1
|
Tihăuan BM, Onisei T, Slootweg W, Gună D, Iliescu C, Chifiriuc MC. Cannabidiol-A friend or a foe? Eur J Pharm Sci 2025; 208:107036. [PMID: 39929375 DOI: 10.1016/j.ejps.2025.107036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/21/2025] [Accepted: 02/06/2025] [Indexed: 03/23/2025]
Abstract
Cannabidiol (CBD), one of the main actives from Cannabis sativa has been perpetually explored lately for its therapeutic effects. Its main attributes, such as anti-inflammatory and antioxidant effects, snowball into pain management, epilepsy and seizure alleviation, anxiety relief, as well as numerous other implications through the entire metabolism. However, conventional administration routes challenge its therapeutic potential, with reported poor water solubility, hepatic degradation, gastric instability and erratic bioavailability observed in oral administration. As a result, the transdermal delivery systems have emerged as a promising alternative to oral or inhaled routes, offering improved bioavailability and targeted effects. The medical use of CBD throughout Europe, UK, USA or Australia is extensive and usually represented by pharmaceutical preparations recommended after conventional treatment routs fail. The non-medical use is limited by each country's own legislation, a wider range of products being available, but the irregular regulatory landscape coupled with the growing market of cannabinoid-infused products, emphasizes the need for standardized formulations and further clinical research. The present work critically examines the transdermal administration of cannabidiol, explores the skin's potential as a route and the strategies involved in using it for systemic targeting. We highlighted key challenges and provided insights into CBD`s variable bioavailability based on different administration routes and methods, thus compiling a literature-based absorption, distribution, metabolism, and excretion (ADME) study. We also explore the role of the endocannabinoid system, its function in various medical conditions, and the therapeutic effects associated with CBD, particularly in light of the varying legislation across countries. While the breadth of potential benefits is compelling, it is essential to emphasize the ongoing nature of CBD research as individual responses to it can vary significantly.
Collapse
Affiliation(s)
- Bianca-Maria Tihăuan
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 50567 Bucharest, Romania; National Institute for Research and Development in Food Bioresources, Dinu Vintilă Street, No.6, 021102 Bucharest, Romania; eBio-hub Research Centre, National University for Science and Technology Politehnica Bucharest, Bucharest, Romania; Academy of Romanian Scientists, Bucharest, Romania
| | - Tatiana Onisei
- National Institute for Research and Development in Food Bioresources, Dinu Vintilă Street, No.6, 021102 Bucharest, Romania
| | - Walter Slootweg
- QB3 Research & Development, Spaarndammerstraaat 4d, 1013SV Amsterdam, Netherlands
| | - Daniel Gună
- S.C. Absolute Essential Oils Ltd. (AEO), Adunații Copăceni Village, Giurgiu County, 38 Troitei Street, 087005, Romania
| | - Ciprian Iliescu
- eBio-hub Research Centre, National University for Science and Technology Politehnica Bucharest, Bucharest, Romania; Academy of Romanian Scientists, Bucharest, Romania; National Institute for Microtechnologies, 126A Erou Iancu Nicolae Street, Voluntari 077190, Romania.
| | - Mariana-Carmen Chifiriuc
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 50567 Bucharest, Romania.
| |
Collapse
|
2
|
Flangea C, Vlad D, Popescu R, Dumitrascu V, Rata AL, Tryfon ME, Balasoiu B, Vlad CS. Cannabis: Zone Aspects of Raw Plant Components in Sport-A Narrative Review. Nutrients 2025; 17:861. [PMID: 40077729 PMCID: PMC11902196 DOI: 10.3390/nu17050861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Objectives/Background: The Cannabis genus contain a mixture of cannabinoids and other minor components which have been studied so far. In this narrative review, we highlight the main aspects of the polarized discussion between abuse and toxicity versus the benefits of the compounds found in the Cannabis sativa plant. Methods: We investigated databases such as PubMed, Google Scholar, Web of Science and World Anti-doping Agency (WADA) documents for scientific publications that can elucidate the heated discussion related to the negative aspects of addiction, organ damage and improved sports performance and the medical benefits, particularly in athletes, of some compounds that are promising as nutrients. Results: Scientific arguments bring forward the harmful effects of cannabinoids, ethical and legislative aspects of their usage as doping substances in sports. We present the synthesis and metabolism of the main cannabis compounds along with identification methods for routine anti-doping tests. Numerous other studies attest to the beneficial effects, which could bring a therapeutic advantage to athletes in case of injuries. These benefits recommend Cannabis sativa compounds as nutrients, as well as potential pharmacological agents. Conclusions and Future Perspectives: From the perspective of both athletes and illegal use investigators in sport, there are many interpretations, presented and discussed in this review. Despite many recent studies on cannabis species, there is very little research on the beneficial effects in active athletes, especially on large groups compared to placebo. These studies may complete the current vision of this topic and clarify the hypotheses launched as discussions in this review.
Collapse
Affiliation(s)
- Corina Flangea
- Department of Biochemistry and Pharmacology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (C.F.); (V.D.); (C.S.V.)
- Toxicology and Molecular Biology Department, “Pius Brinzeu” County Emergency Hospital, Liviu Rebreanu Boulevard 156, 300723 Timisoara, Romania;
| | - Daliborca Vlad
- Department of Biochemistry and Pharmacology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (C.F.); (V.D.); (C.S.V.)
- Toxicology and Molecular Biology Department, “Pius Brinzeu” County Emergency Hospital, Liviu Rebreanu Boulevard 156, 300723 Timisoara, Romania;
| | - Roxana Popescu
- Toxicology and Molecular Biology Department, “Pius Brinzeu” County Emergency Hospital, Liviu Rebreanu Boulevard 156, 300723 Timisoara, Romania;
- Department of Cell and Molecular Biology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Victor Dumitrascu
- Department of Biochemistry and Pharmacology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (C.F.); (V.D.); (C.S.V.)
| | - Andreea Luciana Rata
- Surgical Emergencies Department, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Maria Erika Tryfon
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (M.E.T.); (B.B.)
| | - Bogdan Balasoiu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (M.E.T.); (B.B.)
| | - Cristian Sebastian Vlad
- Department of Biochemistry and Pharmacology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (C.F.); (V.D.); (C.S.V.)
