) of action (MOA) of xylanase. While the MOA of xylanase has been postulated considerably in the literature and widely studied in in vitro settings, in wheat-based diets, and in poultry, there is a dearth of understanding of the in vivo MOA in pigs fed corn-based diets. The purpose of this review is to explore the role of xylanase in corn-based swine diets, discuss responses observed when supplemented in diets containing corn-based fiber, suggest potential MOA of xylanase, and identify critical research gaps.
Collapse
Affiliation(s)
- Amy L Petry
- Department of Animal Science, Iowa State University, Ames, IA
| | - John F Patience
- Department of Animal Science, Iowa State University, Ames, IA.,Iowa Pork Industry Center, Iowa State University, Ames, IA
| |
Collapse
|
21
|
Petry AL, Huntley NF, Bedford MR, Patience JF. Xylanase increased the energetic contribution of fiber and improved the oxidative status, gut barrier integrity, and growth performance of growing pigs fed insoluble corn-based fiber. J Anim Sci 2020; 98:5873899. [PMID: 32687554 PMCID: PMC7392531 DOI: 10.1093/jas/skaa233] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/14/2020] [Indexed: 11/13/2022] Open
Abstract
The experimental objective was to investigate the impact of xylanase on the bioavailability of energy, oxidative status, and gut function of growing pigs fed a diet high in insoluble fiber and given a longer adaptation time than typically reported. Three replicates of 20 gilts with an initial body weight (BW) of 25.43 ± 0.88 kg were blocked by BW, individually housed, and randomly assigned to one of four dietary treatments: a low-fiber control (LF) with 7.5% neutral detergent fiber (NDF), a 30% corn bran without solubles high-fiber control (HF; 21.9% NDF), HF + 100 mg/kg xylanase (HF + XY; Econase XT 25P), and HF + 50 mg/kg arabinoxylan-oligosaccharide (HF + AX). Gilts were fed ad libitum for 36 d across two dietary phases. Pigs and feeders were weighed on days 0, 14, 27, and 36. On day 36, pigs were housed in metabolism crates for a 10-d period, limit fed (80% of average ad libitum intake), and feces and urine were collected the last 72 h to determine the digestible energy (DE) and metabolizable energy (ME). On day 46, serum and ileal and colonic tissue were collected. Data were analyzed as a linear mixed model with block and replication as random effects, and treatment, time, and treatment × time as fixed effects. There was a significant treatment × time interaction for BW, average daily gain (ADG), and gain to feed (G:F; P < 0.001). By design, BW at day 0 did not differ; at day 14, pigs fed LF were 3.5% heavier, and pigs fed HF + XY, when compared with HF, were 4% and 4.2% heavier at days 27 and 36, respectively (P < 0.001). From day 14 to 27 and day 27 to 36, when compared with HF, HF + XY improved ADG by 12.4% and 10.7% and G:F by 13.8% and 8.8%, respectively (P < 0.05). Compared with LF, HF decreased DE and ME by 0.51 and 0.42 Mcal/kg, respectively, but xylanase partially mitigated that effect by increasing DE and ME by 0.15 and 0.12 Mcal/kg, over HF, respectively (P < 0.05). Pigs fed HF + XY had increased total antioxidant capacity in the serum and ileum (P < 0.05) and tended to have less circulating malondialdehyde (P = 0.098). Pigs fed LF had increased ileal villus height, and HF + XY and HF + AX had shallower intestinal crypts (P < 0.001). Pigs fed HF + XY had increased ileal messenger ribonucleic acid abundance of claudin 4 and occludin (P < 0.05). Xylanase, but not AX, improved the growth performance of pigs fed insoluble corn-based fiber. This was likely a result of the observed increase in ME, improved antioxidant capacity, and enhanced gut barrier integrity, but it may require increased adaptation time to elicit this response.
