1
|
Cheng K, Niu J, Hu D, Yao J, Zhao H, Yang M, Wang J, Zhang Y. Effect of Dietary Energy Levels on the Reproductive Performance in Breeding Pigeons, and Growth Performance and Intestinal Health in Squabs. J Poult Sci 2025; 62:2025015. [PMID: 40264516 PMCID: PMC12009656 DOI: 10.2141/jpsa.2025015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/03/2025] [Indexed: 04/24/2025] Open
Abstract
The present study evaluated the effect of different dietary energy levels on reproductive performance in breeding pigeons, as well as growth performance and intestinal health in squabs. In total, 180 pairs of 12-month-old White King breeding pigeons were randomly assigned to five dietary treatments, each with six replicates of six pairs of birds, and fed diets containing 11.60, 11.80, 12.00, 12.20, and 12.40 MJ/kg for 46 days, respectively. Energy content beyond 12.00 MJ/kg shortened the laying interval (linear and quadratic, P<0.05), while boosting 38-day, 42-day, and 46-day laying rates (linear, P<0.05) in breeding pigeons. Except for the early stage of lactation, feed intake showed a linear and/or quadratic negative relationship with dietary energy content (P<0.05). Body weight at 1 week of age, average daily gain during the early growth stages, and serum total protein of squabs increased with increasing dietary energy content (linear, P<0.05); whereas alanine aminotransferase activity decreased (quadratic, P<0.05). Jejunal villus height and villus height to crypt depth ratio in squabs increased with increasing dietary energy levels (linear and quadratic, P<0.05), particularly in the 12.40 MJ/kg group. Higher dietary energy content increased jejunal malondialdehyde content (linear, P<0.05), total superoxide dismutase (T-SOD), and glutathione peroxidase activities (linear, P<0.05), as well as ileal T-SOD (linear and quadratic, P<0.05) and catalase (quadratic, P<0.05) activities in squabs. Hence, intakes greater than 12.00 MJ/kg altered the jejunal redox status. Finally, higher dietary energy content improved reproduction in breeding pigeons and intestinal morphology in squabs. Overall, 12.00 MJ/kg strikes the right balance as it promotes reproductive performance in breeding pigeons and intestinal health in squabs.
Collapse
Affiliation(s)
- Kang Cheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People’s Republic of China
| | - Jingyi Niu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People’s Republic of China
| | - Daizi Hu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People’s Republic of China
| | - Jinxiu Yao
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People’s Republic of China
| | - Hongyue Zhao
- School of International Education, Henan University of Technology, Zhengzhou 450001, People’s Republic of China
| | - Mingjun Yang
- Henan Tiancheng Pigeon Industry Co., Ltd., Wugang 462500, People’s Republic of China
| | - Jinrong Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People’s Republic of China
| | - Yong Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People’s Republic of China
| |
Collapse
|
2
|
Maher S, Sweeney T, Vigors S, McDonald M, O'Doherty JV. Effects of organic acid-preserved cereal grains in sow diets during late gestation and lactation on the performance and faecal microbiota of sows and their offspring. J Anim Sci Biotechnol 2025; 16:43. [PMID: 40069903 PMCID: PMC11899052 DOI: 10.1186/s40104-025-01171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/20/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Organic acids (OA) and maternal nutritional strategies have been demonstrated to promote piglet health and development. The objective of this study was to investigate the effects of incorporating OA-preserved cereal grains into sow diets during late gestation and lactation, aiming to reduce the metabolic demands of lactation while optimising offspring development and growth until slaughter. The experiment compared OA-preserved wheat and barley to conventionally dried grains, focusing on sow and offspring performance, as well as their faecal microbiota during lactation. Forty sows were blocked based on parity, body weight and back fat thickness on d 100 of gestation and assigned to one of two diets: a dried grain lactation diet and a preserved grain lactation diet. Sow faecal samples were collected at farrowing for the coefficient of apparent total tract digestibility (CATTD) of nutrients and microbial analysis. Offspring faecal samples were collected on d 10 postpartum and at weaning (d 26 postpartum) for microbial analysis. RESULTS Sow body weight, back fat changes, gestation and lactation length, total piglets born, wean-to-oestrus interval, and lactation efficiency were unaffected by sow diet (P > 0.05). However, sows offered the preserved grain diet exhibited improved CATTD of dry matter, nitrogen, gross energy, and neutral detergent fibre (P < 0.05). While no maternal effect was observed on offspring growth during lactation (P > 0.05), pigs from sows offered the preserved grain diet showed improved growth and feed efficiency from weaning until slaughter (d 168) compared to those from sows offered the dried grain diet (P < 0.05). The preserved grain diet also reduced the abundance of Proteobacteria in sow faeces at farrowing and in their offspring on d 10 postpartum, and improved piglet faecal scores throughout lactation (P = 0.05). At weaning, piglets from sows offered the preserved grain diet exhibited an increased abundance of Lactobacillus and reduced abundance of Alistipes in their faeces (P < 0.05). CONCLUSION OA-preserved grains enhanced the CATTD of nutrients in sows, promoted healthier piglet faecal scores during lactation, and improved offspring growth performance post-weaning, potentially linked to beneficial changes observed in the faecal microbiota of sows and their offspring during lactation.
Collapse
Affiliation(s)
- Shane Maher
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Stafford Vigors
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Michael McDonald
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - John V O'Doherty
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
3
|
Islas-Fabila P, Bonilla-Jaime H, Roldán-Santiago P, de la Cruz-Cruz LA, Limón-Morales O, Jiménez-Collado CA, Orozco-Gregorio H. Thiamine Pyrophosphate Effects on Newborn Piglets as a Measure of Vitality and Survival Indicators. Animals (Basel) 2025; 15:619. [PMID: 40075902 PMCID: PMC11898135 DOI: 10.3390/ani15050619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
The objective of this study was to evaluate the prophylactic effect of thiamine pyrophosphate (TPP) on the vitality scores of piglets based on their behavior and survival. A total of 149 piglets born from 15 multiparous sows were evaluated. The sows were randomly divided into two groups, control and TPP, with treatments administered 24 and 12 h before the expected farrowing date. The duration of farrowing was recorded. Furthermore, for all newborns, the Apgar vitality scale, teat suckling, newborn weight and weight at weaning, piglet vitality based on behavior (at birth and at 24 h), and skin temperature (at birth and at 24 h) were evaluated. The results indicated that the sows treated with TPP presented a lower farrowing duration (p = 0.0060) and their piglets exhibited a higher percentage in the piglet vitality-based behavior score (>50%). In addition, the newborn piglets of TPP-treated sows, which exhibited higher scores in behavior parameters, also displayed higher scores (>80%) in the Apgar vitality scale (>8), suckled on the teat for longer periods of time, and had higher daily weight gain (p < 0.0001). Our findings suggest that administering TPP at the end of gestation may shorten labor while also increasing the vitality of newborns. Therefore, it could be considered that, in practice, the administration of this treatment could have an impact on the energy that sows need during the farrowing process for the initiation of uterine contractions and abdominal effort. Therefore, this treatment could have an impact on the productivity and well-being of sows with a history of dystocic farrowing, which can increase the incidence of endometritis, vulvar discharge, placental retention, or mastitis-metritis-agalactia syndrome-alterations that can result in the reduced growth of piglets and a higher mortality before weaning. Therefore, the application of this treatment could not only reduce the probability of sows presenting these problems but perhaps also increase the probability of their offspring surviving in the first days after birth.
