1
|
Marques HM. The inorganic chemistry of the cobalt corrinoids - an update. J Inorg Biochem 2023; 242:112154. [PMID: 36871417 DOI: 10.1016/j.jinorgbio.2023.112154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The inorganic chemistry of the cobalt corrinoids, derivatives of vitamin B12, is reviewed, with particular emphasis on equilibrium constants for, and kinetics of, their axial ligand substitution reactions. The role the corrin ligand plays in controlling and modifying the properties of the metal ion is emphasised. Other aspects of the chemistry of these compounds, including their structure, corrinoid complexes with metals other than cobalt, the redox chemistry of the cobalt corrinoids and their chemical redox reactions, and their photochemistry are discussed. Their role as catalysts in non-biological reactions and aspects of their organometallic chemistry are briefly mentioned. Particular mention is made of the role that computational methods - and especially DFT calculations - have played in developing our understanding of the inorganic chemistry of these compounds. A brief overview of the biological chemistry of the B12-dependent enzymes is also given for the reader's convenience.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
2
|
Costa FG, Escalante-Semerena JC. Localization and interaction studies of the Salmonella enterica ethanolamine ammonia-lyase (EutBC), its reactivase (EutA), and the EutT corrinoid adenosyltransferase. Mol Microbiol 2022; 118:191-207. [PMID: 35785499 PMCID: PMC9481676 DOI: 10.1111/mmi.14962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/28/2022]
Abstract
Some prokaryotes compartmentalize select metabolic capabilities. Salmonella enterica subspecies enterica serovar Typhimurium LT2 (hereafter S. Typhimurium) catabolizes ethanolamine (EA) within a proteinaceous compartment that we refer to as the ethanolamine utilization (Eut) metabolosome. EA catabolism is initiated by the adenosylcobalamin (AdoCbl)-dependent ethanolamine ammonia-lyase (EAL), which deaminates EA via an adenosyl radical mechanism to yield acetaldehyde plus ammonia. This adenosyl radical can be quenched, requiring the replacement of AdoCbl by the ATP-dependent EutA reactivase. During growth on ethanolamine, S. Typhimurium synthesizes AdoCbl from cobalamin (Cbl) using the ATP:Co(I)rrinoid adenosyltransferase (ACAT) EutT. It is known that EAL localizes to the metabolosome, however, prior to this work, it was unclear where EutA and EutT localized, and whether they interacted with EAL. Here, we provide evidence that EAL, EutA, and EutT localize to the Eut metabolosome, and that EutA interacts directly with EAL. We did not observe interactions between EutT and EAL nor between EutT and the EutA/EAL complex. However, growth phenotypes of a ΔeutT mutant strain show that EutT is critical for efficient ethanolamine catabolism. This work provides a preliminary understanding of the dynamics of AdoCbl synthesis and its uses within the Eut metabolosome.
Collapse
Affiliation(s)
- Flavia G. Costa
- Department of Microbiology, University of Georgia, Athens, GA, USA 30602
| | | |
Collapse
|
3
|
Toraya T, Tobimatsu T, Mori K, Yamanishi M, Shibata N. Coenzyme B 12-dependent eliminases: Diol and glycerol dehydratases and ethanolamine ammonia-lyase. Methods Enzymol 2022; 668:181-242. [PMID: 35589194 DOI: 10.1016/bs.mie.2021.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adenosylcobalamin (AdoCbl) or coenzyme B12-dependent enzymes catalyze intramolecular group-transfer reactions and ribonucleotide reduction in a wide variety of organisms from bacteria to animals. They use a super-reactive primary-carbon radical formed by the homolysis of the coenzyme's Co-C bond for catalysis and thus belong to the larger class of "radical enzymes." For understanding the general mechanisms of radical enzymes, it is of great importance to establish the general mechanism of AdoCbl-dependent catalysis using enzymes that catalyze the simplest reactions-such as diol dehydratase, glycerol dehydratase and ethanolamine ammonia-lyase. These enzymes are often called "eliminases." We have studied AdoCbl and eliminases for more than a half century. Progress has always been driven by the development of new experimental methodologies. In this chapter, we describe our investigations on these enzymes, including their metabolic roles, gene cloning, preparation, characterization, activity assays, and mechanistic studies, that have been conducted using a wide range of biochemical and structural methodologies we have developed.