| |
Collapse
|
3
|
Oliveira IGC, de Souza ID, de Crippa JADS, Queiroz MEC. A Disposable Pipette Extraction-UHPLC-MS/MS Method Based on Removal of Phospholipids to Determine Anandamide, 2-Arachidonoylglycerol, Cannabidiol, and Δ 9-Tetrahydrocannabidiol in Plasma Samples. J Sep Sci 2025; 48:e70068. [PMID: 39806770 DOI: 10.1002/jssc.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), the main components of Cannabis sativa plants, can interact with specific cell receptors known as cannabinoid receptors (CBs). The endogenous compounds anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are CB agonists, and, alongside enzymes, they constitute the endocannabinoid system (ECS) and take part in neuromodulation. Several LC-MS/MS methods have been developed to quantify these compounds in biological matrixes, but a fast and simple method that can determine these analytes in plasma samples simultaneously is not available. Here, we propose a disposable pipette extraction technique containing a zirconia-based sorbent (DPX(Zr)) combined with UHPLC-MS/MS analysis to determine CBD, THC, AEA, and 2-AG in plasma samples, simultaneously. The method combines simple protein precipitation (PPT) with a one-step DPX procedure to remove phospholipids, one of the most common endogenous interferents in biological samples. Optimization of the combined PPT-DPX sample preparation method reduced the matrix effect and improved the sensitivity of the analytical method. The validated DPX(Zr)-UHPLC-MS/MS method reported LLOQs of 0.1 ng mL-1 for AEA and 2-AG and 1 ng mL-1 for CBD and THC. The method demonstrated intra- and interassay accuracy and precision of less than 20% for the LLOQ, and less than 15% for the other calibration points. Additionally, no carryover or significant matrix effect was observed. We applied this method to determine AEA, 2-AG, and CBD in plasma samples obtained from obsessive-compulsive disorder patients treated with CBD.
Collapse
Affiliation(s)
- Igor Gustavo Carvalho Oliveira
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, São Paulo, Ribeirão Preto-SP, Brazil
| | - Israel Donizeti de Souza
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, São Paulo, Ribeirão Preto-SP, Brazil
| | - José Alexandre de Souza de Crippa
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Ribeirão Preto-SP, Brazil
| | - Maria Eugênia Costa Queiroz
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, São Paulo, Ribeirão Preto-SP, Brazil
| |
Collapse
|
4
|
Jang JH, Jeong JH, Jeong SH. Quantitative summary on the human pharmacokinetic properties of cannabidiol to accelerate scientific clinical application of cannabis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8285-8309. [PMID: 38850302 DOI: 10.1007/s00210-024-03185-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
Cannabidiol (CBD) is a non-psychoactive substance that exerts numerous pharmacological benefits, including anti-inflammatory and antioxidant properties. It has received attention as a useful substance for the treatment of intractable pain, seizures, and anxiety, and related clinical trials have continued. However, the CBD pharmacokinetic results between reports are highly variable, making it difficult to clearly identify the pharmacokinetic properties of CBD. The main purpose of this study was to identify CBD clinical pharmacokinetic properties through meta-analysis. In particular, we sought to derive valid, interpretable independent variables and interpret their pharmacokinetic parameter correlations in relation to the large inter-individual and inter-study variability in CBD pharmacokinetics. For this study, CBD-related clinical trial reports were extensively screened and intercomparisons were performed between internal data sets through systematic classification and extraction of pharmacokinetic parameter values. The candidate independent variables associated with interpretation of CBD pharmacokinetic diversity established and explored in this study were as follows: diet, tetrahydrocannabinol (THC) combination, sample matrix type, liver and renal function, exposure route, dosage form, CBD exposure dose, cannabis smoking frequency, multiple exposure. The results of this study showed that CBD pharmacokinetics were influenced (increased plasma exposure by approximately 2-5 times) by diet immediately before or during CBD exposure, and that THC was not expected to have an antagonistic effect on the CBD absorption. The influence of changes in liver function would be significant in CBD pharmacokinetic diversity. Due to decreased liver function, the plasma exposure of CBD increased 2.57-5.15 times compared to healthy adults, and the half-life and clearance showed a 2.58-fold increase and a 5.15-fold decrease, respectively. CBD can be rapidly absorbed into the body (time to reach maximum concentration within 3.18 h) by oral, transdermal, and inhalation exposures, and lipid emulsification and nanoformulation of CBD will greatly improve CBD bioavailability (up to approximately 2 times). The pharmacokinetics of CBD generally follow linear kinetic characteristics. The importance of this study is that it suggests key factors that should be considered in terms of pharmacokinetics in further clinical trials and formulations of CBD in the future.
Collapse
Affiliation(s)
- Ji-Hun Jang
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Suncheon-Si, 57922, Jeollanam-do, Republic of Korea
| | - Ju-Hwan Jeong
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Suncheon-Si, 57922, Jeollanam-do, Republic of Korea
| | - Seung-Hyun Jeong
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Suncheon-Si, 57922, Jeollanam-do, Republic of Korea.
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon-Si, 57922, Republic of Korea.
| |
Collapse
|
5
|
Bawa Z, Lewis D, Gavin PD, Libinaki R, Joubran L, El-Tamimy M, Taylor G, Meltzer R, Bedoya-Pérez M, Kevin RC, McGregor IS. An open-label feasibility trial of transdermal cannabidiol for hand osteoarthritis. Sci Rep 2024; 14:11792. [PMID: 38783008 PMCID: PMC11116491 DOI: 10.1038/s41598-024-62428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Hand osteoarthritis (OA) is an irreversible degenerative condition causing chronic pain and impaired functionality. Existing treatment options are often inadequate. Cannabidiol (CBD) has demonstrated analgesic and anti-inflammatory effects in preclinical models of arthritis. In this open-label feasibility trial, participants with symptomatically active hand OA applied a novel transdermal CBD gel (4% w/w) three times a day for four weeks to their most painful hand. Changes in daily self-reported pain scores were measured on a 0-10 Numeric Pain Rating Scale (NPRS). Hand functionality was determined via daily grip strength measures using a Bluetooth equipped squeeze ball and self-report questionnaire. Quality of life (QoL) ratings around sleep, anxiety, stiffness and fatigue were also measured. All self-report measures and grip strength data were gathered via smartphone application. Urinalysis was conducted at trial end to determine systemic absorption of CBD. Eighteen participants were consented and 15 completed the trial. Pain ratings were significantly reduced over time from pre-treatment baseline including current pain (- 1.91 ± 0.35, p < 0.0001), average pain (- 1.92 ± 0.35, p < 0.0001) and maximum pain (- 1.97 ± 0.34, p < 0.0001) (data represent mean reduction on a 0-10 NPRS scale ± standard error of the mean (SEM)). A significant increase in grip strength in the treated hand (p < 0.0001) was observed although self-reported functionality did not improve. There were significant (p < 0.005) improvements in three QoL measures: fatigue, stiffness and anxiety. CBD and its metabolites were detected at low concentrations in all urine samples. Measured reductions in pain and increases in grip strength seen during treatment reverted back towards baseline during the washout phase. In summary, pain, grip strength and QoL measures, using smartphone technology, was shown to improve over time following transdermal CBD application suggesting feasibility of this intervention in relieving osteoarthritic hand pain. Proof of efficacy, however, requires further confirmation in a placebo-controlled randomised trial.Trial registration: ANZCTR public trials registry (ACTRN12621001512819, 05/11/2021).