Collapse
Affiliation(s)
- Paloma Islas-Fabila
- Programa de Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México 09340, Mexico;
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproductiva, Universidad Autónoma Metropolitana, Ciudad de México 09340, Mexico; (H.B.-J.); (O.L.-M.)
| | - Patricia Roldán-Santiago
- Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Avenida Universitaria, Ciudad de México 04510, Mexico;
| | - Luis Alberto de la Cruz-Cruz
- Facultad de Medicina Veterinaria y Zootecnia, Universidad del Valle de Mexico-Coyoacán, Calzada de Tlalpan, Ciudad de México 04910, Mexico;
- Preservación del Bienestar Animal/Manejo de Fauna Silvestre, Departamento de Producción Agrícola, Universidad Autónoma Metropolitana, Calzada del Hueso 1100, Coapa, Villa Quietud, Coyoacán, Ciudad de México 04960, Mexico
| | - Ofelia Limón-Morales
- Departamento de Biología de la Reproductiva, Universidad Autónoma Metropolitana, Ciudad de México 09340, Mexico; (H.B.-J.); (O.L.-M.)
| | | | - Héctor Orozco-Gregorio
- Ingeniería en Producción Animal, Universidad Politécnica de Francisco I. Madero (UPFIM), Tepatepec 42660, Mexico
| |
Collapse
|
4
|
Xie Y, Meng J, Sun R, Liu J, Liu Q, Ou Y, Qi Q, Li X, Zhang Y, Yuan J, Xing M, Chao Z, Zhao G, Wei L. Effects of Dietary Mallotus oblongifolius Ultrafine Powder Supplementation on Quality of Pork from Hainan Pigs During the Late Fattening Period. Vet Sci 2025; 12:173. [PMID: 40005933 PMCID: PMC11861987 DOI: 10.3390/vetsci12020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
The genus Mallotus oblongifolius (MO), a member of the Euphorbia family, exhibits a predominant distribution in Hainan Island and has been proven to possess diverse medicinal attributes. Research indicates that ultramicro-grinding fully exposes the active ingredients of Mallotus oblongifolius, enhancing bioavailability and efficacy, compared to before. Our study investigates the effects of ultrafine powder of Mallotus oblongifolius (MOUP) on Hainan pigs. A total of sixty-four healthy castrated pigs (ternary hybrid pigs, Duroc × Duroc × Tunchang) with comparable initial body weight (BW, 68.06 ± 1.03 kg, 150 days old) were allocated randomly into four groups: the control group (CONT), the antibiotic group (ANTI), the 0.1% MOUP group (PT1), and the 0.5% MOUP group (PT2). There were four replicate pens per treatment with four pigs per pen. The pre-test lasted for 7 days and the formal test lasted for 70 days. The CONT group was fed the basal diet, the ANTI group was fed the basal diet supplemented with 300 mg/kg colistin sulfate, the PT1 group was fed the basal diet supplemented with 0.1% MOUP, and the PT2 group was fed the basal diet supplemented with 0.5% MOUP. The findings of our study indicate that the inclusion of colistin sulfate and MOUP in the diet did not have any significant impact on the production performance or carcass indicators of Hainan pigs compared to the CONT group. However, it is noteworthy that the addition of MOUP to the diet resulted in a significant improvement in the lightness, tenderness, muscle fiber morphology, amino acid composition, and antioxidant activity of the longissimus dorsi muscle, particularly in the PT2 group, compared to the CONT group. In conclusion, the present study has demonstrated that the inclusion of MOUP in the dietary regimen yields enhancements in the meat quality of Hainan pigs, particularly when supplemented at a concentration of 0.5%.
Collapse
Affiliation(s)
- Yali Xie
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou 570100, China; (Y.X.); (R.S.); (J.L.); (Q.L.); (Y.O.); (Q.Q.); (X.L.); (Y.Z.); (J.Y.); (M.X.); (Z.C.)
| | - Jilun Meng
- Xianghu Laboratory, Hangzhou 311231, China;
| | - Ruiping Sun
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou 570100, China; (Y.X.); (R.S.); (J.L.); (Q.L.); (Y.O.); (Q.Q.); (X.L.); (Y.Z.); (J.Y.); (M.X.); (Z.C.)
| | - Jie Liu
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou 570100, China; (Y.X.); (R.S.); (J.L.); (Q.L.); (Y.O.); (Q.Q.); (X.L.); (Y.Z.); (J.Y.); (M.X.); (Z.C.)
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya 572000, China;
| | - Quanwei Liu
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou 570100, China; (Y.X.); (R.S.); (J.L.); (Q.L.); (Y.O.); (Q.Q.); (X.L.); (Y.Z.); (J.Y.); (M.X.); (Z.C.)
| | - Yangkun Ou
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou 570100, China; (Y.X.); (R.S.); (J.L.); (Q.L.); (Y.O.); (Q.Q.); (X.L.); (Y.Z.); (J.Y.); (M.X.); (Z.C.)
| | - Qi Qi
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou 570100, China; (Y.X.); (R.S.); (J.L.); (Q.L.); (Y.O.); (Q.Q.); (X.L.); (Y.Z.); (J.Y.); (M.X.); (Z.C.)
| | - Xiang Li
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou 570100, China; (Y.X.); (R.S.); (J.L.); (Q.L.); (Y.O.); (Q.Q.); (X.L.); (Y.Z.); (J.Y.); (M.X.); (Z.C.)
| | - Yan Zhang
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou 570100, China; (Y.X.); (R.S.); (J.L.); (Q.L.); (Y.O.); (Q.Q.); (X.L.); (Y.Z.); (J.Y.); (M.X.); (Z.C.)
| | - Jingli Yuan
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou 570100, China; (Y.X.); (R.S.); (J.L.); (Q.L.); (Y.O.); (Q.Q.); (X.L.); (Y.Z.); (J.Y.); (M.X.); (Z.C.)
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya 572000, China;
| | - Manping Xing
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou 570100, China; (Y.X.); (R.S.); (J.L.); (Q.L.); (Y.O.); (Q.Q.); (X.L.); (Y.Z.); (J.Y.); (M.X.); (Z.C.)
| | - Zhe Chao
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou 570100, China; (Y.X.); (R.S.); (J.L.); (Q.L.); (Y.O.); (Q.Q.); (X.L.); (Y.Z.); (J.Y.); (M.X.); (Z.C.)
| | - Guiping Zhao
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya 572000, China;
| | - Limin Wei
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou 570100, China; (Y.X.); (R.S.); (J.L.); (Q.L.); (Y.O.); (Q.Q.); (X.L.); (Y.Z.); (J.Y.); (M.X.); (Z.C.)