Collapse
Affiliation(s)
- Tetsuo Toraya
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan.
| | - Takamasa Tobimatsu
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Koichi Mori
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Mamoru Yamanishi
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Naoki Shibata
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo, Japan
| |
Collapse
|
4
|
Stewart KL, Stewart AM, Bobik TA. Prokaryotic Organelles: Bacterial Microcompartments in E. coli and Salmonella. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0025-2019. [PMID: 33030141 PMCID: PMC7552817 DOI: 10.1128/ecosalplus.esp-0025-2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 02/07/2023]
Abstract
Bacterial microcompartments (MCPs) are proteinaceous organelles consisting of a metabolic pathway encapsulated within a selectively permeable protein shell. Hundreds of species of bacteria produce MCPs of at least nine different types, and MCP metabolism is associated with enteric pathogenesis, cancer, and heart disease. This review focuses chiefly on the four types of catabolic MCPs (metabolosomes) found in Escherichia coli and Salmonella: the propanediol utilization (pdu), ethanolamine utilization (eut), choline utilization (cut), and glycyl radical propanediol (grp) MCPs. Although the great majority of work done on catabolic MCPs has been carried out with Salmonella and E. coli, research outside the group is mentioned where necessary for a comprehensive understanding. Salient characteristics found across MCPs are discussed, including enzymatic reactions and shell composition, with particular attention paid to key differences between classes of MCPs. We also highlight relevant research on the dynamic processes of MCP assembly, protein targeting, and the mechanisms that underlie selective permeability. Lastly, we discuss emerging biotechnology applications based on MCP principles and point out challenges, unanswered questions, and future directions.
Collapse
Affiliation(s)
- Katie L. Stewart
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| | - Andrew M. Stewart
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| | - Thomas A. Bobik
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| |
Collapse
|
5
|
Plegaria JS, Kerfeld CA. Engineering nanoreactors using bacterial microcompartment architectures. Curr Opin Biotechnol 2018; 51:1-7. [PMID: 29035760 PMCID: PMC5899066 DOI: 10.1016/j.copbio.2017.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/19/2017] [Indexed: 12/30/2022]
Abstract
Bacterial microcompartments (BMCs) are organelles that encapsulate enzymes involved in CO2 fixation or carbon catabolism in a selectively permeable protein shell. Here, we highlight recent advances in the bioengineering of these protein-based nanoreactors in heterologous systems, including transfer and expression of BMC gene clusters, the production of template empty shells, and the encapsulation of non-native enzymes.
Collapse
Affiliation(s)
- Jefferson S Plegaria
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Berkeley Synthetic Biology Institute, Berkeley, CA 94720, USA.
| |
Collapse
|
6
|
Abstract
Bacterial microcompartments (BMCs) are self-assembling organelles that consist of an enzymatic core that is encapsulated by a selectively permeable protein shell. The potential to form BMCs is widespread and found across the kingdom Bacteria. BMCs have crucial roles in carbon dioxide fixation in autotrophs and the catabolism of organic substrates in heterotrophs. They contribute to the metabolic versatility of bacteria, providing a competitive advantage in specific environmental niches. Although BMCs were first visualized more than 60 years ago, it is mainly in the past decade that progress has been made in understanding their metabolic diversity and the structural basis of their assembly and function. This progress has not only heightened our understanding of their role in microbial metabolism but is also beginning to enable their use in a variety of applications in synthetic biology. In this Review, we focus on recent insights into the structure, assembly, diversity and function of BMCs.
