1
|
Sharma AN, Chaudhary P, Grover CR, Kumar S, Mondal G. Impact of synbiotics on growth performance and gut health in Murrah buffalo calves. Vet Res Commun 2024; 48:179-190. [PMID: 37610508 DOI: 10.1007/s11259-023-10194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023]
Abstract
Synbiotics have been used as biotherapeutic supplements for prevention of new-born calf gastrointestinal disorders. Present study was conducted to evaluate the impact of fructo-oligosaccharide, mannan-oligosaccharide and inulin along with Lactobacillus plantarum CRD-7 and Lactobacillus acidophilus NCDC15 on the nutrient digestibility, growth performance and faecal microbial population of pre-ruminant buffalo calves. Twenty-four Murrah calves (5 days old) were randomly assigned to four groups of six calves in each using randomized block design. Calves in Group I (control) received only a basic diet of milk, calf starter and berseem with no additives. Calves in Group II (SYN1) were fed 6 g fructo-oligosaccharide (FOS) + Lactobacillus plantarum CRD-7 (100 ml). Calves in Group III (SYN2) were fed 9 g inulin + L. plantarum CRD-7 (50 ml), while calves in Group IV (SYN3) received 4 g MOS + L. acidophilus NCDC15 (200 ml) as fermented milk having 108 CFU/ml/calf/day in addition to the basal diet. The results revealed that digestibility of dry matter, crude protein, ether extract and average daily gain were all higher (P < 0.05) in SYN1 as compared to control group. The antioxidant enzyme activity, humoral and cell mediated immunity performed well in SYN1, SYN2 and SYN3 as compared to control. Diarrhoea and faecal scouring were lower (P < 0.05) in all supplemented groups than control. Faecal Lactobacilli and Bifidobacterium counts were also higher in SYN1 group followed by SYN2 and SYN3. Faecal ammonia, lactate, pH, and volatile fatty acids level were increased in SYN1 supplemented groups. The synbiotic combination of 6 g FOS + L. plantarum CRD-7 had better response on digestibility, average daily gain, antioxidant enzymes, immune response, faecal microbiota and metabolites and also reduce the faecal score and diarrhoea incidence. Therefore, supplementation of 6 g FOS + L. plantarum CRD-7 can be advised for general use in order to promote long-term animal production.
Collapse
Affiliation(s)
- Amit N Sharma
- Animal Nutrition Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Parul Chaudhary
- School of Agriculture, Graphic Era Hill University, Dehradun, Uttarakhand, India
| | - Chand Ram Grover
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Sachin Kumar
- Animal Nutrition Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Goutam Mondal
- Animal Nutrition Division, National Dairy Research Institute, Karnal, Haryana, India.
| |
Collapse
|
2
|
Azzaz HH, Awad AA, Murad HA, Hassaan NA. Performance responses of lactating Rahmani ewes fed diet supplemented with Enterococcus faecium NRC-3 or Lactobacillus rhamnosus. Anim Biotechnol 2023; 34:4032-4040. [PMID: 37656717 DOI: 10.1080/10495398.2023.2252013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Production of new types of probiotics for animal nutrition mainly depends on the appropriate bacterial strain and efficient substrate. Therefore, this study aimed to evaluate the impact of two probiotic strains containing 1.2 × 108 (CFU/g), produced on permeate media on performance responses of Rahmani ewes. Thirty early lactating ewes (about 2-3 years old and weighting on average 43.2 ± 0.3 kg) were randomly divided into three groups of 10 animals each using a completely randomized design. The 1st group was fed the basal diet (60% concentrate feed mixture (CFM) + 30% Egyptian clover + 10% bean straw). While the ewes in 2nd and 3rd groups were fed the basal diet + 2 g of Enterococcus faecium NRC-3(EF) and Lactobacillus rhamnosus (LR), respectively for 9 weeks. Ewes' diet supplementation with EF or LR increased (p < 0.05) dry matter, organic matter, crude protein, neutral detergent fiber, acid detergent fiber, and non-structural carbohydrates digestibility compared to ewes of the control group. Glucose, total protein, and albumin concentrations significantly increased in the blood of EF ewes than those of LR and control. Probiotics increased ewes' milk yield as well as milk protein, fat, and lactose yields, but no differences were observed between treatments when milk components were expressed as percentage. Milk fatty acids profile not changed due to EF or LR supplementation. Probiotics (E. faecium and L. rhamnosus) produced on cheese industry waste (permeate) have proven their ability to improve the productive performance of the lactating Rahmani ewes.
Collapse
Affiliation(s)
- H H Azzaz
- Dairy Department, National Research Centre, Giza, Egypt
| | - A A Awad
- Animal Production Department, Faculty of Agriculture, Azhar University, Cairo, Egypt
| | - H A Murad
- Dairy Department, National Research Centre, Giza, Egypt
| | - Noha A Hassaan
- Animal Production Department, National Research Centre, Giza, Egypt
| |
Collapse
|
3
|
Xiao H, Yan H, Tian P, Ji S, Zhao W, Lu C, Zhang Y, Liu Y. The effect of early colonized gut microbiota on the growth performance of suckling lambs. Front Microbiol 2023; 14:1273444. [PMID: 37954254 PMCID: PMC10635232 DOI: 10.3389/fmicb.2023.1273444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/04/2023] [Indexed: 11/14/2023] Open
Abstract
The early colonized gut microbiota during the newborn period has been reported to play important roles in the health and immunity of animals; however, whether they can affect the growth performance of suckling lambs is still unclear. In this study, a total of 84 newborn lambs were assigned into LF-1 (top 15%), LF-2 (medium 70%), and LF-3 (bottom 15%) groups according to their average body weight gain at 30 days of age. Fecal samples of lambs (LF) as well as feces (MF), vagina (VAG), colostrum (COL), teat skin (TEAT) samples of ewes, and the air sediment (AIR) in the delivery room were collected 72 h after birth, and then the 16S rRNA gene was sequenced on the Illumina MiSeq platform. The results showed that the early colonized gut microbiota had a significant effect on the growth performance of suckling lambs with alpha and beta diversity (p < 0.05), and we observed that the contribution of early colonized bacteria on the growth performance of lambs increased with age (from BW30 at 25.35% to BW45 at 31.10%; from ADG30 at 33.02% to ADG45 at 39.79% by measuring the relative effects of factors that influence growth performance). The early colonized gut microbiota of suckling lambs with high growth performance was similar to that in VAG, MF, and AIR (p < 0.05). With the RandomForest machine learning algorithm, we detected 11, 11, 6, and 4 bacterial taxa at the genus level that were associated with BW30, BW45, ADG30, and ADG45 of suckling lambs, respectively, and the correlation analysis showed that Butyricicoccus, Ruminococcus_gnavus_group, Ruminococcaceae_Other, and Fusobacterium could significantly affect the growth performance (BW30, BW45, ADG30, and ADG45) of suckling lambs (p < 0.05). In conclusion, the early colonized gut microbiota could significantly affect the growth performance of suckling lambs, and targeting the early colonized gut microbiota might be an alternative strategy to improve the growth performance of suckling lambs.