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya 572000, China;
| |
Collapse
|
5
|
van Aswegen M, Szabo A, Currie JJ, Stack SH, Evans L, Straley J, Neilson J, Gabriele C, Cates K, Steel D, Bejder L. Maternal investment, body condition and calf growth in humpback whales. J Physiol 2025; 603:551-578. [PMID: 39665538 DOI: 10.1113/jp287379] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/15/2024] [Indexed: 12/13/2024] Open
Abstract
Given recent declines in North Pacific humpback whale (Megaptera novaeangliae) reproductive output and calf survival, there is additional urgency to better understand how mother-calf pairs allocate energy resources across their migratory cycle. Here, unoccupied aerial system (UAS; or drone) photogrammetry was used to quantify the body size and condition (BC) of humpback whales on their Hawai'i (HI) breeding and Southeast Alaska (SEAK) feeding grounds. Between 2018 and 2022, we collected 2410 measurements of 1659 individuals. Rates of change in body volume (BV) and length (BL) were quantified using 803 repeat measurements of 275 individuals. On average, HI mothers lost 0.106 m3 or 96.84 kg day-1 while fasting, equivalent to 2641 MJ day-1 or 830 kg of krill and 424 kg of Pacific herring daily. HI calf BV and BL increased by 0.035 m3 and 2.6 cm day-1, respectively. In SEAK, maternal BV increased by 0.015 m3 or 14.54 kg day-1 (367 MJ day-1), while calf BV and BL increased by 0.039 m3 and 0.93 cm day-1, respectively. Maternal investment in calf growth correlated with both female BL and BC, with larger females producing larger, faster-growing calves. Finally, using 330 measurements from 156 females, we quantified differences in BC increase over four feeding seasons. Lactating females exhibited an average BC increase of 6.10%, half that of unclassified females (13.51%) and six times lower than pregnant females (37%). These findings represent novel insights into the life history of humpback whales across their migratory cycle, providing key baseline data for bioenergetic models elucidating the effects of anthropogenic disturbance and rapidly changing ocean ecosystems. KEY POINTS: On average, Hawai'i (HI) mothers lost 0.106 m3 or 96.84 kg day-1, equivalent to 2641 MJ day-1. Over a 60 day period, this corresponded to an estimated mean energetic cost of 158 GJ, or ≈50 tons of krill or ≈25 tons of Pacific herring, surpassing the total energetic cost of gestation estimated for humpback whales of similar length. In Southeast Alaska (SEAK), maternal body volume (BV) increased by just 0.015 m3 or 14.54 kg day-1 (367 MJ day-1). Further, SEAK lactating females showed the slowest rates of growth in body width and condition over a 150 day period compared to non-lactating females. Maternal investment in calf growth correlated with both maternal length and body condition, with larger females producing larger, faster-growing calves. In HI, however, the ratio between maternal BV lost and calf BV gained (conversion efficiency) was relatively low compared to other mammals.
Collapse
Affiliation(s)
- Martin van Aswegen
- Marine Mammal Research Program, Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA
- Alaska Whale Foundation, Petersburg, Alaska, USA
| | - Andy Szabo
- Alaska Whale Foundation, Petersburg, Alaska, USA
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA
| | - Jens J Currie
- Marine Mammal Research Program, Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA
- Pacific Whale Foundation, Maui, Hawai'i, USA
| | - Stephanie H Stack
- Pacific Whale Foundation, Maui, Hawai'i, USA
- Southern Ocean Persistent Organic Pollutants Program, School of Environment and Science, Griffith University, Queensland, Australia
| | - Lewis Evans
- Marine Mammal Research Program, Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA
| | | | - Janet Neilson
- Glacier Bay National Park and Preserve, Gustavus, Alaska, USA
| | | | - Kelly Cates
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, USA
| | - Debbie Steel
- Marine Mammal Institute, Oregon State University, Newport, Oregon, USA
| | - Lars Bejder
- Marine Mammal Research Program, Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Zhao L, Zhang J, He J, Guo M, Wu H, Ma X, Yu Z, Yong Y, Li Y, Ju X, Liu X. Network pharmacology analysis of the regulatory effects and mechanisms of ALAE on sow reproduction in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118525. [PMID: 38992402 DOI: 10.1016/j.jep.2024.118525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Reproductive ability of sows is a primary element influencing the development of pig farming. Herbal extracts of Angelica sinensis (Oliv.) Diels, Astragalus mongholicus Bunge, Eucommia ulmoides Oliv., and Polypodium glycyrrhiza D.C.Eaton showed effects on improvement of reproduction in sows. AIMS OF THE STUDY To investigate the mechanism of the treatment effects by a compound of these four Chinese herbs in a 1:1:1:1 ratio (ALAE) on endometriosis, endometritis, uterine adhesion, intrauterine growth retardation, pre-eclampsia, and its enhancement of reproductive efficiency in sows. MATERIALS AND METHODS Active components of ALAE were identified by using ultra-performance liquid chromatography-mass spectrometry analysis and network pharmacology. Then we used the results to construct a visualization network. Key targets and pathways of ALAE involved in sow reproduction improvement were validated in sow animals and porcine endometrial epithelial cells (PEECs). RESULTS A total of 62 active compounds were found in ALAE (41 in Polypodium glycyrrhiza D.C.Eaton, 5 in Astragalus mongholicus Bunge, 11 in Eucommia ulmoides Oliv., 5 in Angelica sinensis (Oliv.) Diels) with 563 disease-related targets (e.g. caspase-3, EGFR, IL-6) involved in EGFR tyrosine kinase inhibitor resistance, PI3K-AKT, and other signaling pathways. Molecular docking results indicated GC41 (glabridin), GC18 (medicarpin), EGFR and CCND1 are possible key components and target proteins related to reproductive improvement in sows. In PEECs, EGFR expression decreased at the mRNA and protein levels by three doses (160, 320, and 640 μg/mL) of ALAE. The phosphorylation of downstream pathway PI3K-AKT1 was enhanced. The expression of inflammatory factors (IL-6, IL-1β), ESR1 and caspase-3 decreased through multiple pathways. Additionally, the expression levels of an anti-inflammatory factor (IL-10), angiogenesis-related factors (MMP9, PIGF, PPARγ, IgG), and placental junction-related factors (CTNNB1, occludin, and claudin1) increased. Furthermore, the total born number of piglets, the number of live and healthy litters were significantly increased. The number of stillbirths decreased by ALAE treatment in sow animals. CONCLUSIONS Dministration of ALAE significantly increased the total number of piglets born, the numbers of live and healthy litters and decreased the number of stillbirths through improving placental structure, attenuating inflammatory response, modulating placental angiogenesis and growth factor receptors in sows. The improvement of reproductive ability may be related to activation of the EGFR-PI3K-AKT1 pathway in PEECs. Moreover, ALAE maybe involved in modulation of estrogen receptors, apoptotic factors, and cell cycle proteins.
Collapse
Affiliation(s)
- Linlu Zhao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Jin Zhang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Jieyi He
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Mengru Guo
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Huining Wu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Xingbin Ma
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Zhichao Yu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Youquan Li
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Xiaoxi Liu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| |
Collapse
|
7
|
Gu F, Hou L, Gao K, Wen X, Mi S, Qin G, Huang L, Wu Q, Yang X, Wang L, Jiang Z, Xiao H. Effects of Dietary Net Energy Concentration on Reproductive Performance, Immune Function, Milk Composition, and Gut Microbiota in Primiparous Lactating Sows. Animals (Basel) 2024; 14:3044. [PMID: 39457974 PMCID: PMC11504852 DOI: 10.3390/ani14203044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
This study aimed to determine the optimal dietary net energy concentration for the reproductive performance, immune function, milk composition, and gut microbiota of primiparous sows during lactation. Forty primiparous lactating sows (Landrace × Yorkshire) with similar body backfat thicknesses were randomly allocated into five treatment groups and fed diets with different dietary net energy concentrations of 10.05 MJ/kg, 10.47 MJ/kg, 10.89 MJ/kg, 11.30 MJ/kg, and 11.72 MJ/kg. The results showed that there were no differences in the performance of piglets, while there was a decrease in the daily feed intake of sows (p = 0.079, linear) as dietary net energy concentration increased. With the increasing dietary net energy concentration, the plasma insulin levels of sows increased (p < 0.01, linear), the plasma glucose levels tended to increase (p = 0.074, linear), and the blood urea nitrogen levels tended to decrease (p = 0.063, linear). Moreover, the plasma total superoxide dismutase activity of sows increased (p < 0.05, quadratic) and the plasma malondialdehyde content of sows decreased (p < 0.05, quadratic) by increasing the dietary net energy concentration. Interestingly, with the increase in dietary net energy concentration, the plasma immunoglobulin M content of sows increased, the milk immunoglobulin M, immunoglobulin G, immunoglobulin A and the percentage of milk fat increased (p < 0.05, linear), and the milk secretory immunoglobulin A content also increased (p < 0.05, linear and quadratic). The milk immunoglobulins and milk fat content of sows fed with net energy concentration of 11.72 MJ/kg were highest. Moreover, there were significant differences in the α-diversity, β-diversity, and relative abundance of gut microbiota in sows fed with different dietary net energy concentrations. At the phylum level, Spirochaetota and Bacteroidota in the gut microbiota of sows were mainly affected by increasing the dietary net energy concentration. Furthermore, the correlation analysis showed that milk immunoglobulin content had a significant negative correlation with the relative abundance of Bacteroidota, and plasma malondialdehyde content also had a significant negative correlation with the relative abundance of Spirochaetota. In summary, these results suggest that increasing the dietary net energy concentration to 11.72 MJ/kg can increase immunological substances in milk, improve milk quality, and alter the composition of gut microbiota in primiparous lactating sows.