Collapse
Affiliation(s)
- Zeeta Bawa
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniel Lewis
- The Daniel Lewis Rheumatology Centre, Melbourne, Victoria, Australia
| | - Paul D Gavin
- Avecho Biotechnology, Melbourne , Victoria, Australia
| | | | - Lida Joubran
- Avecho Biotechnology, Melbourne , Victoria, Australia
| | | | - Greg Taylor
- The NTF Group, Sydney, New South Wales, Australia
| | - Ryan Meltzer
- The NTF Group, Sydney, New South Wales, Australia
| | - Miguel Bedoya-Pérez
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia
- School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard C Kevin
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales, Australia
| | - Iain S McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.
- School of Psychology, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
6
|
Beers JL, Zhou Z, Jackson KD. Advances and Challenges in Modeling Cannabidiol Pharmacokinetics and Hepatotoxicity. Drug Metab Dispos 2024; 52:508-515. [PMID: 38286636 PMCID: PMC11114601 DOI: 10.1124/dmd.123.001435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024] Open
Abstract
Cannabidiol (CBD) is a pharmacologically active metabolite of cannabis that is US Food and Drug Administration approved to treat seizures associated with Lennox-Gastaut syndrome, Dravet syndrome, and tuberous sclerosis complex in children aged 1 year and older. During clinical trials, CBD caused dose-dependent hepatocellular toxicity at therapeutic doses. The risk for toxicity was increased in patients taking valproate, another hepatotoxic antiepileptic drug, through an unknown mechanism. With the growing popularity of CBD in the consumer market, an improved understanding of the safety risks associated with CBD is needed to ensure public health. This review details current efforts to describe CBD pharmacokinetics and mechanisms of hepatotoxicity using both pharmacokinetic models and in vitro models of the liver. In addition, current evidence and knowledge gaps related to intracellular mechanisms of CBD-induced hepatotoxicity are described. The authors propose future directions that combine systems-based models with markers of CBD-induced hepatotoxicity to understand how CBD pharmacokinetics may influence the adverse effect profile and risk of liver injury for those taking CBD. SIGNIFICANCE STATEMENT: This review describes current pharmacokinetic modeling approaches to capture the metabolic clearance and safety profile of cannabidiol (CBD). CBD is an increasingly popular natural product and US Food and Drug Administration-approved antiepileptic drug known to cause clinically significant enzyme-mediated drug interactions and hepatotoxicity at therapeutic doses. CBD metabolism, pharmacokinetics, and putative mechanisms of CBD-induced liver injury are summarized from available preclinical data to inform future modeling efforts for understanding CBD toxicity.
Collapse
Affiliation(s)
- Jessica L Beers
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.L.B., K.D.J.); and Department of Chemistry, York College, City University of New York, Jamaica, New York (Z.Z.)
| | - Zhu Zhou
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.L.B., K.D.J.); and Department of Chemistry, York College, City University of New York, Jamaica, New York (Z.Z.)
| | - Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.L.B., K.D.J.); and Department of Chemistry, York College, City University of New York, Jamaica, New York (Z.Z.)
| |
Collapse
|
7
|
Kallurkar A, Kaye AD, Shekoohi S. Marijuana Use, Vaping, and Preoperative Anesthetic and Surgical Considerations in Clinical Practice. Anesthesiol Clin 2024; 42:53-63. [PMID: 38278592 DOI: 10.1016/j.anclin.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
In recent years, marijuana and vaping have acquired widespread popularity, with millions of people using them for a variety of reasons, including recreational purposes. However, these practices have often overlooked the implications on surgery and the preoperative anesthesia considerations. Marijuana can influence a patient's response to anesthesia, alter postoperative pain management, and increase the risk of complications, whereas vaping can have negative effects on the respiratory system and hinder the body's ability to recover after surgery.
Collapse
Affiliation(s)
- Anusha Kallurkar
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA; Department of Pharmacology, Toxicology, and Neurosciences, Louisiana State University Health Sciences Center Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA.
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA
| |
Collapse
|
8
|
Zamarripa CA, Tilton HE, Lin S, Cone EJ, Winecker RE, Flegel RR, Kuntz D, Beals M, Jacques M, Clark M, Welsh ER, Wagner L, Bonn-Miller MO, Vandrey R, Spindle TR. Pharmacokinetics and pharmacodynamics of five distinct commercially available hemp-derived topical cannabidiol products. J Anal Toxicol 2024; 48:81-98. [PMID: 38217086 DOI: 10.1093/jat/bkae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
Products containing cannabidiol (CBD) have proliferated after the 2018 Farm Bill legalized hemp (cannabis with ≤0.3% delta-9-tetrahydrocannabinol (Δ9-THC)). CBD-containing topical products have surged in popularity, but controlled clinical studies on them are limited. This study characterized the effects of five commercially available hemp-derived high CBD/low Δ9-THC topical products. Healthy adults (N = 46) received one of six study drugs: a CBD-containing cream (N = 8), lotion (N = 8), patch (N = 7), balm (N = 8), gel (N = 6) or placebo (N = 9; matched to an active formulation). The protocol included three phases conducted over 17 days: (i) an acute drug application laboratory session, (ii) a 9-day outpatient phase with twice daily product application (visits occurred on Days 2, 3, 7 and 10) (iii) a 1-week washout phase. In each phase, whole blood, oral fluid and urine specimens were collected and analyzed via liquid chromatography with tandem mass spectrometry (LC-MS-MS) for CBD, Δ9-THC and primary metabolites of each and pharmacodynamic outcomes (subjective, cognitive/psychomotor and physiological effects) were assessed. Transdermal absorption of CBD was observed for three active products. On average, CBD/metabolite concentrations peaked after 7-10 days of product use and were highest for the lotion, which contained the most CBD and a permeation enhancer (vitamin E). Δ9-THC/metabolites were below the limit of detection in blood for all products, and no urine samples tested "positive" for cannabis using current US federal workplace drug testing criteria (immunoassay cut-off of 50 ng/mL and confirmatory LC-MS-MS cut-off of 15 ng/mL). Unexpectedly, nine participants (seven lotions, one patch and one gel) exhibited Δ9-THC oral fluid concentrations ≥2 ng/mL (current US federal workplace threshold for a "positive" test). Products did not produce discernable pharmacodynamic effects and were well-tolerated. This study provides important initial data on the acute/chronic effects of hemp-derived topical CBD products, but more research is needed given the diversity of products in this market.