Collapse
Affiliation(s)
| | | | | | - Shoukun Ji
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | | | | | | | - Yueqin Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
4
|
Shi J, Zhao G, Huang X, Li X, Ma Y, Yang K. Effects of Lactobacillus rhamnosus Supplementation on Growth Performance, Immune Function, and Antioxidant Capacity of Newborn Foals. J Equine Vet Sci 2023; 129:104501. [DOI: doi.org/10.1016/j.jevs.2023.104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
|
5
|
Shi J, Zhao G, Huang X, Li X, Ma Y, Yang K. Effects of Lactobacillus rhamnosus Supplementation on Growth Performance, Immune Function, and Antioxidant Capacity of Newborn Foals. J Equine Vet Sci 2023; 129:104501. [PMID: 37737196 DOI: 10.1016/j.jevs.2023.104501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 09/23/2023]
Abstract
This study aimed to explore the effects of Lactobacillus rhamnosus GG (LGG) supplementation on the growth performance, immune function, and antioxidant capacity of foals. Fifteen newborn foals with similar birth weight (51.67 ± 6.07 kg) and good health were randomly assigned to three groups: control group and test groups I and II, which were supplemented with 5.0 × 109 CFU/day and 1.0 × 1010 CFU/day LGG, respectively, for 150 days. LGG intake increased the daily body height (P < .01) and weight (P < .01) gain of foals aged 120 to 150 days. The foals' IgA (P < .05) and IgG (P < .01) plasma levels increased at 30 and 150 days, respectively, and IL-6 plasma level increased at 90 days (P < .01). Plasma total antioxidant capacity level was significantly higher in test group I than in the control and test group II at 30 days (P < .01), whereas glutathione peroxidase level was significantly higher in test group II than in the control and test group I at 30 days (P < .01). Both test groups had significantly higher superoxide dismutase level than the control group (P < .01) and significantly decreased malondialdehyde plasma level at 90 and 150 days (P < .05). Overall, our findings indicate that dietary supplementation of LGG can improve the growth performance, immune function, and antioxidant capacity of newborn foals.
Collapse
Affiliation(s)
- Jian Shi
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Guodong Zhao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Xinxin Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Xiaobin Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Yuhui Ma
- Zhaosu animal Husbandry and Veterinary Development Center, Yili, China
| | - Kailun Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China.
| |
Collapse
|
6
|
Ruvalcaba-Gómez JM, Villaseñor-González F, Espinosa-Martínez MA, Gómez-Godínez LJ, Rojas-Anaya E, Villagrán Z, Anaya-Esparza LM, Buendía-Rodríguez G, Arteaga-Garibay RI. Growth Performance and Fecal Microbiota of Dairy Calves Supplemented with Autochthonous Lactic Acid Bacteria as Probiotics in Mexican Western Family Dairy Farming. Animals (Basel) 2023; 13:2841. [PMID: 37760240 PMCID: PMC10525134 DOI: 10.3390/ani13182841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Probiotic supplementation in dairy cattle has achieved several beneficial effects (improved growth rate, immune response, and adequate ruminal microbiota). This study assessed the effects on the growth parameters and gut microbiota of newborn dairy calves supplemented with two Lactobacillus-based probiotics, individually (6BZ or 6BY) or their combination (6BZ + 6BY), administrated with the same concentration (1 × 109 CFU/kg weight) at three times, between days 5 and 19 after birth. The control group consisted of probiotic-unsupplemented calves. Growth parameters were recorded weekly until eight weeks and at the calves' ages of three, four, and five months. Fecal microbiota was described by high-throughput sequencing and bioinformatics. Although no significant effects were observed regarding daily weight and height gain among probiotic-supplemented and non-supplemented calves, correlation analysis showed that growth rate was maintained until month 5 through probiotic supplementation, mainly when the two-strain probiotics were supplied. Modulation effects on microbiota were observed in probiotic-supplemented calves, improving the Bacteroidota: Firmicutes and the Proteobacteria ratios. Functional prediction by PICRUSt also showed an increment in several pathways when the two-strain probiotic was supplemented. Therefore, using the three-administration scheme, the two-strain probiotic improved the growth rate and gut microbiota profile in newborn dairy calves. However, positive effects could be reached by applying more administrations of the probiotic during the first 20 days of a calf's life.
Collapse
Affiliation(s)
- José Martín Ruvalcaba-Gómez
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Boulevard de la Biodiversidad 400, Tepatitlán de Morelos 47600, Jalisco, Mexico; (L.J.G.-G.); (E.R.-A.)
| | - Fernando Villaseñor-González
- Campo Experimental Centro Altos de Jalisco, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Av. Biodiversidad 2470, Tepatitlán de Morelos 47600, Jalisco, Mexico;
| | - Mario Alfredo Espinosa-Martínez
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Ajuchitlán Colón 76280, Querétaro, Mexico;
| | - Lorena Jacqueline Gómez-Godínez
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Boulevard de la Biodiversidad 400, Tepatitlán de Morelos 47600, Jalisco, Mexico; (L.J.G.-G.); (E.R.-A.)
| | - Edith Rojas-Anaya
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Boulevard de la Biodiversidad 400, Tepatitlán de Morelos 47600, Jalisco, Mexico; (L.J.G.-G.); (E.R.-A.)
| | - Zuamí Villagrán
- Centro Universitario de los Altos, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, Jalisco, Mexico; (Z.V.); (L.M.A.-E.)
| | - Luis Miguel Anaya-Esparza
- Centro Universitario de los Altos, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, Jalisco, Mexico; (Z.V.); (L.M.A.-E.)
| | - Germán Buendía-Rodríguez
- Sitio Experimental Hidalgo, Campo Experimental Valle de México, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carr. Pachuca-Tulancingo 104ª, Pachuca de Soto 42090, Hidalgo, Mexico;
| | - Ramón Ignacio Arteaga-Garibay
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Boulevard de la Biodiversidad 400, Tepatitlán de Morelos 47600, Jalisco, Mexico; (L.J.G.-G.); (E.R.-A.)
| |
Collapse
|
7
|
Sharma AN, Chaudhary P, Kumar S, Grover CR, Mondal G. Effect of synbiotics on growth performance, gut health, and immunity status in pre-ruminant buffalo calves. Sci Rep 2023; 13:10184. [PMID: 37349514 PMCID: PMC10287688 DOI: 10.1038/s41598-023-37002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
Synbiotics are employed as feed additives in animal production as an alternate to antibiotics for sustaining the gut microbiota and providing protection against infections. Dairy calves require a healthy diet and management to ensure a better future for the herd of dairy animals. Therefore, the present study was carried out to investigate the effect of synbiotics formulation on growth performance, nutrient digestibility, fecal bacterial count, metabolites, immunoglobulins, blood parameters, antioxidant enzymes and immune response of pre-ruminant Murrah buffalo calves. Twenty-four apparently healthy calves (5 days old) were allotted into four groups of six calves each. Group I (control) calves were fed a basal diet of milk, calf starter and berseem with no supplements. Group II (SYN1) calves were fed with 3 g fructooligosaccharide (FOS) + Lactobacillus plantarum CRD-7 (150 ml). Group III (SYN2) calves were fed with 6 g FOS + L. plantarum CRD-7 (100 ml), whereas calves in group IV (SYN3) received 9 g FOS + L. plantarum CRD-7 (50 ml). The results showed that SYN2 had the highest (P < 0.05) crude protein digestibility and average daily gain compared to the control. Fecal counts of Lactobacilli and Bifidobacterium were also increased (P < 0.05) in supplemented groups as compared to control. Fecal ammonia, diarrhea incidence and fecal scores were reduced in treated groups while lactate, volatile fatty acids and antioxidant enzymes were improved compared to the control. Synbiotic supplementation also improved both cell-mediated and humoral immune responses in buffalo calves. These findings indicated that synbiotics formulation of 6 g FOS + L. plantarum CRD-7 in dairy calves improved digestibility, antioxidant enzymes, and immune status, as well as modulated the fecal microbiota and decreased diarrhea incidence. Therefore, synbiotics formulation can be recommended for commercial use in order to achieve sustainable animal production.