Collapse
Affiliation(s)
- Fang Gu
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Dafeng 1st Street, Guangzhou 510640, China; (F.G.); (K.G.); (X.W.); (L.H.); (Q.W.); (X.Y.); (L.W.)
| | - Lei Hou
- Guangxi State Farms Yongxin Animal Husbandry Group Co., Ltd., No. 135 Qixing Road, Nanning 530022, China; (L.H.); (S.M.); (G.Q.)
| | - Kaiguo Gao
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Dafeng 1st Street, Guangzhou 510640, China; (F.G.); (K.G.); (X.W.); (L.H.); (Q.W.); (X.Y.); (L.W.)
| | - Xiaolu Wen
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Dafeng 1st Street, Guangzhou 510640, China; (F.G.); (K.G.); (X.W.); (L.H.); (Q.W.); (X.Y.); (L.W.)
| | - Shuyun Mi
- Guangxi State Farms Yongxin Animal Husbandry Group Co., Ltd., No. 135 Qixing Road, Nanning 530022, China; (L.H.); (S.M.); (G.Q.)
| | - Guoxi Qin
- Guangxi State Farms Yongxin Animal Husbandry Group Co., Ltd., No. 135 Qixing Road, Nanning 530022, China; (L.H.); (S.M.); (G.Q.)
| | - Lijun Huang
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Dafeng 1st Street, Guangzhou 510640, China; (F.G.); (K.G.); (X.W.); (L.H.); (Q.W.); (X.Y.); (L.W.)
| | - Qiwen Wu
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Dafeng 1st Street, Guangzhou 510640, China; (F.G.); (K.G.); (X.W.); (L.H.); (Q.W.); (X.Y.); (L.W.)
| | - Xuefen Yang
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Dafeng 1st Street, Guangzhou 510640, China; (F.G.); (K.G.); (X.W.); (L.H.); (Q.W.); (X.Y.); (L.W.)
| | - Li Wang
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Dafeng 1st Street, Guangzhou 510640, China; (F.G.); (K.G.); (X.W.); (L.H.); (Q.W.); (X.Y.); (L.W.)
| | - Zongyong Jiang
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Dafeng 1st Street, Guangzhou 510640, China; (F.G.); (K.G.); (X.W.); (L.H.); (Q.W.); (X.Y.); (L.W.)
| | - Hao Xiao
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Dafeng 1st Street, Guangzhou 510640, China; (F.G.); (K.G.); (X.W.); (L.H.); (Q.W.); (X.Y.); (L.W.)
| |
Collapse
|
8
|
Lagoda ME, O’Driscoll K, Galli MC, Cerón JJ, Ortín-Bustillo A, Marchewka J, Boyle LA. Indicators of improved gestation housing of sows. Part II: Effects on physiological measures, reproductive performance and health of the offspring. Anim Welf 2023; 32:e52. [PMID: 38487422 PMCID: PMC10936399 DOI: 10.1017/awf.2023.48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/08/2023] [Accepted: 06/22/2023] [Indexed: 03/17/2024]
Abstract
Prenatal stress is the mechanism through which poor welfare of pregnant sows has detrimental effects on the health and resilience of their piglets. We compared two gestation housing systems (IMPROVED versus [conventional] CONTROL) in terms of sow stress and welfare indicators and sought to determine whether potential benefits to the sows would translate into improved offspring health. Sows were mixed into 12 stable groups (six groups per treatment, 20 sows per group) 29 days post-service in pens with free-access, full-length individual feeding/lying-stalls. CONTROL pens had fully slatted concrete floors, with two blocks of wood and two chains suspended in the group area. IMPROVED pens were the same but with rubber mats and manila rope in each stall, and straw provided in three racks in the group area. Saliva was collected from each sow on day 80 of pregnancy and analysed for haptoglobin. Hair cortisol was measured in late gestation. Sows' right and left eyes were scored for tear staining in mid lactation and at weaning. Numbers of piglets born alive, dead, mummified, and total born were recorded. Piglets were weighed and scored for vitality and intra-uterine growth restriction (IUGR) at birth. Presence of diarrhoea in farrowing pens was scored every second day throughout the suckling period. IMPROVED sows had lower haptoglobin levels and tear-stain scores during lactation. IMPROVED sows produced fewer mummified piglets, and these had significantly lower IUGR scores, and scored lower for diarrhoea than piglets of CONTROL sows. Hence, improving sow welfare during gestation improved the health and performance of their offspring.
Collapse
Affiliation(s)
- Martyna E Lagoda
- Pig Development Department, Animal & Grassland Research & Innovation Centre, Teagasc Moorepark, Fermoy, Co Cork, Ireland
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Department of Animal Behaviour, ul. Postępu 36A, Jastrzębiec 05-552
| | - Keelin O’Driscoll
- Pig Development Department, Animal & Grassland Research & Innovation Centre, Teagasc Moorepark, Fermoy, Co Cork, Ireland
| | - Maria C Galli
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’Università 16, 35020, Legnaro (PD), Italy
| | - José J Cerón
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo s/n, 30100Murcia, Spain
| | - Alba Ortín-Bustillo
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo s/n, 30100Murcia, Spain
| | - Joanna Marchewka
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Department of Animal Behaviour, ul. Postępu 36A, Jastrzębiec 05-552
| | - Laura A Boyle
- Pig Development Department, Animal & Grassland Research & Innovation Centre, Teagasc Moorepark, Fermoy, Co Cork, Ireland
| |
Collapse
|
9
|
Chen Y, Rooney H, Dold C, Bavaro S, Tobin J, Callanan MJ, Brodkorb A, Lawlor PG, Giblin L. Membrane filtration processing of infant milk formula alters protein digestion in young pigs. Food Res Int 2023; 166:112577. [PMID: 36914340 DOI: 10.1016/j.foodres.2023.112577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/05/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Reducing heat treatment (HT) during processing of infant milk formula (IMF) is desirable to produce a product that more closely resembles breast milk. By employing membrane filtration (MEM), we produced an IMF (60:40 whey to casein ratio) at pilot scale (250 kg). MEM-IMF had a significantly higher content of native whey (59.9 %) compared to HT-IMF (4.5 %) (p < 0.001). Pigs, at 28 days old, were blocked by sex, weight and litter origin and assigned to one of two treatments (n = 14/treatment): (1) starter diet containing 35 % of HT-IMF powder or (2) starter diet containing 35 % of MEM-IMF powder for 28 days. Body weight and feed intake were recorded weekly. Pigs at day 28 post weaning were sacrificed 180 min after their final feeding, for the collection of gastric, duodenal, jejunum and ileal contents (n = 10/treatment). MEM-IMF diet resulted in more water-soluble proteins and higher levels of protein hydrolysis in the digesta at various gut locations compared to HT-IMF (p < 0.05). In the jejunal digesta, a higher concentration of free amino acids were present post MEM-IMF consumption (247 ± 15 µmol g-1 of protein in digesta) compared to HT-IMF (205 ± 21 µmol g-1 of protein). Overall, average daily weight gain, average dairy feed intake and feed conversion efficiency were similar for pigs fed either MEM-IMF or HT-IMF diets, but differences and trends to difference of these indicators were determined in particular intervention periods. In conclusion, reducing heat treatment during processing of IMF influenced protein digestion and revealed minor effects on growth parameters providing in vivo evidence that babies who are fed with IMF processed by MEM are likely to have different protein digestion kinetics but minimal effect on overall growth trajectories as babies fed IMF processed by traditional thermal processing.