Collapse
Affiliation(s)
- Cheryl A. Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Clement Aussignargues
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jan Zarzycki
- Max-Planck-Institute for Terrestrial Microbiology, D-35043, Marburg, Germany
| | - Fei Cai
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Nforneh B, Bovell AM, Warncke K. Electron spin-labelling of the EutC subunit in B 12-dependent ethanolamine ammonia-lyase reveals dynamics and a two-state conformational equilibrium in the N-terminal, signal-sequence-associated domain. Free Radic Res 2018; 52:307-318. [PMID: 29252037 PMCID: PMC6103218 DOI: 10.1080/10715762.2017.1412433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The B12 (adenosylcobalamin)-dependent ethanolamine ammonia-lyase (EAL) is a product of the ethanolamine utilisation (eut) gene cluster, that is involved in human gut microbiome homeostasis and in disease conditions caused by pathogenic strains of Salmonella and Escherichia coli. Toward elucidation of the molecular basis of EAL catalysis, and its intracellular trafficking and targeting to the Eut biomicrocompartment (BMC), we have applied electron spin-labelling and electron paramagnetic resonance spectroscopy to wild-type (wt) EAL from Salmonella typhimurium, by using the sulphydryl-specific, 4-maleimido-TEMPO (4MT) spin label. One cysteine residue per active site displays exceptional reactivity with 4MT. This site is identified as βC37 on the EutC subunit, by using 4MT-labeling of site-specific cysteine-to-alanine mutants, enzyme kinetics, and accessible surface area calculations. Electron paramagnetic resonance (EPR) spectra of 4MT-labelled wt EAL are collected over 200-265 K in frozen, polycrystalline water-only, and 1% v/v DMSO solvents. EPR simulations reveal two mobility components for each condition. Detectable spin probe reorientational motion of the two components occurs at 215 and 225 K with 1% v/v DMSO, relative to the water-only condition, consistent with formation of an aqueous-DMSO solvent mesodomain around EAL. Parallel trends in fast- and slow-reorientational correlation times and interconversion of the two populations with increasing temperature, indicate 4MT labelling of a single site (βC37). A two-state model is proposed, in which the fast and slow motional populations represent EAL-bound and free conformations of the EutC N-terminal domain. The approximately equal proportion of each state may represent a balance between EutC and EAL protein stability and efficient targeting to the BMC.
Collapse
Affiliation(s)
| | | | - Kurt Warncke
- Department of Physics, Emory University, Atlanta, GA 30322
| |
Collapse
|
8
|
Insight into Coenzyme A cofactor binding and the mechanism of acyl-transfer in an acylating aldehyde dehydrogenase from Clostridium phytofermentans. Sci Rep 2016; 6:22108. [PMID: 26899032 PMCID: PMC4762007 DOI: 10.1038/srep22108] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/08/2016] [Indexed: 12/03/2022] Open
Abstract
The breakdown of fucose and rhamnose released from plant cell walls by the cellulolytic soil bacterium Clostridium phytofermentans produces toxic aldehyde intermediates. To enable growth on these carbon sources, the pathway for the breakdown of fucose and rhamnose is encapsulated within a bacterial microcompartment (BMC). These proteinaceous organelles sequester the toxic aldehyde intermediates and allow the efficient action of acylating aldehyde dehydrogenase enzymes to produce an acyl-CoA that is ultimately used in substrate-level phosphorylation to produce ATP. Here we analyse the kinetics of the aldehyde dehydrogenase enzyme from the fucose/rhamnose utilisation BMC with different short-chain fatty aldehydes and show that it has activity against substrates with up to six carbon atoms, with optimal activity against propionaldehyde. We have also determined the X-ray crystal structure of this enzyme in complex with CoA and show that the adenine nucleotide of this cofactor is bound in a distinct pocket to the same group in NAD+. This work is the first report of the structure of CoA bound to an aldehyde dehydrogenase enzyme and our crystallographic model provides important insight into the differences within the active site that distinguish the acylating from non-acylating aldehyde dehydrogenase enzymes.