Collapse
Affiliation(s)
- Amit N Sharma
- Animal Nutrition Division, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Parul Chaudhary
- School of Agriculture, Graphic Era Hill University, Dehradun, Uttarakhand, 248002, India
| | - Sachin Kumar
- Animal Nutrition Division, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Chand Ram Grover
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Goutam Mondal
- Animal Nutrition Division, National Dairy Research Institute, Karnal, Haryana, 132001, India.
| |
Collapse
|
8
|
Wang Y, Yu Q, Wang X, Song J, Lambo MT, Huang J, He P, Li Y, Zhang Y. Replacing alfalfa hay with industrial hemp ethanol extraction byproduct and Chinese wildrye hay: Effects on lactation performance, plasma metabolites, and bacterial communities in Holstein cows. Front Vet Sci 2023; 10:1061219. [PMID: 36777679 PMCID: PMC9909549 DOI: 10.3389/fvets.2023.1061219] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
This trial was designed to investigate the effects of industrial hemp ethanol extraction byproduct (IHEEB) and Chinese wildrye hay (CWH) replacement of alfalfa hay (AH) on digestibility, and lactation performance, plasma metabolites, ruminal fermentation, and bacterial communities in Holstein dairy cows. Nine healthy multiparous Holstein cows (parity = 3) with similar body weights (584 ± 12.3 kg), days in milk (108 ± 11.4), and milk yields (30 ± 1.93 kg; all mean ± standard deviation) were used in a replicated 3 × 3 Latin square design with 3 periods of 21 d. During each period, each group consumed 1 of 3 diets: (1) 0% IHEEB (0IHEEB); (2) 6.0% IHEEB and 1.7% Chinese wildrye hay (6IHEEB); (3) 10.8% IHEEB and 4.3% Chinese wildrye hay (11IHEEB). The diets in each group were isocaloric and isonitrogenous, with similar contents of concentrate and silage but different ratios of IHEEB and CWH to replace AH. The results showed that increasing the substitute did not affect the total-tract apparent nutrient digestibility. There was no difference in lactation performance of dairy cows fed the three diets, except for the cows' somatic cell count (SCC), which decreased with the increase in the amount of the substitute. Cannabidiol and tetrahydrocannabinol were not detected in milk samples of dairy cows in the different treatment groups. 6IHEEB and 11IHEEB-fed cows showed a linear decrease in total volatile fatty acids (VFA) and butyrate compared to the 0IHEEB cows. Plasma IL-1β content quadratically decreased with feeding IHEEB and CWH, and other blood parameters were unaffected. The rumen fluid's relative abundances of Bacteroidota, Fibrobacterota, and Prevotellaceae quadratically increased, while Firmicutes tended to decrease quadratically as the substitution increased. Feeding IHEEB and CWH linearly increased the relative abundances of Firmicutes, Lachnospiraceae, Monoglobaceae, and Butyricicoccaceae in the feces. As the substitution increased, the cost of dairy farming was reduced. In summary, substituting AH with IHEEB and CWH in diets did not affect the total-tract apparent nutrient digestibility, improved milk composition, and plasma immune indices. It changed the bacterial composition in rumen fluid and feces and improved dairy farming benefits.
Collapse
Affiliation(s)
- Yiqiang Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Qingyuan Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiaolin Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jiamei Song
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Modinat Tolani Lambo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jianguo Huang
- Heilongjiang Wellhope Agri-Tech Co., Ltd., Harbin, China
| | - Ping He
- Harbin Wellhope Trading Co., Ltd., Harbin, China
| | - Yang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China,*Correspondence: Yang Li ✉
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China,Yonggen Zhang ✉
| |
Collapse
|
9
|
Wang L, Sun H, Gao H, Xia Y, Zan L, Zhao C. A meta-analysis on the effects of probiotics on the performance of pre-weaning dairy calves. J Anim Sci Biotechnol 2023; 14:3. [PMID: 36597147 PMCID: PMC9811714 DOI: 10.1186/s40104-022-00806-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Probiotics have been used in livestock production for many years, but information on their benefits during the early life of calves is inconsistent. This study aimed to assess the effects of probiotics on the performance of pre-weaning dairy calves and identify the factors influencing their effect sizes. RESULTS Forty-nine studies were selected for meta-analysis based on the inclusion and exclusion criteria. The study qualities were evaluated using a predefined risk assessment tool following GRADE guidelines. Meta-analysis results showed that probiotics increased the growth performance (body weight by 1.988 kg and average daily gain by 40.689 g/d), decreased digestibility and feed efficiency (feed conversion rate by 0.073), altered rumen parameter (decreased acetate by 2.815 mmol/L and increased butyrate by 0.788 mmol/L), altered blood parameter (decreased AST by 4.188 U/L, increased BHBA by 0.029 mmol/L and IgG by 0.698 g/L), increased faecal parameter (faecal bacteria counts by 0.680 log10 CFU/g), based on the strict criteria (PSMD < 0.05, I2 < 50%). Additionally, probiotics increased digestibility and feed efficiency (starter dry matter intake by 0.034 kg/d and total dry matter intake by 0.020 kg/d), altered blood parameter (increased IgA by 0.313 g/L, IgM by 0.262 g/L, and total antioxidant capacity by 0.441 U/mL, decreased MDA by 0.404 nmol/mL), decreased faecal parameter (faecal score by 0.052), based on the loose criteria (PSMD < 0.05, I2 > 50%). Regression and sub-group analyses showed that probiotic strains, supplementation dosage, and methods significantly affected the performance of calves. The probiotics supplied with more than 9.5 log10 CFU/d significantly increased IgA and IgM contents (PSMD < 0.05). Additionally, the compound probiotics significantly increased TDMI, IgA, and IgM (PSMD ≤ 0.001). Furthermore, probiotics supplemented in liquid (whole milk or milk replacer) significantly increased TDMI and decreased faecal score (PSMD < 0.05), while in whole milk, they significantly increased body weight, IgA, and IgM (PSMD < 0.001). CONCLUSIONS Probiotics could improve the growth performance, feed intake and efficiency, rumen fermentation, immune and antioxidant capacity, and health of pre-weaning calves. However, the effect sizes were related to the dosage, composition, and supplementation methods of probiotics.
Collapse
Affiliation(s)
- Liyun Wang
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi 712100 P. R. China
| | - Honghong Sun
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi 712100 P. R. China
| | - Haixu Gao
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi 712100 P. R. China
| | - Yaohui Xia
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi 712100 P. R. China
| | - Linsen Zan
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi 712100 P. R. China
| | - Chunping Zhao
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi 712100 P. R. China
| |
Collapse
|
10
|
Evaluating Ruminal and Small Intestinal Morphology and Microbiota Composition of Calves Fed a Macleaya cordata Extract Preparation. Animals (Basel) 2022; 13:ani13010054. [PMID: 36611664 PMCID: PMC9817497 DOI: 10.3390/ani13010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The objective was to determine the impact of feeding MCE on ruminal and intestinal morphology and microbiota composition of calves. A total of 10 male and 10 female crossbred (dairy × beef) calves (6 d of age) were assigned randomly to control (CTL; n = 10) or MCE-supplemented (TRT; n = 10) groups. The MCE was fed in the milk replacer and top-dressed on the calf starter during pre-weaning (6 to 49 d) and post-weaning (50 to 95 d) periods, respectively. Calves were slaughtered at 95 d to collect rumen and intestinal samples to determine volatile fatty acid (VFA) profile, mucosal morphology, and microbiota composition. The effects of MCE were analyzed by accounting for the sex and breed effects. Feeding MCE increased rumen papillae length (p = 0.010) and intestinal villus height: crypt depth (p < 0.030) compared to CTL but did not affect rumen VFA profile. The TRT had a negligible impact on microbial community composition in both the rumen and the jejunum. In conclusion, feeding MCE from birth through weaning can improve ruminal and small intestinal mucosa development of calves despite the negligible microbiota composition changes observed post-weaning.