Collapse
Affiliation(s)
- C Austin Zamarripa
- Behavioral Pharmacology Research Unit, Johns Hopkins University School of Medicine, 5510 Nathan Shock Dr., Baltimore, MD 21224, USA
| | - Hayleigh E Tilton
- Behavioral Pharmacology Research Unit, Johns Hopkins University School of Medicine, 5510 Nathan Shock Dr., Baltimore, MD 21224, USA
| | - Spencer Lin
- Behavioral Pharmacology Research Unit, Johns Hopkins University School of Medicine, 5510 Nathan Shock Dr., Baltimore, MD 21224, USA
| | - Edward J Cone
- Behavioral Pharmacology Research Unit, Johns Hopkins University School of Medicine, 5510 Nathan Shock Dr., Baltimore, MD 21224, USA
| | - Ruth E Winecker
- RTI International, Research Triangle Park, 3040 East Cornwallis Rd., Durham, NC 27709, USA
| | - Ronald R Flegel
- Substance Abuse and Mental Health Services Administration (SAMHSA), Division of Workplace Programs (DWP), 5600 Fishers Lane, Rockville, MD 20857, USA
| | - David Kuntz
- Clinical Reference Laboratory, 8433 Quivira Rd, Lenexa, KS 66214, USA
| | - Melissa Beals
- Clinical Reference Laboratory, 8433 Quivira Rd, Lenexa, KS 66214, USA
| | - Martin Jacques
- Clinical Reference Laboratory, 8433 Quivira Rd, Lenexa, KS 66214, USA
| | - Michael Clark
- Clinical Reference Laboratory, 8433 Quivira Rd, Lenexa, KS 66214, USA
| | - Eric R Welsh
- Department of Defense (DoD), Office of Drug Demand Reduction Program (ODDR), 4100 Defense Pentagon, Room 5D636, Washington, DC 20301, USA
| | - Lynn Wagner
- Department of Defense (DoD), Office of Drug Demand Reduction Program (ODDR), 4100 Defense Pentagon, Room 5D636, Washington, DC 20301, USA
| | | | - Ryan Vandrey
- Behavioral Pharmacology Research Unit, Johns Hopkins University School of Medicine, 5510 Nathan Shock Dr., Baltimore, MD 21224, USA
| | - Tory R Spindle
- Behavioral Pharmacology Research Unit, Johns Hopkins University School of Medicine, 5510 Nathan Shock Dr., Baltimore, MD 21224, USA
| |
Collapse
|
9
|
Chen S, Kim JK. The Role of Cannabidiol in Liver Disease: A Systemic Review. Int J Mol Sci 2024; 25:2370. [PMID: 38397045 PMCID: PMC10888697 DOI: 10.3390/ijms25042370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Cannabidiol (CBD), a non-psychoactive phytocannabinoid abundant in Cannabis sativa, has gained considerable attention for its anti-inflammatory, antioxidant, analgesic, and neuroprotective properties. It exhibits the potential to prevent or slow the progression of various diseases, ranging from malignant tumors and viral infections to neurodegenerative disorders and ischemic diseases. Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease, and viral hepatitis stand as prominent causes of morbidity and mortality in chronic liver diseases globally. The literature has substantiated CBD's potential therapeutic effects across diverse liver diseases in in vivo and in vitro models. However, the precise mechanism of action remains elusive, and an absence of evidence hinders its translation into clinical practice. This comprehensive review emphasizes the wealth of data linking CBD to liver diseases. Importantly, we delve into a detailed discussion of the receptors through which CBD might exert its effects, including cannabinoid receptors, CB1 and CB2, peroxisome proliferator-activated receptors (PPARs), G protein-coupled receptor 55 (GPR55), transient receptor potential channels (TRPs), and their intricate connections with liver diseases. In conclusion, we address new questions that warrant further investigation in this evolving field.
Collapse
Affiliation(s)
- Si Chen
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea;
| | - Jeon-Kyung Kim
- Institute of New Drug Development, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea
| |
Collapse
|
10
|
O’Sullivan SE, Jensen SS, Kolli AR, Nikolajsen GN, Bruun HZ, Hoeng J. Strategies to Improve Cannabidiol Bioavailability and Drug Delivery. Pharmaceuticals (Basel) 2024; 17:244. [PMID: 38399459 PMCID: PMC10892205 DOI: 10.3390/ph17020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The poor physicochemical properties of cannabidiol (CBD) hamper its clinical development. The aim of this review was to examine the literature to identify novel oral products and delivery strategies for CBD, while assessing their clinical implications and translatability. Evaluation of the published literature revealed that oral CBD strategies are primarily focused on lipid-based and emulsion solutions or encapsulations, which improve the overall pharmacokinetics (PK) of CBD. Some emulsion formulations demonstrate more rapid systemic delivery. Variability in the PK effects of different oral CBD products is apparent across species. Several novel administration routes exist for CBD delivery that may offer promise for specific indications. For example, intranasal administration and inhalation allow quick delivery of CBD to the plasma and the brain, whereas transdermal and transmucosal administration routes deliver CBD systemically more slowly. There are limited but promising data on novel delivery routes such as intramuscular and subcutaneous. Very limited data show that CBD is generally well distributed across tissues and that some CBD products enable increased delivery of CBD to different brain regions. However, evidence is limited regarding whether changes in CBD PK profiles and tissue distribution equate to superior therapeutic efficacy across indications and whether specific CBD products might be suited to particular indications.