Collapse
|
9
|
Aussignargues C, Paasch BC, Gonzalez-Esquer R, Erbilgin O, Kerfeld CA. Bacterial microcompartment assembly: The key role of encapsulation peptides. Commun Integr Biol 2015; 8:e1039755. [PMID: 26478774 PMCID: PMC4594438 DOI: 10.1080/19420889.2015.1039755] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/03/2015] [Accepted: 04/06/2015] [Indexed: 12/14/2022] Open
Abstract
Bacterial microcompartments (BMCs) are proteinaceous organelles used by a broad range of bacteria to segregate and optimize metabolic reactions. Their functions are diverse, and can be divided into anabolic (carboxysome) and catabolic (metabolosomes) processes, depending on their cargo enzymes. The assembly pathway for the β-carboxysome has been characterized, revealing that biogenesis proceeds from the inside out. The enzymes coalesce into a procarboxysome, followed by encapsulation in a protein shell that is recruited to the procarboxysome by a short (∼17 amino acids) extension on the C-terminus of one of the encapsulated proteins. A similar extension is also found on the N- or C-termini of a subset of metabolosome core enzymes. These encapsulation peptides (EPs) are characterized by a primary structure predicted to form an amphipathic α-helix that interacts with shell proteins. Here, we review the features, function and widespread occurrence of EPs among metabolosomes, and propose an expanded role for EPs in the assembly of diverse BMCs.
Collapse
Affiliation(s)
| | - Bradley C Paasch
- DOE Plant Research Laboratory; Michigan State University ; East Lansing, MI USA
| | | | - Onur Erbilgin
- Department of Plant and Microbial Biology; University of California, Berkeley ; Berkeley, CA USA
| | - Cheryl A Kerfeld
- DOE Plant Research Laboratory; Michigan State University ; East Lansing, MI USA ; Department of Plant and Microbial Biology; University of California, Berkeley ; Berkeley, CA USA ; Physical Biosciences Division; Lawrence Berkeley National Laboratory ; Berkeley, CA USA ; Berkeley Synthetic Biology Institute ; Berkeley, CA USA
| |
Collapse
|
10
|
Craciun S, Marks JA, Balskus EP. Characterization of choline trimethylamine-lyase expands the chemistry of glycyl radical enzymes. ACS Chem Biol 2014; 9:1408-13. [PMID: 24854437 DOI: 10.1021/cb500113p] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The recently identified glycyl radical enzyme (GRE) homologue choline trimethylamine-lyase (CutC) participates in the anaerobic conversion of choline to trimethylamine (TMA), a widely distributed microbial metabolic transformation that occurs in the human gut and is linked to disease. The proposed biochemical function of CutC, C-N bond cleavage, represents new reactivity for the GRE family. Here we describe the in vitro characterization of CutC and its activating protein CutD. We have observed CutD-mediated formation of a glycyl radical on CutC using EPR spectroscopy and have demonstrated that activated CutC processes choline to trimethylamine and acetaldehyde. Surveys of potential alternate CutC substrates uncovered a strict specificity for choline. Homology modeling and mutagenesis experiments revealed essential CutC active site residues. Overall, this work establishes that CutC is a GRE of unique function and a molecular marker for anaerobic choline metabolism.
Collapse
Affiliation(s)
- Smaranda Craciun
- Department of Chemistry and
Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Jonathan A. Marks
- Department of Chemistry and
Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Emily P. Balskus
- Department of Chemistry and
Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
11
|
Weaver DS, Keseler IM, Mackie A, Paulsen IT, Karp PD. A genome-scale metabolic flux model of Escherichia coli K-12 derived from the EcoCyc database. BMC SYSTEMS BIOLOGY 2014; 8:79. [PMID: 24974895 PMCID: PMC4086706 DOI: 10.1186/1752-0509-8-79] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 06/19/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND Constraint-based models of Escherichia coli metabolic flux have played a key role in computational studies of cellular metabolism at the genome scale. We sought to develop a next-generation constraint-based E. coli model that achieved improved phenotypic prediction accuracy while being frequently updated and easy to use. We also sought to compare model predictions with experimental data to highlight open questions in E. coli biology. RESULTS We present EcoCyc-18.0-GEM, a genome-scale model of the E. coli K-12 MG1655 metabolic network. The model is automatically generated from the current state of EcoCyc using the MetaFlux software, enabling the release of multiple model updates per year. EcoCyc-18.0-GEM encompasses 1445 genes, 2286 unique metabolic reactions, and 1453 unique metabolites. We demonstrate a three-part validation of the model that breaks new ground in breadth and accuracy: (i) Comparison of simulated growth in aerobic and anaerobic glucose culture with experimental results from chemostat culture and simulation results from the E. coli modeling literature. (ii) Essentiality prediction for the 1445 genes represented in the model, in which EcoCyc-18.0-GEM achieves an improved accuracy of 95.2% in predicting the growth phenotype of experimental gene knockouts. (iii) Nutrient utilization predictions under 431 different media conditions, for which the model achieves an overall accuracy of 80.7%. The model's derivation from EcoCyc enables query and visualization via the EcoCyc website, facilitating model reuse and validation by inspection. We present an extensive investigation of disagreements between EcoCyc-18.0-GEM predictions and experimental data to highlight areas of interest to E. coli modelers and experimentalists, including 70 incorrect predictions of gene essentiality on glucose, 80 incorrect predictions of gene essentiality on glycerol, and 83 incorrect predictions of nutrient utilization. CONCLUSION Significant advantages can be derived from the combination of model organism databases and flux balance modeling represented by MetaFlux. Interpretation of the EcoCyc database as a flux balance model results in a highly accurate metabolic model and provides a rigorous consistency check for information stored in the database.