Collapse
|
11
|
Cheng Z, Meng Z, Tan D, Datsomor O, Zhan K, Lin M, Zhao G. Effects of supplementation of sodium acetate on rumen fermentation and microbiota in postpartum dairy cows. Front Microbiol 2022; 13:1053503. [PMID: 36478854 PMCID: PMC9720668 DOI: 10.3389/fmicb.2022.1053503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/31/2022] [Indexed: 08/13/2023] Open
Abstract
The primary product of rumen fermentation is acetic acid, and its sodium salt is an excellent energy source for post-partum cows to manage negative energy balance (NEB). However, it is unknown how adding sodium acetate (NAc) may affect the rumen bacterial population of post-partum cows. Using the identical nutritional total mixed ration (TMR), this research sought to characterize the impact of NAc supplementation on rumen fermentation and the composition of bacterial communities in post-partum cows. After calving, 24 cows were randomly assigned to two groups of 12 cows each: a control group (CON) and a NAc group (ACE). All cows were fed the same basal TMR with 468 g/d NaCl added to the TMR for the CON group and 656 g/d NAc added to the TMR for the ACE group for 21 days after calving. Ruminal fluid was collected before morning feeding on the last day of the feeding period and analyzed for rumen bacterial community composition by 16S rRNA gene sequencing. Under the identical TMR diet conditions, NAc supplementation did not change rumen pH but increased ammonia nitrogen (NH3-N) levels and microbial crude protein (MCP) concentrations. The administration of NAc to the feed upregulated rumen concentrations of total volatile fatty acids (TVFA), acetic, propionic, isovaleric and isobutyric acids without affecting the molar ratio of VFAs. In the two experimental groups, the Bacteroidota, Firmicutes, Patescibacteria and Proteobacteria were the dominant rumen phylum, and Prevotella was the dominant rumen genus. The administration of NAc had no significant influence on the α-diversity of the rumen bacterial community but upregulated the relative abundance of Prevotella and downregulated the relative abundance of RF39 and Clostridia_UCG_014. In conclusion, the NAc supplementation in the post-peripartum period altered rumen flora structure and thus improved rumen fermentation in dairy cows. Our findings provide a reference for the addition of sodium acetate to alleviate NEB in cows during the late perinatal period.
Collapse
Affiliation(s)
- Zhiqiang Cheng
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zitong Meng
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Dejin Tan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Osmond Datsomor
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kang Zhan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Miao Lin
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Guoqi Zhao
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Integrative Analysis of the Nasal Microbiota and Serum Metabolites in Bovines with Respiratory Disease by 16S rRNA Sequencing and Gas Chromatography/Mass Selective Detector-Based Metabolomics. Int J Mol Sci 2022; 23:ijms231912028. [PMID: 36233330 PMCID: PMC9569885 DOI: 10.3390/ijms231912028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/01/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Bovine respiratory disease (BRD) continues to pose a serious threat to the cattle industry, resulting in substantial economic losses. As a multifactorial disease, pathogen infection and respiratory microbial imbalance are important causative factors in the occurrence and development of BRD. Integrative analyses of 16S rRNA sequencing and metabolomics allow comprehensive identification of the changes in microbiota and metabolism associated with BRD, making it possible to determine which pathogens are responsible for the disease and to develop new therapeutic strategies. In our study, 16S rRNA sequencing and metagenomic analysis were used to describe and compare the composition and diversity of nasal microbes in healthy cattle and cattle with BRD from different farms in Yinchuan, Ningxia, China. We found a significant difference in nasal microbial diversity between diseased and healthy bovines; notably, the relative abundance of Mycoplasma bovis and Pasteurella increased. This indicated that the composition of the microbial community had changed in diseased bovines compared with healthy ones. The data also strongly suggested that the reduced relative abundance of probiotics, including Pasteurellales and Lactobacillales, in diseased samples contributes to the susceptibility to bovine respiratory disease. Furthermore, serum metabolomic analysis showed altered concentrations of metabolites in BRD and that a significant decrease in lactic acid and sarcosine may impair the ability of bovines to generate energy and an immune response to pathogenic bacteria. Based on the correlation analysis between microbial diversity and the metabolome, lactic acid (2TMS) was positively correlated with Gammaproteobacteria and Bacilli and negatively correlated with Mollicutes. In summary, microbial communities and serum metabolites in BRD were characterized by integrative analysis. This study provides a reference for monitoring biomarkers of BRD, which will be critical for the prevention and treatment of BRD in the future.
Collapse
|
13
|
Khademi AR, Hashemzadeh F, Khorvash M, Mahdavi AH, Pazoki A, Ghaffari MH. Use of exogenous fibrolytic enzymes and probiotic in finely ground starters to improve calf performance. Sci Rep 2022; 12:11942. [PMID: 35831399 PMCID: PMC9279382 DOI: 10.1038/s41598-022-16070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/04/2022] [Indexed: 12/05/2022] Open
Abstract
The present study investigated the effects of adding wheat straw treated with exogenous fibrolytic enzymes (EFE) and a probiotic supplement to finely ground starters on growth performance, rumen fermentation, behavior, digestibility, and health of dairy calves. A total of 48 Holstein dairy calves (39.8 ± 1.67 kg body weight) were randomly assigned to one of 4 nutritional treatments (n = 12 calves per treatment). The experiment was conducted in a 2 × 2 factorial arrangement of treatments consisting of two diets with or without EFE-treated wheat straw (2 g/day/calf) and diets with or without probiotics (2 g/day/calf). All calves were weaned on day 63 and remained in the study until day 84. The addition of EFE to wheat straw had no effect on starter feed intake, increased neutral detergent fiber (NDF) digestibility and recumbency, but decreased average daily gain (ADG) after weaning (240 g/d). The addition of probiotics to the diet had no effect on starter feed intake, improved feed efficiency, ADG (150 g/d), final weight (11.3 kg), and NDF digestibility, and decreased the ratio of acetate to propionate in the rumen. The addition of probiotics to starter feed for calves could improve their growth.