Collapse
Affiliation(s)
- Amy L Petry
- Department of Animal Science, Iowa State University, Ames, IA
| | | | | | - John F Patience
- Department of Animal Science, Iowa State University, Ames, IA
| |
Collapse
|
22
|
Zhang S, Zhong R, Gao L, Liu Z, Chen L, Zhang H. Effects of Optimal Carbohydrase Mixtures on Nutrient Digestibility and Digestible Energy of Corn- and Wheat-Based Diets in Growing Pigs. Animals (Basel) 2020; 10:ani10101846. [PMID: 33050555 PMCID: PMC7601035 DOI: 10.3390/ani10101846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
This study aimed to evaluate the effects of optimal carbohydrase mixture (OCM) on macronutrients and amino acid digestibility and the digestible energy (DE) in growing pigs fed the corn-soybean meal-based diet (CSM) and the wheat-soybean meal-based diet (WSM). A total of 36 ileal-cannulated pigs (50.9 ± 4.9 kg initial body weight) were allotted to four dietary treatments randomly, which included CSM and WSM diets, and two diets supplied with corresponding OCM. These OCMs were screened using an in vitro method from our previous study. After the five day adaptation period, fecal samples were collected from d six to seven, and ileal digesta samples were collected on d 8 and 10. Chromic oxide was added as an indigestible marker. The results show that the addition of OCM improved the apparent ileal digestibility (AID) of dry matter (DM), ash, carbohydrate (CHO), neutral detergent fiber, and gross energy (GE) and the apparent total tract digestibility (ATTD) of DM, CHO, and GE in CSM diet (p < 0.05), but reduced the apparent hindgut disappearance (AHD) of DM in CSM diet (p < 0.05). The ATTD of DM, crude protein (CP), ether extract (EE), ash, and GE and the AHD of DM, CP, EE, ash, CHO, and GE in WSM diet were improved by the OCM addition (p < 0.05), whereas the AID of DM, CP, ash, CHO, and GE were decreased (p < 0.05). The respective DE contents in CSM and WSM diets were increased from 15.45 to 15.74 MJ/kg and 15.03 to 15.49 MJ/kg under the effects of OCM (p < 0.05). Similar to the trend of AID of CP, the OCM addition increased the AID and standardized ileal digestibility (SID) of Ile, Thr, and Cys in CSM diet, but decreased the AID and SID of Ile, Phe, Thr, Val, Ala, Pro, Ser, and Tyr in WSM diet. In conclusion, the OCMs screened by an in vitro method could improve the total tract nutrient digestibility and DE for pigs fed corn-based diet or wheat-based diet but had inconsistent effects on the ileal digestibility of nutrients and energy.
Collapse
Affiliation(s)
| | | | | | | | - Liang Chen
- Correspondence: (L.C.); (H.Z.); Tel.: +86-10-62819432 (L.C.)
| | - Hongfu Zhang
- Correspondence: (L.C.); (H.Z.); Tel.: +86-10-62819432 (L.C.)