Collapse
Affiliation(s)
- Yihong Chen
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland; Department of Biological Sciences, Munster Technological University, T12 P928 Co. Cork, Ireland
| | - Hazel Rooney
- Teagasc Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - Cathal Dold
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - Simona Bavaro
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland; ISPA-CNR, Institute of Sciences of Food Production of National Research Council of Italy, Via Amendola, 22/O, 70126 Bari, Italy
| | - John Tobin
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - Michael J Callanan
- Department of Biological Sciences, Munster Technological University, T12 P928 Co. Cork, Ireland
| | - André Brodkorb
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - Peadar G Lawlor
- Teagasc Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland.
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| |
Collapse
|
10
|
Zhe L, Krogh U, Lauridsen C, Nielsen MO, Fang Z, Theil PK. Impact of dietary fat levels and fatty acid composition on milk fat synthesis in sows at peak lactation. J Anim Sci Biotechnol 2023; 14:42. [PMID: 36899401 PMCID: PMC9999577 DOI: 10.1186/s40104-022-00815-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/02/2022] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Dietary fat is important for energy provision and immune function of lactating sows and their progeny. However, knowledge on the impact of fat on mammary transcription of lipogenic genes, de novo fat synthesis, and milk fatty acid (FA) output is sparse in sows. This study aimed to evaluate impacts of dietary fat levels and FA composition on these traits in sows. Forty second-parity sows (Danish Landrace × Yorkshire) were assigned to 1 of 5 dietary treatments from d 108 of gestation until weaning (d 28 of lactation): low-fat control diet (3% added animal fat); or 1 of 4 high-fat diets with 8% added fat: coconut oil (CO), fish oil (FO), sunflower oil (SO), or 4% octanoic acid plus 4% FO (OFO). Three approaches were taken to estimate de novo milk fat synthesis from glucose and body fat. RESULTS Daily intake of FA was lowest in low-fat sows within fat levels (P < 0.01) and in OFO and FO sows within high-fat diets (P < 0.01). Daily milk outputs of fat, FA, energy, and FA-derived carbon reflected to a large extent the intake of those. On average, estimates for de novo fat synthesis were 82 or 194 g/d from glucose according to method 1 or 2 and 255 g de novo + mobilized FA/d according to method 3. The low-fat diet increased mammary FAS expression (P < 0.05) and de novo fat synthesis (method 1; P = 0.13) within fat levels. The OFO diet increased de novo fat synthesis (method 1; P < 0.05) and numerically upregulated mammary FAS expression compared to the other high-fat diets. Across diets, a daily intake of 440 g digestible FA minimized milk fat originating from glucose and mobilized body fat. CONCLUSIONS Sows fed diets with low-fat or octanoic acid, through upregulating FAS expression, increased mammary de novo fat synthesis whereas the milk FA output remained low in sows fed the low-fat diet or high-fat OFO or FO diets, indicating that dietary FA intake, dietary fat level, and body fat mobilization in concert determine de novo fat synthesis, amount and profiles of FA in milk.
Collapse
Affiliation(s)
- Li Zhe
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China.,Department of Animal and Veterinary Sciences, Aarhus University, Foulum, Dk-8830, Tjele, Denmark
| | - Uffe Krogh
- Department of Animal and Veterinary Sciences, Aarhus University, Foulum, Dk-8830, Tjele, Denmark
| | - Charlotte Lauridsen
- Department of Animal and Veterinary Sciences, Aarhus University, Foulum, Dk-8830, Tjele, Denmark.
| | - Mette Olaf Nielsen
- Department of Animal and Veterinary Sciences, Aarhus University, Foulum, Dk-8830, Tjele, Denmark
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China.
| | - Peter Kappel Theil
- Department of Animal and Veterinary Sciences, Aarhus University, Foulum, Dk-8830, Tjele, Denmark
| |
Collapse
|
11
|
Llamas-Moya S, Duong T, Petersen GI, Bertram MJ, Kitt SJ. Effect of a multicarbohydrase containing α-galactosidase in sow lactating diets with varying energy density. Transl Anim Sci 2022; 6:txac159. [PMID: 36601060 PMCID: PMC9801408 DOI: 10.1093/tas/txac159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022] Open
Abstract
Sow productivity improvements are associated with high energetic demand due to increasing prolificity. The reproductive life and longevity of sows, and the readiness for weaning of the offspring may be impaired when sows loose significant body weight (BW) during lactation. The impact of a multicarbohydrase containing α-galactosidase on a low energy dense lactation diet was evaluated in this study. Two-hundred and eight sows (208 ± 25.2 kg) were blocked by parity and BW to one of four treatments, in which a corn-soybean meal diet was formulated to have varying levels of added fat (0, 1.5%, and 3%) to titrate an energy density model. A fourth treatment replicated the 0% added fat formulation with enzyme supplementation at 250 g/tonne. Sows were weighed individually on entry, post-farrow (by calculation) and at weaning. Daily feed intakes (ADFI) and caloric intake were used for calculation of sow feed efficiency (FE) and caloric efficiency. Litter performance was characterized at birth, and size was standardized within 24h of farrow and within treatment to ensure uniform litter sizes. Average wean weight and pre-weaning mortality were determined. Piglets were weighted individually to study litter weight distribution. Data was analyzed as a randomized completely block design, using sow as the experimental unit, treatment as the main effect, and standardized average weight and litter sizes as covariates where appropriate. Although sows fed a multicarbohydrase had lower standardized litter size (P < 0.001), average wean weight was higher in this group and equivalent to the 3% added fat treatment. Enzyme supplementation tended to reduce the proportion of light weight pigs (BW < 4.1kg) within the litter, when compared with the 0% added fat diet (P < 0.1). The multicarbohydrase tended to increased sow ADFI (P < 0.10), although sows from all treatments had equivalent caloric intakes during lactation (P > 0.1). Enzyme supplementation yielded significant improvements in sow FE (P < 0.01), similar to the 3% added fat group. Thus, the carbohydrase degrading enzyme tested in this study improved the efficiency of sows, while increasing average wean weights of the offspring, suggesting an improvement in nutrient digestion and/or metabolic efficiency from typical lactation diets.