Collapse
Affiliation(s)
| | - Sanne Skov Jensen
- Fertin Pharma, Dandyvej 19, 7100 Vejle, Denmark; (S.S.J.); (G.N.N.); (H.Z.B.)
| | - Aditya Reddy Kolli
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland;
| | | | - Heidi Ziegler Bruun
- Fertin Pharma, Dandyvej 19, 7100 Vejle, Denmark; (S.S.J.); (G.N.N.); (H.Z.B.)
| | - Julia Hoeng
- Vectura Fertin Pharma, 4058 Basel, Switzerland;
| |
Collapse
|
11
|
Abstract
Cannabidiol (CBD) is one of the most interesting constituents of cannabis, garnering significant attention in the medical community in recent years due to its proven benefit for reducing refractory seizures in pediatric patients. Recent legislative changes in the United States have made CBD readily available to the general public, with up to 14% of adults in the United States having tried it in 2019. CBD is used to manage a myriad of symptoms, including anxiety, pain, and sleep disturbances, although rigorous evidence for these indications is lacking. A significant advantage of CBD over the other more well-known cannabinoid delta-9-tetrahydroncannabinol (THC) is that CBD does not produce a "high." As patients increasingly self-report its use to manage their medical conditions, and as the opioid epidemic continues to drive the quest for alternative pain management approaches, the aims of this narrative review are to provide a broad overview of the discovery, pharmacology, and molecular targets of CBD, its purported and approved neurologic indications, evidence for its analgesic potential, regulatory implications for patients and providers, and future research needs.
Collapse
Affiliation(s)
- Alexandra Sideris
- From the Department of Anesthesiology, Critical Care and Pain Medicine, Hospital for Special Surgery, New York, New York
- Department of Anesthesiology, Weill Cornell Medicine, New York, New York
- HSS Research Institute, New York, New York
| | - Lisa V Doan
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
12
|
Hart ED, Mullen L, Vikingsson S, Cone EJ, Winecker RE, Hayes ED, Flegel RR. Conversion of water-soluble CBD to ∆9-THC in synthetic gastric fluid-An unlikely cause of positive drug tests. J Anal Toxicol 2023; 47:632-635. [PMID: 37440360 DOI: 10.1093/jat/bkad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023] Open
Abstract
Cannabidiol (CBD) has been shown to convert to ∆9-tetrahydrocannabinol (∆9-THC) in acidic environments, raising a concern of conversion when exposed to gastric fluid after consumption. Using synthetic gastric fluid (SGF), it has been demonstrated that the conversion requires surfactants, such as sodium dodecyl sulfate (SDS), due to limited solubility of CBD. Recently, water-compatible nanoemulsions of CBD have been prepared as a means of fortifying beverages and water-based foods with CBD. Since these emulsions contain surfactants as part of their formulation, it is possible that these preparations might enhance the production of ∆9-THC even in the absence of added surfactants. Three THC-free CBD products, an oil, an anhydrous powder and a water-soluble formulation, were incubated for 3 h in SGF without SDS. The water-soluble CBD product produced a dispersion, while the powder and the oil did not mix with the SGF. No THC was detected with the CBD oil (<0.0006% conversion), and up to 0.063% and 0.0045% conversion to ∆9-THC was observed with the water-soluble CBD and the CBD powder, respectively. No formation of ∆8-THC was observed. In comparison, when the nano-formulated CBD was incubated in SGF with 1% SDS, 33-36% conversion to ∆9-THC was observed. Even though the rate of conversion with the water-soluble CBD was at least 100-fold higher compared to the CBD oil, it was still smaller than ∆9-THC levels reported in CBD products labeled "THC-free" or "<0.3% THC" based on the Agricultural Improvement Act of 2018 (the Farm Bill). Assuming a daily CBD dose of around 30 mg/day, it is unlikely that conversion of CBD to ∆9-THC could produce a positive urinary drug test for 11-Nor-9-carboxy-∆9-THC (15 ng/mL cut-off).
Collapse
Affiliation(s)
- E Dale Hart
- Center for Forensic Science Advancement and Application, RTI International, 3040 East Cornwallis Rd, Research Triangle Park, NC 27709, USA
| | - Lawrance Mullen
- Center for Forensic Science Advancement and Application, RTI International, 3040 East Cornwallis Rd, Research Triangle Park, NC 27709, USA
| | - Svante Vikingsson
- Center for Forensic Science Advancement and Application, RTI International, 3040 East Cornwallis Rd, Research Triangle Park, NC 27709, USA
| | - Edward J Cone
- Behavioral Pharmacology Research Unit, Johns Hopkins University School of Medicine, 5510 Nathan Shock Dr., Baltimore, MD 21224, USA
| | - Ruth E Winecker
- Center for Forensic Science Advancement and Application, RTI International, 3040 East Cornwallis Rd, Research Triangle Park, NC 27709, USA
| | - Eugene D Hayes
- Division of Workplace Programs, Substance Abuse and Mental Health Services Administration, 5600 Fishers Lane, Rockville, MD 20857, USA
| | - Ronald R Flegel
- Division of Workplace Programs, Substance Abuse and Mental Health Services Administration, 5600 Fishers Lane, Rockville, MD 20857, USA
| |
Collapse
|
13
|
Barkholtz H, Bates M. Measuring the diversity gap of cannabis clinical trial participants compared to people who report using cannabis. Sci Rep 2023; 13:9787. [PMID: 37328519 PMCID: PMC10276002 DOI: 10.1038/s41598-023-36770-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 06/09/2023] [Indexed: 06/18/2023] Open
Abstract
Little is known about the demographics of people who use cannabis, including how use trends within population subgroups have evolved over time. It is therefore challenging to know if the demographics of participants enrolled in cannabis clinical trials are representative of those who use cannabis. To fill this knowledge gap, data from the National Survey on Drug Use and Health (NSDUH) on "past-month" cannabis use across various population subgroups in the United States was examined from 2002 to 2021. The most notable increases in "past-month" cannabis use prevalence occurred in those aged 65 and older (2,066.1%) and 50-64-year-olds (472.4%). In 2021, people reporting "past-month" cannabis use were 56.6% male and 43.4% female. Distribution across self-reported race and ethnicity was 64.1% White, 14.3% Black, 14.1% Hispanic, and 3.1% more than one race. And many ages were represented as 24.4% were 26-34, 24.1% were 35-49, 22.4% were 18-25, and 17.6% were 50-64 years old. To understand if these population subgroups are represented in cannabis clinical trials, participant demographics were extracted from peer-reviewed clinical trials reporting on pharmacokinetic and/or pharmacodynamic models of cannabis or cannabinoids. Literature was grouped by publication year (2000-2014 and 2015-2022) and participant prior exposure to cannabis. Results identified that cannabis clinical trial participants are skewed toward overrepresentation by White males in their 20s and 30s. This represents structural discrimination in the research landscape that perpetuates social and health inequities.