| |
Collapse
|
23
|
Lopez DA, Lagos LV, Stein HH. Digestible and metabolizable energy in soybean meal sourced from different countries and fed to pigs. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Luise D, Motta V, Boudry C, Salvarani C, Correa F, Mazzoni M, Bosi P, Trevisi P. The supplementation of a corn/barley-based diet with bacterial xylanase did not prevent diarrhoea of ETEC susceptible piglets, but favoured the persistence of Lactobacillus reuteri in the gut. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
25
|
Rodriguez DA, Lee SA, Stein HH. Digestibility of amino acids and concentrations of metabolizable energy and net energy are greater in high-shear dry soybean expellers than in soybean meal when fed to growing pigs. J Anim Sci 2020; 98:skaa215. [PMID: 32658295 PMCID: PMC7392529 DOI: 10.1093/jas/skaa215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/08/2020] [Indexed: 11/14/2022] Open
Abstract
Soybean expellers may be produced by dry extrusion and mechanical oil pressing of soybeans, but there is limited information about the nutritional value of expellers produced via this procedure. Therefore, 2 experiments were conducted to test the hypothesis that standardized ileal digestibility (SID) of CP and amino acids (AA), apparent total tract digestibility (ATTD) of energy and total dietary fiber (TDF), and concentrations of DE, ME, and NE are greater in soybean expellers than in soybean meal (SBM) when fed to growing pigs. Pigs were the offspring of Line 359 boars mated to Camborough females (Pig Improvement Company, Hendersonville, TN). In experiment 1, nine growing barrows (initial BW: 55.98 kg ± 13.75 kg) with T-cannulas installed in the distal ileum were allotted to 1 of 3 diets using a triplicated 3 × 3 Latin square design with 3 periods. Two diets were formulated to contain 35% soybean expellers or 33% SBM as the sole source of AA. A N-free diet was used to determine basal endogenous losses of AA. Ileal digesta were collected on days 6 and 7 of each 7-d period. Results indicated that the SID of most indispensable and dispensable AA were greater (P < 0.05) or tended (P < 0.10) to be greater in soybean expellers than in SBM. In experiment 2, a corn-based diet and 2 diets based on corn and each of the 2 soybean products were formulated. Twenty-four growing barrows (initial BW: 44.88 kg ± 2.17 kg) were allotted to 1 of the 3 diets with 8 pigs per diet. Urine and fecal samples were collected for 4 d after 5 d of adaptation. Results indicated that the ATTD of energy and TDF was not different between soybean expellers and SBM, but the ATTD of TDF in the 2 soybean products was greater (P < 0.05) than in corn. Concentrations of DE and ME in soybean expellers were greater (P < 0.05) compared with corn or SBM. Soybean expellers had greater (P < 0.05) calculated NE compared with SBM, but there was no difference in NE between corn and soybean expellers. In conclusion, values for SID of most AA and DE, ME, and NE in soybean expellers were greater than in SBM.
Collapse
Affiliation(s)
| | - Su A Lee
- Department of Animal Sciences, University of Illinois, Urbana, IL
| | - Hans H Stein
- Department of Animal Sciences, University of Illinois, Urbana, IL
| |
Collapse
|
26
|
Ansia I, Stein HH, Vermeire DA, Brøkner C, Drackley JK. Ileal digestibility and endogenous protein losses of milk replacers based on whey proteins alone or with an enzyme-treated soybean meal in young dairy calves. J Dairy Sci 2020; 103:4390-4407. [PMID: 32171511 DOI: 10.3168/jds.2019-17699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/07/2020] [Indexed: 12/17/2023]
Abstract
Our objective was to measure and compare apparent ileal digestibility, standard ileal digestibility, and true ileal digestibility of crude protein (CP) and amino acids (AA) in milk replacers (MR) containing all milk proteins (WPC) or with 50% of the CP provided by an enzyme-treated soybean meal (ESBM). A T-cannula was placed in the ileum of 9 Holstein calves (8 males and 1 freemartin female) at approximately 15 d of age. After 2 wk postsurgery, calves were randomly assigned to a 3 × 3 replicated Latin square with 5-d periods. Calves were fed twice daily at a rate of 2% (dry matter) of body weight (1.25 kg/d on average), reconstituted to 15% solids, and adjusted weekly. No starter was offered to minimize rumen development. Digesta samples were collected continuously during 12 h on d 4 and 5 of each period. Basal endogenous losses of AA and CP were estimated by feeding an N-free MR to each calf during 1 period. Total endogenous losses (basal + specific; ENDtotal) were estimated by multivariate regression of the chi-squared distances between digesta and reference protein AA profiles. Ileal digesta pH with the ESBM diet was lower than that with the WPC diet. According to the piecewise nonlinear model of pH fluctuation, digesta pH during ESBM decreased more slowly after feeding and reached its nadir later than with the WPC diet. Diet did not affect average daily gain, but calves on the ESBM diet showed a bigger increment of withers height and lower mean fecal scores. The basal endogenous losses of AA and CP were 13.9 ± 1.1 and 22.4 ± 1.1 g/kg of dry matter intake, respectively. The estimated ENDtotal of AA and CP was higher with ESBM than with WPC. Accordingly, apparent ileal digestibility and standard ileal digestibility of most AA, CP, and total AA were lower or tended to be lower with ESBM. However, true ileal digestibility did not differ between diets for CP and all AA except Ala and Ile, which were greater with WPC, and Arg, which tended to be greater with ESBM. In agreement with the estimated differences in ENDtotal, we found that flows of digesta DNA and crude mucin were greater with ESBM. Substitution of 50% of the protein from whey with enzymatically treated soybean meal did not affect major nutrient digestibility or calf growth and even improved fecal consistency. Adjusting digestibilities of CP and AA in MR by endogenous protein losses is crucial when comparing bioavailability of alternative proteins and milk proteins.