Collapse
Affiliation(s)
- A R Khademi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - F Hashemzadeh
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - M Khorvash
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - A H Mahdavi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - A Pazoki
- Ghiam Agriculture and Animal Husbandry, Isfahan, 83145-46600, Iran
| | - M H Ghaffari
- Institute of Animal Science, University of Bonn, 53111, Bonn, Germany.
| |
Collapse
|
14
|
Li J, Lian H, Zheng A, Zhang J, Dai P, Niu Y, Gao T, Li M, Zhang L, Fu T. Effects of Different Roughages on Growth Performance, Nutrient Digestibility, Ruminal Fermentation, and Microbial Community in Weaned Holstein Calves. Front Vet Sci 2022; 9:864320. [PMID: 35903131 PMCID: PMC9315432 DOI: 10.3389/fvets.2022.864320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to assess the effects of feeding with different forage sources and starter concentrations on growth performance, nutrient digestibility, ruminal fermentation, and the microbial community in weaned Holstein calves. A total of 54 Holstein calves (body weight (BW) = 77.50 ± 5.07 kg; age = 70 ± 2.54 days) were assigned to 1 of 3 treatment groups (n = 18/group) that were offered diets with different forages: (1) peanut vine (PV), (2) oat hay (OH), or (3) an alfalfa hay + oat hay combination (alfalfa hay:oat hay =1:1, AO). Starter and forage intakes were recorded daily, while BW and growth parameters were assessed at 15-day intervals. The apparent digestibility of nutrients was determined. Ruminal fluid samples were collected and used to detect relevant indicators. A difference was observed for the forage × age interaction for all feed, nutrient intake, BW, ADG, and body structure parameters (P < 0.05). The final BW, average daily feed intake (ADFI), and average daily gain of the PV calves were higher than those of calves from the other groups (P < 0.05). The ruminal propionate concentration evidently increased in calves of the AO group (P < 0.05). The abundances of Rikenellaceae_RC9_gut_group and Shuttleworthia showed distinct responses to feeding with different forages (P < 0.05) at the genus level. The relative abundance of Shuttleworthia was negatively related to rumen pH and acid detergent fiber digestibility (P < 0.05) and strongly positively related to propionate concentration (P < 0.01). A positive correlation was found between Ruminococcus_1 abundance and butyrate concentration and neutral detergent fiber digestibility (P < 0.05). The relative abundances of Succiniclasticum and Prevotella_7 were negatively related to butyrate concentration (P < 0.05). In conclusion, there was an interaction between the factors (forage × age). The peanut vine used as a forage source promoted a higher starter concentrate intake compared to other diets and increased with the calves' age. The growth performance and rumen bacterial community of the calves were further improved. These results indicate that peanut vine can be used as the main source of forage in the diets of weaned calves.
Collapse
Affiliation(s)
- Jichao Li
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hongxia Lian
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Airong Zheng
- Henan Forage Feeding Technology Extension Station, Zhengzhou, China
| | - Jiangfan Zhang
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Pengfei Dai
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yan Niu
- Henan Forage Feeding Technology Extension Station, Zhengzhou, China
| | - Tengyun Gao
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ming Li
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Liyang Zhang
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Liyang Zhang
| | - Tong Fu
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Tong Fu
| |
Collapse
|
15
|
Dietary Cysteamine Supplementation Remarkably Increased Feed Efficiency and Shifted Rumen Fermentation toward Glucogenic Propionate Production via Enrichment of Prevotella in Feedlot Lambs. Microorganisms 2022; 10:microorganisms10061105. [PMID: 35744623 PMCID: PMC9227252 DOI: 10.3390/microorganisms10061105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 12/23/2022] Open
Abstract
Cysteamine (CS) is an essential nutritional regulator that improves the productive performance of animals by regulating somatotropic hormone secretion. To investigate the fattening potential and effects of CS on rumen microbial fermentation, 48 feedlot lambs were randomly assigned to four groups and fed diets supplemented with different CS concentrations (0, 20, 40, and 60 mg/kg BW). An increase in dietary CS concentrations linearly increased the average daily gain (ADG) and dry matter intake (p < 0.05) but decreased the feed-to-gain ratio (p < 0.01). For the serum hormone, increasing the dietary CS concentration linearly decreased somatostatin and leptin concentration (p < 0.01) but linearly increased the concentration of growth hormone and insulin-like growth factor 1 (p < 0.01). Regarding rumen fermentation, ruminal pH, ammonia-N, and butyrate content did not differ among the four treatments, although dietary CS supplementation linearly increased microbial protein and propionate and decreased the amount of acetate (p < 0.05). Furthermore, an increase in dietary CS concentrations quadratically decreased the estimated methane production and methane production per kg ADG (p < 0.05). High-throughput sequencing revealed that increased dietary CS concentrations quadratically increased Prevotella (p < 0.05), and Prevotella and norank_f__norank_o__Clostridia_UCG-014 were positively correlated with growth performance and rumen fermentation in a Spearman correlation analysis (r > 0.55, p < 0.05). Overall, a CS concentration higher than 20 mg/kg BW produced growth-promoting effects by inhibiting somatostatin concentrations and shifting the rumen toward glucogenic propionate fermentation by enriching Prevotella. In addition, Prevotella and norank_f__norank_o__Clostridia_UCG-014 were positively correlated with growth performance in lambs.
Collapse
|
16
|
Guo Y, Li Z, Deng M, Li Y, Liu G, Liu D, Liu Q, Liu Q, Sun B. Effects of a multi-strain probiotic on growth, health, and fecal bacterial flora of neonatal dairy calves. Anim Biosci 2022; 35:204-216. [PMID: 34445849 PMCID: PMC8738947 DOI: 10.5713/ab.21.0084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/29/2021] [Accepted: 07/04/2021] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the effects of dietary supplementation with a multi-strain probiotic (MSP) product containing of Bifidobacterium animalis, Lactobacillus casei, Streptococcus faecalis, and Bacillus cerevisiae on growth, health, and fecal bacterial composition of dairy calves during the first month of life. METHODS Forty Holstein calves (24 female and 16 male) at 2 d of age were grouped by sex and date of birth then randomly assigned to 1 of 4 treatments: milk replacer supplementation with 0 g (0MSP), 2 g (2MSP), 4 g (4MSP), and 6 g (6MSP) MSP per calf per day. RESULTS Supplementation of MSP did not result in any significant differences in parameters of body measurements of calves during the 30 d period. As the dosage of MSP increased, the average daily gain (p = 0.025) and total dry matter intake (p = 0.020) of calves showed a linear increase. The fecal consistency index of the 2MSP, 4MSP, and 6MSP group calves were lower than that of the 0MSP group calves (p = 0.003). As the dosage of MSP increased, the concentrations of lactate dehydrogenase (p = 0.068) and aspartate aminotransferase (p = 0.081) in serum tended to decrease, whereas the concentration of total cholesterol increased quadratically (p = 0.021). The relative abundance of Dorea in feces was lower (p = 0.011) in the 2MSP, 4MSP, and 6MSP group calves than that in the 0MSP group calves. The relative abundance of Dorea (p = 0.001), Faecalibacterium (p = 0.050), and Mitsuokella (p = 0.030) decreased linearly, whereas the relative abundance of Prevotella tended to increase linearly as the dosage of MSP increased (p = 0.058). CONCLUSION The MSP product can be used to reduce the diarrhea, improve the performance, and alter the composition of the fecal bacteria in neonatal dairy calves under the commercial conditions.