Collapse
Affiliation(s)
- Daniel S Weaver
- Bioinformatics Research Group, SRI International, 333 Ravenswood Ave., 94025 Menlo Park, CA, USA
| | - Ingrid M Keseler
- Bioinformatics Research Group, SRI International, 333 Ravenswood Ave., 94025 Menlo Park, CA, USA
| | - Amanda Mackie
- Department of Chemistry and Biomolecular Science, Macquarie University, Balaclava Rd, North Ryde NSW 2109, Australia
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Science, Macquarie University, Balaclava Rd, North Ryde NSW 2109, Australia
| | - Peter D Karp
- Bioinformatics Research Group, SRI International, 333 Ravenswood Ave., 94025 Menlo Park, CA, USA
| |
Collapse
|
12
|
Mori K, Oiwa T, Kawaguchi S, Kondo K, Takahashi Y, Toraya T. Catalytic Roles of Substrate-Binding Residues in Coenzyme B12-Dependent Ethanolamine Ammonia-Lyase. Biochemistry 2014; 53:2661-71. [DOI: 10.1021/bi500223k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Koichi Mori
- Department
of Bioscience
and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Toshihiro Oiwa
- Department
of Bioscience
and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Satoshi Kawaguchi
- Department
of Bioscience
and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kyosuke Kondo
- Department
of Bioscience
and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yusuke Takahashi
- Department
of Bioscience
and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Tetsuo Toraya
- Department
of Bioscience
and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
13
|
Cobalamin-dependent dehydratases and a deaminase: Radical catalysis and reactivating chaperones. Arch Biochem Biophys 2014; 544:40-57. [DOI: 10.1016/j.abb.2013.11.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 11/04/2013] [Accepted: 11/08/2013] [Indexed: 01/12/2023]
|
14
|
Bovell AM, Warncke K. The structural model of Salmonella typhimurium ethanolamine ammonia-lyase directs a rational approach to the assembly of the functional [(EutB-EutC)₂]₃ oligomer from isolated subunits. Biochemistry 2013; 52:1419-28. [PMID: 23374068 DOI: 10.1021/bi301651n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ethanolamine ammonia-lyase (EAL) is a 5'-deoxyadenosylcobalamin-dependent bacterial enzyme that catalyzes the deamination of the short-chain vicinal amino alcohols, aminoethanol and (S)- and (R)-2-aminopropanol. The coding sequence for EAL is located within the 17-gene eut operon, which encodes the broad spectrum of proteins that comprise the ethanolamine utilization (eut) metabolosome suborganelle structure. A high-resolution structure of the ∼500 kDa EAL [(EutB-EutC)₂]₃ oligomer from Escherichia coli has been determined by X-ray crystallography, but high-resolution spectroscopic determinations of reactant intermediate-state structures and detailed kinetic and thermodynamic studies of EAL have been conducted for the Salmonella typhimurium enzyme. Therefore, a statistically robust homology model for the S. typhimurium EAL is constructed from the E. coli structure. The model structure is used to describe the hierarchy of EutB and EutC subunit interactions that construct the native EAL oligomer and, specifically, to address the long-standing challenge of reconstitution of the functional oligomer from isolated, purified subunits. Model prediction that the (EutB₂)₃ oligomer assembly will occur from isolated EutB, and that this hexameric structure will template the formation of the complete, native [(EutB-EutC)₂]₃ oligomer, is verified by biochemical methods. Prediction that cysteine residues on the exposed subunit-subunit contact surfaces of isolated EutB and EutC will interfere with assembly by cystine formation is verified by activating effects of disulfide reducing agents. Angstrom-scale congruence of the reconstituted and native EAL in the active site region is shown by electron paramagnetic resonance spectroscopy. Overall, the hierarchy of subunit interactions and microscopic features of the contact surfaces, which are revealed by the homology model, guide and provide a rationale for a refined genetic and biochemical approach to reconstitution of the functional [(EutB-EutC)₂]₃ EAL oligomer. The results establish a platform for further advances in understanding the molecular mechanism of EAL catalysis and for insights into therapy-targeted manipulation of the bacterial eut metabolosome.