Collapse
Affiliation(s)
- I Ansia
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - H H Stein
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | | | - C Brøkner
- Hamlet Protein A/S, 8700 Horsens, Denmark
| | - J K Drackley
- Department of Animal Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
27
|
Petry AL, Masey O’Neill HV, Patience JF. Xylanase, and the role of digestibility and hindgut fermentation in pigs on energetic differences among high and low energy corn samples1. J Anim Sci 2020; 97:4293-4297. [PMID: 31410486 PMCID: PMC6776269 DOI: 10.1093/jas/skz261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/04/2019] [Indexed: 01/14/2023] Open
Abstract
The experimental objective was to evaluate the digestibility and fermentation differences between high and low energy corn samples and their response to xylanase supplementation. Four corn samples, 2 with higher DE content (HE-1 and HE-2; 3.74 and 3.75 Mcal DE/kg DM, respectively) and 2 with a lower DE content (LE-1 and LE-2; 3.63 and 3.56 Mcal DE/kg DM, respectively) were selected based upon a previous digestibility trial. Sixteen individually housed barrows (PIC 359 × C29; initial BW = 34.8 ± 0.23kg) were surgically fitted with an ileal T-cannula and randomly allotted to treatments in an 8 × 4 Youden square design. Dietary treatments were arranged in a 4 × 2 factorial: HE-1, HE-2, LE-1, and LE-2, with and without xylanase supplementation. Diets were formulated using one of the 4 corn samples, casein, vitamins, minerals, and 0.4% chromic oxide as an indigestible marker. Feed intake was established at approximately 3 times the estimated energy required for maintenance (NRC 2012) based upon the average initial BW of the pigs at the start of each collection period, which consisted of 9 d adaptation, 2 d of fecal, and 3 d of ileal collections. Diets, ileal, and fecal samples were analyzed for DM, GE, and total dietary fiber (TDF), to determine apparent total tract (ATTD), hindgut fermentation (HF), apparent ileal digestibility (AID) coefficients. A diet × enzyme interaction was not observed for any of the measured variables (P > 0.10). The HE-1 and HE-2 diets had greater ATTD of GE, and HE-2 diet had greater ATTD of DM (P < 0.001 and P = 0.007, respectively). Xylanase, independent of diet, improved the ATTD of GE and DM (84.8 vs. 83.6% for GE with and without enzyme, respectively, P = 0.008; and 84.2 and 83.0% with and without enzyme, respectively, P = 0.007). The energetic differences among these corn samples appeared to be driven by fermentability in the hindgut. Supplementing xylanase improves digestibility irrespective of the digestibility energy content of corn.
Collapse
Affiliation(s)
- Amy L Petry
- Department of Animal Science, Iowa State University, Ames, IA
| | | | - John F Patience
- Department of Animal Science, Iowa State University, Ames, IA
- Corresponding author:
| |
Collapse
|