Collapse
Affiliation(s)
- Yongqing Guo
- Guangdong Laboratory of Modern Agricultural Science and Technology in Lingnan, South China Agricultural University, Guangzhou 510642,
China
- College of Animal Science, South China Agricultural University, Guangzhou 510642,
China
| | - Zheng Li
- Guangdong Laboratory of Modern Agricultural Science and Technology in Lingnan, South China Agricultural University, Guangzhou 510642,
China
- College of Animal Science, South China Agricultural University, Guangzhou 510642,
China
| | - Ming Deng
- Guangdong Laboratory of Modern Agricultural Science and Technology in Lingnan, South China Agricultural University, Guangzhou 510642,
China
- College of Animal Science, South China Agricultural University, Guangzhou 510642,
China
| | - Yaokun Li
- Guangdong Laboratory of Modern Agricultural Science and Technology in Lingnan, South China Agricultural University, Guangzhou 510642,
China
- College of Animal Science, South China Agricultural University, Guangzhou 510642,
China
| | - Guangbin Liu
- Guangdong Laboratory of Modern Agricultural Science and Technology in Lingnan, South China Agricultural University, Guangzhou 510642,
China
- College of Animal Science, South China Agricultural University, Guangzhou 510642,
China
| | - Dewu Liu
- Guangdong Laboratory of Modern Agricultural Science and Technology in Lingnan, South China Agricultural University, Guangzhou 510642,
China
- College of Animal Science, South China Agricultural University, Guangzhou 510642,
China
| | - Qihong Liu
- Jiangsu Hengfengqiang Biotechnology Co., Ltd, Nantong 226121,
China
| | - Qingshen Liu
- Guangdong Laboratory of Modern Agricultural Science and Technology in Lingnan, South China Agricultural University, Guangzhou 510642,
China
- College of Animal Science, South China Agricultural University, Guangzhou 510642,
China
| | - Baoli Sun
- Guangdong Laboratory of Modern Agricultural Science and Technology in Lingnan, South China Agricultural University, Guangzhou 510642,
China
- College of Animal Science, South China Agricultural University, Guangzhou 510642,
China
| |
Collapse
|
17
|
Zhang H, Xue X, Song M, Zhang X, Wang H, Wang F, Zhang L, Gao T. Comparison of feeding value, ruminal fermentation and bacterial community of a diet comprised of various corn silages or combination with wheat straw in finishing beef cattle. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Xu HJ, Zhang QY, Wang LH, Zhang CR, Li Y, Zhang YG. Growth performance, digestibility, blood metabolites, ruminal fermentation, and bacterial communities in response to the inclusion of gallic acid in the starter feed of preweaning dairy calves. J Dairy Sci 2022; 105:3078-3089. [PMID: 35086717 DOI: 10.3168/jds.2021-20838] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/20/2021] [Indexed: 01/08/2023]
Abstract
The objective of this study was to evaluate the effects of feeding gallic acid on the growth, nutrient digestibility, plasma metabolites, rumen fermentation, and bacterial community in the rumen fluid and feces of preweaning calves. Thirty-six female Holstein calves with similar ages (means ± SD; 3.1 ± 1.39 d) and body weights (40.8 ± 2.87 kg) were randomly assigned to receive 3 treatments. Calves were fed 1 of 3 treatments as follows: basal diet with no gallic acid (control), 0.5 g/kg gallic acid in starter diet (low), and 1 g/kg gallic acid in starter diet (high). The results showed that feeding gallic acid increased growth by improving the starter intake and average daily gain of the calves. The fecal score tended to decrease in a linear manner with the addition of gallic acid. Total-tract apparent protein digestibility tended to increase linearly with feeding gallic acid. Feeding gallic acid led to a linear increase in the plasma total protein and β-hydroxybutyrate levels. In addition, feeding gallic acid linearly increased catalase and total antioxidant capacity levels and decreased malondialdehyde and tumor necrosis factor-α concentrations. The concentrations of total volatile fatty acids, propionate, butyrate, and valerate in the rumen fluid increased linearly with the addition of gallic acid, resulting in a linear pH reduction. Feeding gallic acid linearly increased the relative abundances of Prevotella_1, Saccharofermentans, and Prevotellaceae_UCG-001 and linearly decreased the relative abundance of Prevotella_7 in the rumen fluid. The Shannon index of ruminal bacterial communities linearly increased by feeding gallic acid. Feeding gallic acid linearly increased the relative abundances of Ruminococcaceae_UCG-005, Bacteroides, and Christensenellaceae_R-7_group in the feces. In summary, feeding gallic acid improved growth, antioxidant function, and rumen fermentation and altered the bacterial community in the rumen fluid and feces of preweaning dairy calves.
Collapse
Affiliation(s)
- H J Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Q Y Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - L H Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - C R Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Y Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Y G Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
19
|
Zhang L, Shang Y, Li J, Fu T, Lian H, Gao T, Shi Y, Li M. Comparison of feeding diets including dried or ensiled peanut vines as forage sources on the growth performance, ruminal fermentation, and bacterial community in young Holstein bulls. Anim Sci J 2022; 93:e13675. [PMID: 35068014 DOI: 10.1111/asj.13675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 11/01/2022]
Abstract
The objectives of this study were to compare the growth performance, ruminal fermentation, and bacterial community of young bulls fed with diets including dried or ensiled peanut vines and to investigate whether the combination of dry peanut vine and corn silage could exhibit better feeding effects. Forty-five young Holstein bulls were selected and fed for 60 days. The total mixed ration (TMR) was formulated as follows: (1) a dry peanut vine-based diet (DPV), (2) a peanut vine silage-based diet (PVS), and (3) a whole-plant corn silage mixed with the DPV (WPCS-DPV). The ratio of dietary concentrate to forage was 50:50. The results showed that the dried and ensiled peanut vines used in beef diet exhibited no difference in the average daily gain of bulls (p = 0.490). The pH of rumen fluid in bulls fed with the WPCS-DPV and PVS diets was lower than that in bulls fed with the DPV diet (p < 0.001). The bulls fed with the DPV diet had increased Ace and Chao1 values of rumen bacterial community compared with bulls fed with the PVS diet (p < 0.05). This study confirmed the feasibility of ensiling as a preservation procedure for peanut vines and provides a reference for its utilization schemes.
Collapse
Affiliation(s)
- Liyang Zhang
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology Henan Agricultural University Zhengzhou China
| | - Yuan Shang
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology Henan Agricultural University Zhengzhou China
| | - Jichao Li
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology Henan Agricultural University Zhengzhou China
| | - Tong Fu
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology Henan Agricultural University Zhengzhou China
| | - Hongxia Lian
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology Henan Agricultural University Zhengzhou China
| | - Tengyun Gao
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology Henan Agricultural University Zhengzhou China
| | - Yinghua Shi
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology Henan Agricultural University Zhengzhou China
| | - Ming Li
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology Henan Agricultural University Zhengzhou China
| |
Collapse
|
20
|
The Probiotic Properties of Lactic Acid Bacteria and Their Applications in Animal Husbandry. Curr Microbiol 2021; 79:22. [PMID: 34905106 DOI: 10.1007/s00284-021-02722-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/13/2021] [Indexed: 12/17/2022]
Abstract
The intestinal tract of animals is a complex ecosystem in which nutrients, microbiota and host cells interact extensively. Probiotics can be considered as part of the natural microbiota of the gut and are involved in improving homeostasis. Lactic acid bacteria (LAB) is a general term for a class of non-spore forming, gram-positive bacteria whose main product of fermented sugar is lactic acid. LAB are considered to be a type of probiotic due to their health-promoting effects on the host, and are very effective in the treatment of human and animal diseases. LAB have been widely used as a class of microbial agents in the field of livestock and poultry breeding. They are also considered to be the best substitutes for antibiotics to improve animal health. Here, we review the biological functions, probiotic characteristics and applications of LAB in livestock and poultry breeding. This review is designed to provide a theoretical base for the in-depth exploration and promotion of LAB use in animal diets.