Collapse
Affiliation(s)
| | - Tri Duong
- Kerry, Global Technology and Innovation Centre, Naas, Co. Kildare W91 W923, Ireland
| | | | | | | |
Collapse
|
12
|
Wu DY, Feng L, Hao XY, Huang SB, Wu ZF, Ma S, Yin YL, Tan CQ. Effects of dietary supplementation of gestating sows with adenosine 5 '-monophosphate or adenosine on placental angiogenesis and vitality of their offspring. J Anim Sci 2022; 100:6628671. [PMID: 35781577 DOI: 10.1093/jas/skac237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/01/2022] [Indexed: 11/12/2022] Open
Abstract
Our previous study found that dietary nucleotide supplementation, including adenosine 5 '-monophosphate (AMP), could increase AMP content in sow milk and promote piglet growth, but its effects on placental efficiency and piglet vitality remains unknown. This experiment aimed to investigate the effects of dietary AMP or its metabolite adenosine (ADO) supplementation on sow reproductive performance and placental angiogenesis. A total of 135 sows with a similar farrowing time were blocked by backfat and body weight (BW) at day 65 of gestation, and assigned to 1 of 3 dietary treatment groups (n = 45 per treatment): basal diet, basal diet supplemented with 0.1% AMP, or 0.1% ADO, respectively. Placental analysis and the characteristics of sows and piglets unveiled that compared with control (CON) group, AMP or ADO supplementation could improve sow placental efficiency (P<0.05) and newborn piglet vitality (P<0.05), increase piglet birth weight (P<0.05), and reduce stillbirth rate (P<0.05). More importantly, AMP or ADO supplementation could increase the contents of AMP, ADO, and their metabolites in placentae (P<0.05). Meanwhile, AMP or ADO supplementation could also increase placental vascular density (P<0.05) and the expression of vascular endothelial growth factor A (P<0.05), as well as promote the migration and tube formation of porcine iliac artery endothelial cells (P<0.05). Overall, maternal dietary AMP or ADO supplementation could increase their contents in the placenta, thereby improving placental angiogenesis and neonatal piglet vitality.
Collapse
Affiliation(s)
- D Y Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - L Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - X Y Hao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - S B Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Z F Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - S Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Y L Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - C Q Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
13
|
The Impact of Enhancing Diet Quality or Dietary Supplementation of Flavor and Multi-Enzymes on Primiparous Lactating Sows. Animals (Basel) 2022; 12:ani12121493. [PMID: 35739830 PMCID: PMC9219450 DOI: 10.3390/ani12121493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 01/10/2023] Open
Abstract
This study was aimed to explore how a high-quality diet or a flavor plus multi-enzyme diet affects the feed intake, nutrient digestibility and antioxidation capacity of lactating sows and the growth of their progeny. Thirty primiparous sows were randomly assigned to three treatments from d 2 of lactation until weaning (d 21): control (CON), with a basal diet; high quality (HQ), with 200 kcal/kg higher net energy than CON; or the CON diet supplemented with 500 mg/kg flavor and 100 mg/kg multi-enzymes (F + E). Sows fed with the HQ or F + E diets improved piglets’ live weight (p < 0.05) and average daily weight gain (p < 0.10), litter weight gain (p < 0.10) and piglet growth to milk yield ratio (p < 0.10). Compared with CON, the HQ and F + E groups increased the digestibility of ether extract, ash, neutral detergent fiber, crude fiber and phosphorus (p < 0.10), and the HQ group also increased dry matter, gross energy, crude protein, acid detergent fiber and energy intake (p < 0.05). Compared with CON, the F + E group decreased serum urea nitrogen and aspartate aminotransferase (p < 0.05) and enhanced superoxide dismutase, catalase and glutathione peroxidase, but it decreased malondialdehyde in milk supernatant (p < 0.05).
Collapse
|
14
|
Muller TL, Hewitt RJE, Plush KJ, Souza DND, Pluske JR, Miller DW, van Barneveld RJ. Does the relationship between sow body composition change in lactation and re-breeding success still exist? ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Kroeske K, Arévalo Sureda E, Uerlings J, Deforce D, Van Nieuwerburgh F, Heyndrickx M, Millet S, Everaert N, Schroyen M. The Impact of Maternal and Piglet Low Protein Diet and Their Interaction on the Porcine Liver Transcriptome around the Time of Weaning. Vet Sci 2021; 8:233. [PMID: 34679062 PMCID: PMC8540021 DOI: 10.3390/vetsci8100233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 02/07/2023] Open
Abstract
Maternal diet during early gestation affects offspring phenotype, but it is unclear whether maternal diet during late gestation influences piglet metabolism. We evaluated the impact of two dietary protein levels in sow late gestation diet and piglet nursery diet on piglet metabolism. Diets met or exceeded the crude protein and amino acid requirements. Sows received either 12% (Lower, L) or 17% (Higher, H) crude protein (CP) during the last five weeks of gestation, and piglets received 16.5% (L) or 21% (H) CP from weaning at age 3.5 weeks. This resulted in a 2 × 2 factorial design with four sow/piglet diet treatment groups: HH and LL (match), HL and LH (mismatch). Piglet hepatic tissues were sampled and differentially expressed genes (DEGs) were determined by RNA sequencing. At age 4.5 weeks, 25 genes were downregulated and 22 genes were upregulated in the mismatch compared to match groups. Several genes involved in catabolic pathways were upregulated in the mismatch compared to match groups, as were genes involved in lipid metabolism and inflammation. The results show a distinct interaction effect between maternal and nursery diets, implying that sow late gestation diet could be used to optimize piglet metabolism.
Collapse
Affiliation(s)
- Kikianne Kroeske
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium; (K.K.); (E.A.S.); (J.U.); (N.E.)
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Melle, Belgium; (M.H.); (S.M.)
| | - Ester Arévalo Sureda
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium; (K.K.); (E.A.S.); (J.U.); (N.E.)
| | - Julie Uerlings
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium; (K.K.); (E.A.S.); (J.U.); (N.E.)
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; (D.D.); (F.V.N.)
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; (D.D.); (F.V.N.)
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Melle, Belgium; (M.H.); (S.M.)
- Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, 9820 Merelbeke, Belgium
| | - Sam Millet
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Melle, Belgium; (M.H.); (S.M.)
- Department of Nutrition, Genetics and Ethology, Ghent University, 9820 Merelbeke, Belgium
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium; (K.K.); (E.A.S.); (J.U.); (N.E.)
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium; (K.K.); (E.A.S.); (J.U.); (N.E.)
| |
Collapse
|
16
|
In-Feed Supplementation of Resin Acid-Enriched Composition Modulates Gut Microbiota, Improves Growth Performance, and Reduces Post-Weaning Diarrhea and Gut Inflammation in Piglets. Animals (Basel) 2021; 11:ani11092511. [PMID: 34573477 PMCID: PMC8472311 DOI: 10.3390/ani11092511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
The weaning process represents a delicate phase for piglets, and is often characterized by lower feed intake, lower weight gain, diarrhea, and ultimately increased mortality. We aimed to determine the effects of RAC supplementation in diets on improving piglet growth and vitality, reducing post-weaning diarrhea, and enhancing gut health. In a 2 × 2 × 2 factorial experiment, we selected forty sows and their piglets. Piglets were followed until seven weeks of age. There were no significant differences found between RAC treated and control piglets until weaning (p = 0.26). However, three weeks after weaning, RAC treated piglets had higher body weight and average daily growth (ADG) than the control piglets (p = 0.003). In addition, the piglets that received RAC after weaning, irrespective of mother or prior creep feed treatment, had lower post-weaning diarrhea (PWD) and fecal myeloperoxidase (MPO) level than control piglets. Gut microbiota analysis in post-weaning piglets revealed that RAC supplementation significantly increased Lachnospiraceae_unclassified, Blautia, Butyricicoccus, Gemmiger and Holdemanella, and decreased Bacteroidales_unclassified. Overall, RAC supplementation to piglets modulated post-weaning gut microbiota, improved growth performance after weaning, reduced post-weaning diarrhea and reduced fecal myeloperoxidase levels. We therefore consider RAC to be a potential natural feed supplement to prevent enteric infections and improve growth performance in weaning piglets.