Collapse
Affiliation(s)
- Heather Barkholtz
- Forensic Toxicology, Environmental Health Division, Wisconsin State Laboratory of Hygiene, 2601 Agriculture Dr., Madison, WI, 53718, USA.
- Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI, 53705, USA.
| | - Maia Bates
- Forensic Toxicology, Environmental Health Division, Wisconsin State Laboratory of Hygiene, 2601 Agriculture Dr., Madison, WI, 53718, USA
- Department of Chemistry, College of Letters of Science, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA
| |
Collapse
|
14
|
De Genna NM, Kennon-McGill S, Goldschmidt L, Richardson GA, Chang JC. Factors associated with ever using cannabidiol in a cohort of younger pregnant people. Neurotoxicol Teratol 2023; 96:107162. [PMID: 36717004 PMCID: PMC9992243 DOI: 10.1016/j.ntt.2023.107162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
One in four Americans have used cannabidiol (CBD) products in the past year, and use has become prevalent in many Western countries with recent deregulation from a controlled or illicit substance to an unrestricted product. CBD is also marketed to pregnant people to treat common medical conditions. However, preclinical work has linked cannabidiol exposure to embryotoxicity, as well as neuroendocrine, reproductive, and behavioral effects in offspring. No studies have examined the prevalence or correlates of CBD use among pregnant people. Demographic, medical, and psychosocial correlates of cannabidiol use were examined in the YoungMoms study, a cohort of pregnant people under the age of 22, a population that is at high risk for cannabis use during pregnancy. Few of the participants (n = 186; 75% Black or Biracial) reported use of cannabidiol during pregnancy, but one in five had tried these products. Participants who reported ever using CBD were more likely to report alcohol and other drug use prior to pregnancy, controlling for race.As the use of CBD among people of reproductive age is increasingly prevalent, more research on CBD use in pregnant human populations is needed to investigate the effects of CBD on fetal development and infant outcomes.
Collapse
Affiliation(s)
- Natacha M De Genna
- Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara St, Pittsburgh, PA 15213, United States of America.
| | - Stefanie Kennon-McGill
- University of Arkansas for Medical Sciences School of Public Health, 4301 West Markham Street, Little Rock, AR 72205, United States of America.
| | - Lidush Goldschmidt
- University of Pittsburgh Medical Center (UPMC), Program in Epidemiology, 3811 O'Hara St, Pittsburgh, PA 15213, United States of America.
| | - Gale A Richardson
- Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara St, Pittsburgh, PA 15213, United States of America.
| | - Judy C Chang
- Departments of Obstetrics, Gynecology, and Reproductive Sciences and Medicine, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 204 Craft Ave, Pittsburgh, PA 15213, United States of America.
| |
Collapse
|
15
|
Holt AK, Poklis JL, Peace MR. The history, evolution, and practice of cannabis and E-cigarette industries highlight necessary public health and public safety considerations. JOURNAL OF SAFETY RESEARCH 2023; 84:192-203. [PMID: 36868647 PMCID: PMC10829760 DOI: 10.1016/j.jsr.2022.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/29/2022] [Accepted: 10/25/2022] [Indexed: 06/18/2023]
Affiliation(s)
- Alaina K Holt
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, United States; Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, VA, United States.
| | - Justin L Poklis
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States.
| | - Michelle R Peace
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
16
|
Bergeria CL, Spindle TR, Cone EJ, Sholler D, Goffi E, Mitchell JM, Winecker RE, Bigelow GE, Flegel R, Vandrey R. Pharmacokinetic Profile of ∆9-Tetrahydrocannabinol, Cannabidiol and Metabolites in Blood following Vaporization and Oral Ingestion of Cannabidiol Products. J Anal Toxicol 2022; 46:583-591. [PMID: 35438179 PMCID: PMC9282269 DOI: 10.1093/jat/bkab124] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/24/2021] [Accepted: 02/16/2022] [Indexed: 11/12/2022] Open
Abstract
There is limited data on the comparative pharmacokinetics of cannabidiol (CBD) across oral and vaporized formulations. This within-subject, double-blind, double-dummy, placebo-controlled laboratory study analyzed the pharmacokinetic profile of CBD, ∆9-tetrahydrocannabinol (∆9-THC) and related metabolites in blood and oral fluid (OF) after participants (n = 18) administered 100 mg of CBD in each of the following formulations: (1) oral CBD, (2) vaporized CBD and (3) vaporized CBD-dominant cannabis containing 10.5% CBD and 0.39% ∆9-THC (3.7 mg); all participants also completed a placebo condition. Oral CBD was administered in three formulations: (1) encapsulated CBD, (2) CBD suspended in pharmacy-grade syrup and (3) Epidiolex, allowing for pharmacokinetic comparisons across oral formulations (n = 6 per condition). An optional fifth experimental condition was completed for six participants in which they fasted from all food for 12 h prior to oral ingestion of 100 mg of CBD. Blood and OF samples were collected immediately before and for 57-58 h after each drug administration. Immunoassay screening and LC-MS-MS confirmatory tests were performed, the limit of quantitation was 0.5 ng/mL for ∆9-THC and 1 ng/mL for CBD. The mean Cmax and range of CBD blood concentrations for each product were as follows: vaporized CBD-dominant cannabis, 171.1 ng/mL, 40.0-665.0 ng/mL, vaporized CBD 104.6 ng/mL, 19.0-312.0 ng/mL and oral CBD, 13.7 ng/mL, 0.0-50.0 ng/mL. Of the three oral formulations, Epidiolex produced the greatest peak concentration of CBD (20.5 ng/mL, 8.0-37.0 ng/mL) relative to the capsule (17.8 ng/mL, 2.0-50.0 ng/mL) and syrup (2.8 ng/mL, 0-7.0 ng/mL). ∆9-THC was detected in the blood of 12/18 participants after vaporized CBD-dominant cannabis use, but neither ∆9-THC nor its metabolite THC-COOH were detected in the blood of any participants after vaporized or oral CBD-only administration. These data demonstrate that different oral and vaporized formulations produce substantial variability in the pharmacokinetics of CBD and that CBD alone is unlikely to convert to ∆9-THC or produce positive drug tests for ∆9-THC or its metabolite.