Collapse
|
21
|
Creutzinger K, Pempek J, Habing G, Proudfoot K, Locke S, Wilson D, Renaud D. Perspectives on the Management of Surplus Dairy Calves in the United States and Canada. Front Vet Sci 2021; 8:661453. [PMID: 33928141 PMCID: PMC8076512 DOI: 10.3389/fvets.2021.661453] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/18/2021] [Indexed: 11/25/2022] Open
Abstract
The care of surplus dairy calves is a significant issue for the United States and Canadian dairy industries. Surplus dairy calves commonly experience poor welfare as evidenced by high levels of mortality and morbidity, and negative affective states resulting from limited opportunities to express natural behaviors. Many of these challenges are a result of a disaggregated production system, beginning with calf management at the dairy farm of origin and ending at a calf-raising facility, with some calves experiencing long-distance transportation and commingling at auction markets or assembly yards in the interim. Thus, the objectives of this narrative review are to highlight specific challenges associated with raising surplus dairy calves in the U.S. and Canada, how these challenges originate and could be addressed, and discuss future directions that may start with refinements of the current system, but ultimately require a system change. The first critical area to address is the management of surplus dairy calves on the dairy farm of origin. Good neonatal calf care reduces the risk of disease and mortality, however, many dairy farms in Canada and the U.S. do not provide sufficient colostrum or nutrition to surplus calves. Transportation and marketing are also major issues. Calves can be transported more than 24 consecutive hours, and most calves are sold through auction markets or assembly yards which increases disease exposure. Management of calves at calf-raisers is another area of concern. Calves are generally housed individually and fed at low planes of nutrition, resulting in poor affective states and high rates of morbidity and mortality. Strategies to manage high-risk calves identified at arrival could be implemented to reduce disease burden, however, increasing the plane of nutrition and improving housing systems will likely have a more significant impact on health and welfare. However, we argue the current system is not sustainable and new solutions for surplus calves should be considered. A coordinated and holistic approach including substantial change on source dairy farms and multiple areas within the system used to market and raise surplus dairy calves, can lead to more sustainable veal and beef production with improved calf outcomes.
Collapse
Affiliation(s)
| | - Jessica Pempek
- Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, United States
| | - Gregory Habing
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Kathryn Proudfoot
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - Samantha Locke
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Devon Wilson
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada
| | - David Renaud
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
22
|
Casper DP, Hultquist KM, Acharya IP. Lactobacillus plantarum GB LP-1 as a direct-fed microbial for neonatal calves. J Dairy Sci 2021; 104:5557-5568. [PMID: 33663862 DOI: 10.3168/jds.2020-19438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/03/2021] [Indexed: 12/22/2022]
Abstract
Direct-fed microbial feed additives with potential to enhance growth performance, gut health, and immunity have gained considerable popularity in neonatal calf production. Lactobacillus plantarum GB LP-1 (LP) produced by a proprietary fermentation process could be a viable direct-fed microbial feed for neonatal calves. The hypothesis was that feeding LP may ease transitioning from milk replacer (MR) to calf starter (CS) by improving gut health and appetite, while minimizing health challenges from pathogens and stress to improve growth performance. The experimental objective was to evaluate LP in an MR feeding program at 3 inclusion rates. Fifty-one 2- to 5-d-old Holstein bull calves were randomly assigned to 1 of 3 treatments using a randomized complete block design. Treatments were (1) Control (LP0): LP fed at 0 g/d; (2) LP4: LP fed at 4 g/d; and (3) LP8: LP fed at 8 g/d. Calves were fed MR at 0.57 kg/d for 14 d via bucket, which was increased to 0.85 kg/d until 35 d, and were then fed once daily at 0.425 kg/d with weaning after d 42 of the 56-d experiment. Calves were fed at 0630 and 1800 h in equal allotments, with access at all times to free-choice water and a pelleted CS with 25.5% crude protein. Calves demonstrated a linear growth response to increasing LP inclusion rate: calves fed LP8 gained more body weight (33.0, 36.9, and 37.7 kg for LP0, LP4, and LP8, respectively) than calves fed LP0, with calves fed LP4 being intermediate and similar. The 0-to-42-d (MR feeding phase) average daily gain (ADG; 562.9, 595.9, and 655.7 g/d) and 0-to-56-d ADG (588.6, 658.4, and 673.0 g/d) demonstrated linear responses, with calves fed LP8 having greater ADG than calves fed LP0, and calves fed LP4 being intermediate and similar. Total CS intake was similar among calves fed all treatments (66.3, 69.0, and 72.5 kg/56 d), which resulted in a quadratic response in feed efficiency (0.50, 0.53, and 0.52 kg of gain/kg of dry matter) for calves fed LP4 compared with calves fed LP0, with calves fed LP8 being intermediate and similar. Fecal scores improved linearly with increasing LP inclusion rate. These data demonstrate that feeding Lactobacillus plantarum GB LP-1 to neonatal calves improves gut health to increase growth performance at 4 and 8 g/d, while feed efficiency was greatest at 4 g/d.
Collapse
Affiliation(s)
- David P Casper
- Casper's Calf Ranch LLC, 4890 West Lily Creek Road, Freeport, IL 61032.
| | - Kayla M Hultquist
- Casper's Calf Ranch LLC, 4890 West Lily Creek Road, Freeport, IL 61032
| | | |
Collapse
|
23
|
Mani S, Aiyegoro OA, Adeleke MA. Characterization of Rumen Microbiota of Two Sheep Breeds Supplemented With Direct-Fed Lactic Acid Bacteria. Front Vet Sci 2021; 7:570074. [PMID: 33521074 PMCID: PMC7843511 DOI: 10.3389/fvets.2020.570074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 12/15/2020] [Indexed: 12/29/2022] Open
Abstract
Supplementation of direct-fed microbials into ruminants' nutrition has shown great potential in manipulating rumen fermentation and enhancing productive animal performance. However, little is known about rumen microbial composition and diversity of Damara and Meatmaster sheep, breeds indigenous to South Africa. The study aimed at exploring and comparing the rumen microbiomes of two breeds with different feeding treatments as follows: no antibiotic, no probiotics (T1), only potential probiotic (T2), only potential probiotic (T3), the combination of potential probiotics (T4), antibiotic (T5); using a metagenomic approach. The results showed that based on the Shannon index, the microbial diversity of Damara was higher (p < 0.05) than Meatmaster, while treatment T4 was higher than treatment T1 (p < 0.05). The principal coordinate analysis showed no significant difference among treatments, while there were significant dissimilarities between sheep breeds and sample-day (p < 0.05). Canonical correspondence analysis (CCA) displayed the dispersion of microbial communities among treatments, where negative control (T1) was distinct from other treatments. Bacteroidetes and Firmicutes were the most abundant microbial phyla across treatments for both breeds. Negative control and the combination of potential probiotics showed lower proportions of Proteobacteria compared to other treatments. At the genus level, Prevotella and Clostridium were abundant across all treatments, while Pseudomonas was abundant only in T2, T3, and T5. In all treatments, Fibrobacter was detected after the feeding trials, while it was not detected in most treatments before trials. The results revealed that the rumen microbiome's structure and abundance were slightly altered by administering lactic acid as a putative probiotic.
Collapse
Affiliation(s)
- Sinalo Mani
- Gastrointestinal Microbiology and Biotechnology Unit, Agricultural Research Council - Animal Production, Irene, South Africa
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| | - Olayinka A. Aiyegoro
- Gastrointestinal Microbiology and Biotechnology Unit, Agricultural Research Council - Animal Production, Irene, South Africa
- Research Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
24
|
Fernández S, Fraga M, Castells M, Colina R, Zunino P. Effect of the administration of Lactobacillus spp. strains on neonatal diarrhoea, immune parameters and pathogen abundance in pre-weaned calves. Benef Microbes 2020; 11:477-488. [PMID: 32877228 DOI: 10.3920/bm2019.0167] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neonatal calf diarrhoea is one of the challenges faced by intensive farming, and probiotics are considered a promising approach to improve calves' health. The objective of this study was to evaluate the effect of potential probiotic lactobacilli on new-born dairy calves' growth, diarrhoea incidence, faecal score, cytokine expression in blood cells, immunoglobulin A (IgA) levels in plasma and faeces, and pathogen abundance in faeces. Two in vivo assays were conducted at the same farm in two annual calving seasons. Treated calves received one daily dose of the selected lactobacilli (Lactobacillus reuteri TP1.3B or Lactobacillus johnsonii TP1.6) for 10 consecutive days. A faecal score was recorded daily, average daily gain (ADG) was calculated, and blood and faeces samples were collected. Pathogen abundance was analysed by absolute qPCR in faeces using primers directed at Salmonella enterica, rotavirus, coronavirus, Cryptosporidium parvum and three Escherichia coli virulence genes (eae, clpG and Stx1). The faecal score was positively affected by the administration of both lactobacilli strains, and diarrhoea incidence was significantly lower in treated calves. No differences were found regarding ADG, cytokine expression, IgA levels and pathogen abundance. Our findings showed that oral administration of these strains could improve gastrointestinal health, but results could vary depending on the calving season, which may be related to pathogen seasonality and other environmental effects.