Collapse
|
17
|
Liu X, Song P, Yan H, Zhang L, Wang L, Zhao F, Gao H, Hou X, Shi L, Li B, Wang L. A Comparison of the Behavior, Physiology, and Offspring Resilience of Gestating Sows When Raised in a Group Housing System and Individual Stalls. Animals (Basel) 2021; 11:ani11072076. [PMID: 34359203 PMCID: PMC8300341 DOI: 10.3390/ani11072076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary The housing patterns of gestating sows affect their health and welfare. In this study, the differences between behavior and stress hormone levels were assessed when sows were housed in a group housing system compared to individual stalls; in addition, the disease resistance and resilience of their piglets were compared. In our investigation, the group-housed sows showed more exploratory behavior, less vacuum chewing, less sitting behavior, and lower stress hormone levels throughout pregnancy. A lipopolysaccharide (LPS) injection test revealed that the offspring of group-housed sows showed better resistance and resilience to disease. Therefore, the gestating sows raised in a group housing system and their piglets are healthier and have improved welfare. Our results show that a group housing system provides higher welfare standards, with conditions that are more suitable for gestating sows in modern pig production. Abstract Being in a confined environment causes chronic stress in gestating sows, which is detrimental for sow health, welfare and, consequently, offspring physiology. This study assessed the health and welfare of gestating sows housed in a group housing system compared to individual gestation stalls. After pregnancy was confirmed, experimental sows were divided randomly into two groups: the group housing system (GS), with the electronic sow feeding (ESF) system; or individual stall (IS). The behavior of sows housed in the GS or IS was then compared; throughout pregnancy, GS sows displayed more exploratory behavior, less vacuum chewing, and less sitting behavior (p < 0.05). IS sows showed higher stress hormone levels than GS sows. In particular, at 41 days of gestation, the concentration of the adrenocorticotropic hormone (ACTH) and adrenaline (A) in IS sows was significantly higher than that of GS sows, and the A level of IS sows remained significantly higher at 71 days of gestation (p < 0.01). The lipopolysaccharide (LPS) test was carried out in the weaned piglets of the studied sows. Compared with the offspring of gestating sows housed in GS (PG) or IS (PS), PG experienced a shorter period of high temperature and showed a quicker return to the normal state (p < 0.05). Additionally, their lower levels of stress hormone (p < 0.01) suggest that PG did not suffer from as much stress as PS. These findings suggested that gestating sows housed in GS were more able to carry out their natural behaviors and, therefore, had lower levels of stress and improved welfare. In addition, PG also showed better disease resistance and resilience. These results will provide a research basis for the welfare and breeding of gestating sows.
Collapse
Affiliation(s)
- Xin Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (P.S.); (H.Y.); (L.Z.); (L.W.); (F.Z.); (H.G.); (X.H.); (L.S.)
| | - Pengkang Song
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (P.S.); (H.Y.); (L.Z.); (L.W.); (F.Z.); (H.G.); (X.H.); (L.S.)
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Hua Yan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (P.S.); (H.Y.); (L.Z.); (L.W.); (F.Z.); (H.G.); (X.H.); (L.S.)
| | - Longchao Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (P.S.); (H.Y.); (L.Z.); (L.W.); (F.Z.); (H.G.); (X.H.); (L.S.)
| | - Ligang Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (P.S.); (H.Y.); (L.Z.); (L.W.); (F.Z.); (H.G.); (X.H.); (L.S.)
| | - Fuping Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (P.S.); (H.Y.); (L.Z.); (L.W.); (F.Z.); (H.G.); (X.H.); (L.S.)
| | - Hongmei Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (P.S.); (H.Y.); (L.Z.); (L.W.); (F.Z.); (H.G.); (X.H.); (L.S.)
| | - Xinhua Hou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (P.S.); (H.Y.); (L.Z.); (L.W.); (F.Z.); (H.G.); (X.H.); (L.S.)
| | - Lijun Shi
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (P.S.); (H.Y.); (L.Z.); (L.W.); (F.Z.); (H.G.); (X.H.); (L.S.)
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
- Correspondence: (B.L.); (L.W.); Tel.: +86-010-6281-8771 (L.W.)
| | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (P.S.); (H.Y.); (L.Z.); (L.W.); (F.Z.); (H.G.); (X.H.); (L.S.)
- Correspondence: (B.L.); (L.W.); Tel.: +86-010-6281-8771 (L.W.)
| |
Collapse
|
18
|
Kroeske K, Everaert N, Heyndrickx M, Arévalo Sureda E, Schroyen M, Millet S. Interaction of CP levels in maternal and nursery diets, and its effect on performance, protein digestibility, and serum urea levels in piglets. Animal 2021; 15:100266. [PMID: 34116462 DOI: 10.1016/j.animal.2021.100266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/24/2021] [Accepted: 04/29/2021] [Indexed: 12/22/2022] Open
Abstract
Reduced protein levels in nursery diets have been associated with a lower risk of postweaning diarrhea, but the interaction with CP levels in maternal diet on the performance of the offspring remains unclear. The objective of this study was to determine the effect of protein content in sow gestation and piglet nursery diets on the performance of the piglets until slaughter. This was studied in a 2 × 2 factorial trial (35 sows, 209 piglets), with higher or lower (H or L) dietary CP in sow diets (168 vs 122 g CP/kg) during late gestation. A standard lactation feed was provided for all sows (160 g CP/kg). For both sow treatments, half of the litters received a higher or lower CP in the piglet nursery diet (210 vs 166 g CP/kg). This resulted in four possible treatment combinations: HH, HL, LH and LL, with sow treatment as first and piglet treatment as second letter. For each phase, all diets were iso-energetic and had a similar level of essential amino acids. Ps*p is the p-value for the interaction effect between sow and piglet treatment. In the nursery phase (3.5-9 weeks of age), a tendency toward interaction between piglet and sow treatments with feed efficiency (Ps*p = 0.08) was observed with HH having the highest gain:feed ratio (G:F) (0.74 ± 0.01), LH the lowest (0.70 ± 0.01) and the other two groups intermediate. In the growing-finishing phase, an interaction was observed between the piglet and sow diets with decreased G:F for LH (Ps*p = 0.04) and a tendency toward interaction with increased daily feed intake for LH (Ps*p = 0.07). The sow diet showed a tendency toward a long-lasting effect on the dressing percentage and meat thickness of the offspring, which was higher for the progeny of H sows (Ps < 0.01 and Ps = 0.02, respectively). At 23 weeks, serum urea concentrations tended to be lower for the HH and LL groups (Ps*p = 0.07). Fecal consistency scores were higher at day 10-day 14 after weaning for piglets from L sows (Ps = 0.03 and Ps < 0.01, respectively). At day 7 after weaning, fecal consistency score was higher for piglets fed the higher protein diet (Pp < 0.01). At 8 weeks of age, the apparent total tract digestibility of CP (ATTDCP) interacted between piglet and sow diet (Ps*p = 0.02), with HH showing the highest digestibility values. In conclusion, the protein levels in sow late-gestation and piglet nursery diets interacted with feed efficiency, ATTDCP and serum urea concentrations in the nursery phase.