Collapse
Affiliation(s)
- Cecilia L Bergeria
- Behavioral Pharmacology Research Unit, Johns Hopkins University School of Medicine, 5510 Nathan Shock Dr., Baltimore, MD 21224, USA
| | - Tory R Spindle
- Behavioral Pharmacology Research Unit, Johns Hopkins University School of Medicine, 5510 Nathan Shock Dr., Baltimore, MD 21224, USA
| | - Edward J Cone
- Behavioral Pharmacology Research Unit, Johns Hopkins University School of Medicine, 5510 Nathan Shock Dr., Baltimore, MD 21224, USA
| | - Dennis Sholler
- Behavioral Pharmacology Research Unit, Johns Hopkins University School of Medicine, 5510 Nathan Shock Dr., Baltimore, MD 21224, USA
| | - Elia Goffi
- Behavioral Pharmacology Research Unit, Johns Hopkins University School of Medicine, 5510 Nathan Shock Dr., Baltimore, MD 21224, USA
| | - John M Mitchell
- RTI International, Research Triangle Park, 3040 East Cornwallis Rd., Research Triangle, NC 27709, USA
| | - Ruth E Winecker
- RTI International, Research Triangle Park, 3040 East Cornwallis Rd., Research Triangle, NC 27709, USA
| | - George E Bigelow
- Behavioral Pharmacology Research Unit, Johns Hopkins University School of Medicine, 5510 Nathan Shock Dr., Baltimore, MD 21224, USA
| | - Ronald Flegel
- Division of Workplace Programs (DWP), Substance Abuse and Mental Health Services Administration (SAMHSA), 5600 Fishers Lane, Rockville, MD 20857, USA
| | - Ryan Vandrey
- Behavioral Pharmacology Research Unit, Johns Hopkins University School of Medicine, 5510 Nathan Shock Dr., Baltimore, MD 21224, USA
| |
Collapse
|
17
|
Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Prieto Maradona M, Schlatter JR, Trezza V, van Loveren H, Albert O, Dumas C, Germini A, Gelbmann W, Kass G, Kouloura E, Noriega Fernandez E, Rossi A, Knutsen HK. Statement on safety of cannabidiol as a novel food: data gaps and uncertainties. EFSA J 2022; 20:e07322. [PMID: 35686177 PMCID: PMC9172591 DOI: 10.2903/j.efsa.2022.7322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The European Commission has determined that cannabidiol (CBD) can be considered as a novel food (NF), and currently, 19 applications are under assessment at EFSA. While assessing these, it has become clear that there are knowledge gaps that need to be addressed before a conclusion on the safety of CBD can be reached. Consequently, EFSA has issued this statement, summarising the state of knowledge on the safety of CBD consumption and highlighting areas where more data are needed. Literature searches for both animal and human studies have been conducted to identify safety concerns. Many human studies have been carried out with Epidyolex®, a CBD drug authorised to treat refractory epilepsies. In the context of medical conditions, adverse effects are tolerated if the benefit outweighs the adverse effect. This is, however, not acceptable when considering CBD as a NF. Furthermore, most of the human data referred to in the CBD applications investigated the efficacy of Epidyolex (or CBD) at therapeutic doses. No NOAEL could be identified from these studies. Given the complexity and importance of CBD receptors and pathways, interactions need to be taken into account when considering CBD as a NF. The effects on drug metabolism need to be clarified. Toxicokinetics in different matrices, the half‐life and accumulation need to be examined. The effect of CBD on liver, gastrointestinal tract, endocrine system, nervous system and on psychological function needs to be clarified. Studies in animals show significant reproductive toxicity, and the extent to which this occurs in humans generally and in women of child‐bearing age specifically needs to be assessed. Considering the significant uncertainties and data gaps, the Panel concludes that the safety of CBD as a NF cannot currently be established.
Collapse
|
18
|
Sempio C, Huestis MA, Kaplan B, Klawitter J, Christians U, Henthorn TK. Urinary Clearance of 11-Nor-9-Carboxy-Δ 9 -Tetrahydrocannabinol (THCCOOH): A Detailed Pharmacokinetic Analysis. Drug Test Anal 2022; 14:1368-1376. [PMID: 35332698 DOI: 10.1002/dta.3259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Urine is a common matrix for screening for cannabis use. Urine assays typically measure total THCCOOH concentrations after hydrolysis cleaves the glucuronide. Urine THCCOOH concentration is adjusted by urine creatinine concentration or specific gravity, to account for variable hydration states. Therefore, we performed a population pharmacokinetic analysis of the urinary THCCOOH excretion, urinary flow rate, and creatinine excretion rate data. METHODS Urine was obtained over 168 hours from 6 subjects who smoked low (15.8 mg) and high dose (33.8 mg) THC cigarettes on two occasions. Samples were analyzed for THCCOOH concentration by GC/MS and volume, time and creatinine concentration measured. A population pharmacokinetic model of the urinary clearance of THCCOOH was created from these data and potential covariates of urine creatinine concentration and urine creatinine excretion rate were assessed. RESULTS Elimination clearance of THCCOOH was estimated as 0.104 ± 0.088 L/min and its urinary clearance was 0.0022 ± 0.0015 L/min. Total urine excretion of THCCOOH was estimated a 2.3%. Urine flow rate and urine creatinine concentrations were significantly correlated, r2 0.35. Creatinine excretion rate was 129.6 ± 71.0 mL/min and the intra-subject variability was 31-52% (SD%) during the week. Urinary creatinine excretion rate was a significant covariate for the urinary clearance of THCCOOH. CONCLUSIONS Creatinine Clearance is a significant covariate for urinary THCCOOH clearance. Only 2-3% of bioavailable THC is excreted as THCCOOH and THCCOO-glucuronide via the urine. Correction of urine drug and/or metabolite concentration with urine creatinine concentration or specific gravity may be more problematic than previously appreciated.