Collapse
Affiliation(s)
- S Fernández
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Av Italia 3318, Montevideo, Uruguay
| | - M Fraga
- Animal Health Unit, Instituto Nacional de Investigación Agropecuaria, Ruta 50 Km 11, Colonia, Uruguay
| | - M Castells
- Laboratory of Molecular Virology, Department of Biological Sciences, CENUR Litoral Norte, University of Uruguay, Rivera 1350, 50000 Salto, Uruguay
| | - R Colina
- Laboratory of Molecular Virology, Department of Biological Sciences, CENUR Litoral Norte, University of Uruguay, Rivera 1350, 50000 Salto, Uruguay
| | - P Zunino
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Av Italia 3318, Montevideo, Uruguay
| |
Collapse
|
25
|
Alawneh JI, Barreto MO, Moore RJ, Soust M, Al-Harbi H, James AS, Krishnan D, Olchowy TWJ. Systematic review of an intervention: the use of probiotics to improve health and productivity of calves. Prev Vet Med 2020; 183:105147. [PMID: 32977172 DOI: 10.1016/j.prevetmed.2020.105147] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/13/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022]
Abstract
The aims of this study were to undertake a systematic review and meta-analysis of the types of probiotic formulations that are commercially available and to critically appraise the available evidence for the effectiveness of probiotics in improving the health and productivity of calves. Relevant papers were identified to answer the question: 'In calves aged between birth to one year, is the use of probiotics associated with changes in haematological or biochemical parameters, faecal bacteria counts, average daily live weight gain, dry matter intake, or feed conversion ratio?' The search of the literature yielded 67 studies that fit the primary screening criteria. Included studies were assessed for bias and confounding using a predefined risk assessment tool adapted from the Cochrane Collaboration's tool for assessing risk of bias in randomised trials and GRADE guidelines. Meta-analysis was performed using Review Manager and R. Random sequence generation was low in more than 59 % of studies. Risk of allocation concealment and performance bias were largely unclear in over 68 % of studies. Calves fed probiotics had increased average daily live weight gains (ADG) from birth to weaning (mean difference [MD] = 83.14 g/d 95 % CI = 58.36-107.91, P < 0.001) compared with calves on a control diet. Calf age reduced the level of heterogeneity of the effect of probiotics on ADG for calves between one to three weeks of age (τ2 = 73.15; I2 = 4%; P = 0.40) but not for calves older than three weeks of age (τ2 = 2892.91; I2 = 73 %; P < 0.001). Feed conversion ratio (FCR) was lower for calves on probiotics (MD = -0.13 kg of dry matter intake (DMI) to kg of live weight (LW) gain, 95 % CI = -0.17 to -0.09, P < 0.001), and the heterogeneity of effect was large in younger aged calves (τ2 = 0.05; I2 = 78 %; P = 0.03). The risk of bias regarding the methodology in the included studies was high. The quality of evidence for each outcome was categorised as moderate. There is sufficient data to support the effectiveness of probiotic use in some applications such as for the improvement of performance and productivity parameters of calves. However, the evidence is weak for other potential probiotic uses in calves such as improved health and reduced risk of disease. Therefore, the existing data are inconclusive and do not support the use of probiotics as an alternative to antimicrobials to improve calf health and productivity.
Collapse
Affiliation(s)
- John I Alawneh
- Good Clinical Practice Research Group, The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia; The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia.
| | - Michelle O Barreto
- Good Clinical Practice Research Group, The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia; The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora, Melbourne, Victoria, 3083, Australia
| | - Martin Soust
- Terragen Biotech Pty Ltd., Coolum Beach, Queensland, 4573, Australia
| | - Hulayyil Al-Harbi
- Good Clinical Practice Research Group, The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia; The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia
| | - Ameh S James
- Good Clinical Practice Research Group, The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia; The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia
| | - Divya Krishnan
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia
| | - Timothy W J Olchowy
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T3R 1J3, Canada
| |
Collapse
|
26
|
Effects of supplementation with Lactobacillus plantarum 299v on the performance, blood metabolites, rumen fermentation and bacterial communities of preweaning calves. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
27
|
Lu Z, Shen H, Shen Z. Effects of Dietary-SCFA on Microbial Protein Synthesis and Urinal Urea-N Excretion Are Related to Microbiota Diversity in Rumen. Front Physiol 2019; 10:1079. [PMID: 31507445 PMCID: PMC6714491 DOI: 10.3389/fphys.2019.01079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022] Open
Abstract
Two experiments were performed in this study. In Experiment 1, twenty goats were fed with an isonitrogenous diet, containing 28% Non-Fiber Carbohydrate (MNFC group, n = 10) or 14% NFC (LNFC group, n = 10). In the MNFC group, the ruminal concentration of Short Chain Fatty Acids (SCFA) increased, and pH declined. Compared with those in the LNFC group, the microbial protein synthesis in rumen and mRNA abundance of urea transporter B (UT-B) in rumen epithelium increased in the MNFC group, although serum urea-N (SUN) did not differ significantly between groups. Simultaneously, urinal urea-N excretion was reduced in the MNFC group. Significant correlations were found between rumen SCFA and UT-B and between UT-B and urinal urea-N excretion. Furthermore, the abundances of SCFA receptor of GPR41 and GPR43 increased in the rumen epithelium of the MNFC group. These results suggest that increases of SUN transported into the rumen and incorporated into microbial protein and decreases of urinal urea-N excretion are related to ruminal SCFA. This is supported by data from our previous study in which added SCFA on the mucosal side caused increases of urea transport rate (flux Jsm urea) from the blood to the ruminal lumen side. In Experiment 2, we used 16S rRNA Amplicon Sequencing to analyze the structure of the ruminal microbiota community in relation to SCFA. An additional eight goats were assigned into the MNFC (n = 4) and LNFC (n = 4) groups. The dietary ingredients, chemical composition, and feeding regimes were the same as those in Experiment 1. Constrained correspondence analysis (CCA analysis) revealed NFC promoted the expansion of microbiota diversity, particularly of SCFA-producing microbes. The function prediction of 19 upregulated Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog groups showed an NFC-induced increase of the types and abundances of genes coding for enzymes catalyzing N and fatty acid metabolism. Based on our present and previous investigations, our results indicate that, in goats consuming a MNFC diet, the facilitated urea transport in the rumen and improved urea N salvage are triggered by an expansion of ruminal microbiota diversity and are signaled by ruminal SCFA. This study thus provides new insights into the microbiota involved in the dietary modulation of urea-N salvage in ruminant animals.
Collapse
Affiliation(s)
- Zhongyan Lu
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hong Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.,Bioinformatics Center, Nanjing Agricultural University, Nanjing, China
| | - Zanming Shen
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|