Collapse
Affiliation(s)
- K Kroeske
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Melle, Belgium; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium
| | - N Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium
| | - M Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Melle, Belgium; Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, Merelbeke, Belgium
| | - E Arévalo Sureda
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium
| | - M Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium
| | - S Millet
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Melle, Belgium; Department of Nutrition, Genetics and Ethology, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
19
|
Lagoda ME, O'Driscoll K, Marchewka J, Foister S, Turner SP, Boyle LA. Associations between skin lesion counts, hair cortisol concentrations and reproductive performance in group housed sows. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Hong J, Fang LH, Jeong JH, Kim YY. Effects of L-Arginine Supplementation during Late Gestation on Reproductive Performance, Piglet Uniformity, Blood Profiles, and Milk Composition in High Prolific Sows. Animals (Basel) 2020; 10:E1313. [PMID: 32751622 PMCID: PMC7459627 DOI: 10.3390/ani10081313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 11/16/2022] Open
Abstract
This study was conducted to evaluate the effects of L-arginine supplementation levels during late gestation on reproductive performance and piglet uniformity in high prolific sows. A total of 60 F1 multiparous sows (Yorkshire × Landrace), with an average body weight of 238.2 kg, were allotted to one of three treatment groups in a completely randomized design. The dietary treatments were divided by the supplementation level of arginine during the late-gestation period, from day 70 to farrowing, as follows-(1) CON: corn-soybean meal-based basal diet (Arg 0.72%), (2) Arg10: basal diet + L-Arg 0.28% (Arg 1.0%), and (3) Arg15: basal diet + L-Arg 0.79% (Arg 1.5%). The same lactation diet was provided ad libitum to sows during the lactation period. There were no significant differences in body weight and backfat thickness in sows during late-gestation and lactation. Dietary arginine levels had no significant influences on the number of total born, stillbirth, and born alive. However, increasing inclusion level of L-arginine supplementation tended to increase (p < 0.10) alive litter weight linearly, and also linearly increased (p < 0.05) the piglet weight gain and litter weight gain during the lactation period. In piglet uniformity, the standard deviation of piglet birth weight (p < 0.05) and the coefficient of variation for piglet birth weight (p < 0.10) increased linearly, as dietary arginine levels increased in the late gestation period. Increasing L-arginine supplementation to late gestating sows linearly increased (p < 0.05) the blood concentrations of arginine and ornithine at day 90 and day 110 of gestation. On the other hand, dietary arginine levels in late gestation did not affect the blood parameters related to the nitrogen utilization. Increasing dietary arginine levels for the late gestating sows did not affect the milk composition for colostrum and milk at day 21 of lactation. In conclusion, the inclusion level of arginine in the diet for late gestating sows, by up to 1.5%, could improve the alive litter weight at birth and litter weight gain during lactation, whereas the piglet uniformity at birth was decreased due to the increase of survival for fetuses with light birth weight.
Collapse
Affiliation(s)
- Jinsu Hong
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea; (J.H.); (L.H.F.); (J.H.J.)
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | - Lin Hu Fang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea; (J.H.); (L.H.F.); (J.H.J.)
| | - Jae Hark Jeong
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea; (J.H.); (L.H.F.); (J.H.J.)
| | - Yoo Yong Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea; (J.H.); (L.H.F.); (J.H.J.)
| |
Collapse
|
21
|
Hu C, Yang Y, Deng M, Yang L, Shu G, Jiang Q, Zhang S, Li X, Yin Y, Tan C, Wu G. Placentae for Low Birth Weight Piglets Are Vulnerable to Oxidative Stress, Mitochondrial Dysfunction, and Impaired Angiogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8715412. [PMID: 32566107 PMCID: PMC7267862 DOI: 10.1155/2020/8715412] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/21/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Intrauterine growth restriction (IUGR) is associated with fetal mortality and morbidity. One of the most common causes of IUGR is placental insufficiency, including placental vascular defects, and mitochondrial dysfunction. In addition, a high level of oxidative stress induces placental vascular lesions. Here, we evaluated the oxidative stress status, mitochondrial function, angiogenesis, and nutrient transporters in placentae of piglets with different birth weights: <500 g (L), 500-600 g (LM), 600-700 g (M), and >700 g (H). Results showed that placentae from the L group had higher oxidative damage, lower adenosine triphosphate and citrate synthase levels, and lower vascular density, compared to those from the other groups. Protein expression of angiogenic markers, including vascular endothelial cadherin, vascular endothelial growth factor A, and platelet endothelial cell adhesion molecule-1, was the lowest in the L group placentae compared to the other groups. In addition, the protein levels of glucose transporters GLUT1 and GLUT3 were downregulated in the L group, compared to the other groups. Furthermore, oxidative stress induced by H2O2 inhibited tube formation and migration in porcine vascular endothelial cells. Collectively, placentae for lower birth weight neonates are vulnerable to oxidative damage, mitochondrial dysfunction, and impaired angiogenesis.
Collapse
Affiliation(s)
- Chengjun Hu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yunyu Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ming Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Linfang Yang
- Guangdong Yihao Foodstuffs Co., Ltd., Guangzhou, Guangdong 510642, China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shuo Zhang
- Yunnan Yin Yulong Academician Workstation, Yunnan Xinan Tianyou Animal Husbandry Technology Co., Ltd., Kunming, Yunnan 650032, China
| | - Xiaozhen Li
- Yunnan Yin Yulong Academician Workstation, Yunnan Xinan Tianyou Animal Husbandry Technology Co., Ltd., Kunming, Yunnan 650032, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Department of Animal Science, Texas A&M University, College Station, Texas 77843-2471, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas 77843-2471, USA
| |
Collapse
|
22
|
Rooney HB, O'Driscoll K, Silacci P, Bee G, O'Doherty JV, Lawlor PG. Effect of dietary L-carnitine supplementation to sows during gestation and/or lactation on sow productivity, muscle maturation and lifetime growth in progeny from large litters. Br J Nutr 2020; 124:1-36. [PMID: 32127055 DOI: 10.1017/s0007114520000811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Genetic selection for increased sow prolificacy has resulted in decreased mean piglet birth-weight. This study aimed to investigate the effect of L-carnitine (CAR) supplementation to sows during gestation and/or lactation on sow productivity, semitendinosus muscle (STM) maturity, and lifetime growth in progeny. Sixty-four sows were randomly assigned to one of four dietary treatments at breeding until weaning; CONTROL (0mg CAR/d), GEST (125mg CAR/d during gestation), LACT (250mg CAR/d during lactation), and BOTH (125mg CAR/d during gestation & 250mg CAR/d during lactation). The total number of piglets born per litter was greater for sows supplemented with CAR during gestation (17.3 v 15.8 ± 0.52; P<0.05). Piglet birth-weight (total and live) was unaffected by sow treatment (P>0.05). Total myofibre number (P=0.08) and the expression level of selected myosin heavy chain genes in the STM (P<0.05) was greater in piglets of sows supplemented with CAR during gestation. Pigs from sows supplemented with CAR during gestation had lighter carcasses at slaughter than pigs from non-supplemented sows during gestation (83.8 v 86.7 ± 0.86kg; P<0.05). In conclusion, CAR supplementation during gestation increased litter size at birth without compromising piglet birth-weight. Results also showed that the STM of piglets born to sows supplemented with CAR during gestation was more developed at birth. However, carcass weight at slaughter was reduced in progeny of sows supplemented with CAR during gestation. The CAR supplementation strategy applied during gestation in this study could be utilized by commercial pork producers to increase sow litter size and improve offspring muscle development.
Collapse
Affiliation(s)
- Hazel B Rooney
- Pig Development Department, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04 W6F6, Ireland
| | - K O'Driscoll
- Pig Development Department, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
| | - P Silacci
- Institute for Livestock Sciences, Agroscope, Tioleyre, 1725 Posieux, Switzerland
| | - G Bee
- Institute for Livestock Sciences, Agroscope, Tioleyre, 1725 Posieux, Switzerland
| | - J V O'Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04 W6F6, Ireland
| | - P G Lawlor
- Pig Development Department, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
| |
Collapse
|