Collapse
Affiliation(s)
- Cristina Sempio
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Marilyn A Huestis
- The Lambert Center for the Study of Medicinal Cannabis and Hemp, The Institute for Emerging Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Bruce Kaplan
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jost Klawitter
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Uwe Christians
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Thomas K Henthorn
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
19
|
Vikingsson S, Winecker RE, Cone EJ, Kuntz DJ, Dorsey B, Jacques M, Senter M, Flegel RR, Hayes ED. Prevalence of Cannabidiol, Δ9- and Δ8-Tetrahydrocannabinol and Metabolites in Workplace Drug Testing Urine Specimens. J Anal Toxicol 2022; 46:866-874. [PMID: 35260906 DOI: 10.1093/jat/bkac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/10/2022] [Accepted: 03/08/2022] [Indexed: 11/12/2022] Open
Abstract
Given the recent popularity of cannabidiol (CBD) use and the emergence of Δ8-tetrahydrocannabinol (Δ8-THC), the prevalence and concentration of these and other cannabinoids was investigated in 2,000 regulated and 4,000 non-regulated specimens from workplace drug testing. All specimens were screened using LC-MS-MS for the presence of 7-hydroxy-CBD (7-OH-CBD) and ∆9-tetrahydrocannabinol-9-carboxylic acid (Δ9-THC-COOH), with a cutoff of 2 ng/mL. Specimens screening positive by LC-MS-MS were analyzed by immunoassay at 20, 50 and 100 ng/mL cutoffs, and by an LC-MS-MS confirmation method for 11 cannabinoids and metabolites with a 1 ng/mL cutoff. Using a 1 ng/mL cutoff, 98 (4.9%) regulated and 331 (8.3%) non-regulated specimens were positive for Δ9-THC-COOH. Of these, 64% had concentrations below 15 ng/mL. Similarly, 59 (3.0%) regulated and 162 (4.2%) non-regulated specimens were positive for 7-OH-CBD (n=210), CBD (n=120) and/or 7-carboxy-cannabidiol (CBD-COOH, n=120). The median concentrations of 7-OH-CBD, CBD and CBD-COOH in those 221 specimens were 6.3, 1.1 and 1.2 ng/mL, respectively. Δ8-Tetrahydrocannabinol-9-carboxylic acid (Δ8-THC-COOH) was identified in 76 (1.3%) specimens. Parent Δ8-THC is a minor cannabinoid in marijuana, which appears to account for the typically low Δ8-THC-COOH concentrations (median 3.4 ng/mL) in most positive specimens. However, elevated concentrations suggested use of Δ8-THC-containing products in some cases (range 1.0-415 ng/mL). Although 93% agreement was observed between confirmatory LC-MS-MS (15 ng/mL cutoff) and immunoassay (50 ng/mL cutoff), a false negative specimen (66 ng/mL Δ9-THC-COOH) was identified.
Collapse
Affiliation(s)
| | | | - Edward J Cone
- Johns Hopkins University School of Medicine, Baltimore, MD, 21224 USA
| | - David J Kuntz
- Clinical Reference Laboratory, Lenexa, KS 66215, USA
| | - Brian Dorsey
- Clinical Reference Laboratory, Lenexa, KS 66215, USA
| | | | | | - Ronald R Flegel
- Substance Abuse and Mental Health Services Administration, Rockville, MD, 20857 USA
| | - Eugene D Hayes
- Substance Abuse and Mental Health Services Administration, Rockville, MD, 20857 USA
| |
Collapse
|
20
|
Holt AK, Poklis JL, Peace MR. A Retrospective Analysis of Chemical Constituents in Regulated and Unregulated E-Cigarette Liquids. Front Chem 2021; 9:752342. [PMID: 34778207 PMCID: PMC8581558 DOI: 10.3389/fchem.2021.752342] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/27/2021] [Indexed: 01/26/2023] Open
Abstract
E-cigarette or vaping use-associated lung injury (EVALI) was identified with the incidents of a multi-state outbreak of acute lung injuries associated with the use of electronic cigarettes (e-cigs) and attributed to vitamin E acetate in off-market cannabis-based e-liquids. Aside from EVALI, hypersecretion of mucus, irritated nasal passages, and watery, red eyes have been defined as complaints associated with vaping standard nicotine-based e-liquids. The chemical composition of e-liquids varies between manufacturers and robust oversight of ingredients is lacking. Manufacturers use chemicals deemed "generally recognized as safe" (GRAS) by the FDA, a designation for chemicals used in foodstuffs to be ingested. Most "GRAS" chemicals are associated with at least one Global Harmonization System (GHS) warning class, ranging from irritant to toxic. Untargeted chemical analysis is critical to evaluate e-liquid products to determine chemical composition; equally important is the quantitation of components to help elucidate the potential harms from exceeding recommended exposure limits. Untargeted screening of e-liquids was accomplished using gas chromatography-mass spectrometry (GC-MS) and Direct Analysis in Real Time-AccuTOF™ mass spectrometry (DART-ToF-MS) and has identified 350 chemical constituents from 241 products analyzed. Nicotine, caffeine, menthol, and vitamin E were confirmed and quantitated by GC-MS, ethanol was confirmed and quantitated by headspace-gas chromatography-dual flame ionization detection (HS-GC-FID), and olivetol and cannabinoids were confirmed and quantitated by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Maximum identified concentrations of nicotine, caffeine, menthol, vitamin E, ethanol, olivetol, Δ9-tetrahydrocannabinol, and cannabidiol were 56.4, 26.9, 4.28, 307.9, 217.2, 399.6, 497.7, and 332.6 mg/ml, respectively. Evaluation of untargeted analysis and quantitation of unlabeled chemical components of e-liquids is essential to improving etiology of acute lung injury and less severe impacts of vaping, both short-term and long-term. The historical documentation of unlabeled ingredients can provide some insight for a retrospective analysis of health consequences and inform policy discussions.
Collapse
Affiliation(s)
- Alaina K. Holt
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, United States,Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, VA, United States
| | - Justin L. Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Michelle R. Peace
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, United States,*Correspondence: Michelle R. Peace,
| |
Collapse
|
21
|
Screening and confirmation methods for the qualitative identification of nine phytocannabinoids in urine by LC-MS/MS. Clin Biochem 2021; 98:54-62. [PMID: 34529995 DOI: 10.1016/j.clinbiochem.2021.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/09/2021] [Accepted: 09/07/2021] [Indexed: 11/20/2022]
Abstract
Qualitative liquid chromatography tandem mass spectrometry (LC-MS/MS) methods were developed and validated to screen and confirm the presence of nine phytocannabinoids in urine. The nine phytocannabinoids targeted in the methods included Δ9-tetrahydrocannabinol (THC), 11-hydroxy-THC, 11-nor-9-carboxy-THC, cannabidiol, 7-carboxy cannabidiol, cannabinol, cannabigerol, Δ9-tetrahydrocannabivarin (THCV), and 11-nor-9-carboxy-THCV. The methods presented use a rapid, single-step enzymatic hydrolysis followed by solid-phase extraction and LC-MS/MS analysis. Limits of detection were established at 1 µg/L for non-carboxylated analytes and 5 µg/L for carboxylated analytes. The screening and confirmation methods were validated and implemented in the analysis of authentic case samples. These methods can assist forensic, medicolegal, or medical compliance investigations as the presence of phytocannabinoids, or lack there-of, may be used to help differentiate cannabis (hemp, marijuana) use from synthetic THC (dronabinol) exposure.
Collapse
|