Collapse
|
15
|
Shibata N, Tamagaki H, Hieda N, Akita K, Komori H, Shomura Y, Terawaki SI, Mori K, Yasuoka N, Higuchi Y, Toraya T. Crystal structures of ethanolamine ammonia-lyase complexed with coenzyme B12 analogs and substrates. J Biol Chem 2010; 285:26484-93. [PMID: 20519496 PMCID: PMC2924083 DOI: 10.1074/jbc.m110.125112] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/17/2010] [Indexed: 11/06/2022] Open
Abstract
N-terminal truncation of the Escherichia coli ethanolamine ammonia-lyase beta-subunit does not affect the catalytic properties of the enzyme (Akita, K., Hieda, N., Baba, N., Kawaguchi, S., Sakamoto, H., Nakanishi, Y., Yamanishi, M., Mori, K., and Toraya, T. (2010) J. Biochem. 147, 83-93). The binary complex of the truncated enzyme with cyanocobalamin and the ternary complex with cyanocobalamin or adeninylpentylcobalamin and substrates were crystallized, and their x-ray structures were analyzed. The enzyme exists as a trimer of the (alphabeta)(2) dimer. The active site is in the (beta/alpha)(8) barrel of the alpha-subunit; the beta-subunit covers the lower part of the cobalamin that is bound in the interface of the alpha- and beta-subunits. The structure complexed with adeninylpentylcobalamin revealed the presence of an adenine ring-binding pocket in the enzyme that accommodates the adenine moiety through a hydrogen bond network. The substrate is bound by six hydrogen bonds with active-site residues. Argalpha(160) contributes to substrate binding most likely by hydrogen bonding with the O1 atom. The modeling study implies that marked angular strains and tensile forces induced by tight enzyme-coenzyme interactions are responsible for breaking the coenzyme Co-C bond. The coenzyme adenosyl radical in the productive conformation was modeled by superimposing its adenine ring on the adenine ring-binding site followed by ribosyl rotation around the N-glycosidic bond. A major structural change upon substrate binding was not observed with this particular enzyme. Glualpha(287), one of the substrate-binding residues, has a direct contact with the ribose group of the modeled adenosylcobalamin, which may contribute to the substrate-induced additional labilization of the Co-C bond.
Collapse
Affiliation(s)
- Naoki Shibata
- From the Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- the RIKEN Harima Institute, SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan, and
| | - Hiroko Tamagaki
- From the Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Naoki Hieda
- the Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Okayama 700-8530, Japan
| | - Keita Akita
- the Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Okayama 700-8530, Japan
| | - Hirofumi Komori
- From the Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Yasuhito Shomura
- From the Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Shin-ichi Terawaki
- From the Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Koichi Mori
- the Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Okayama 700-8530, Japan
| | - Noritake Yasuoka
- From the Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Yoshiki Higuchi
- From the Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- the RIKEN Harima Institute, SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan, and
| | - Tetsuo Toraya
- the Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Okayama 700-8530, Japan
| |
Collapse
|
16
|
Shibata N, Tamagaki H, Ohtsuki S, Hieda N, Akita K, Komori H, Shomura Y, Terawaki SI, Toraya T, Yasuoka N, Higuchi Y. Expression, crystallization and preliminary X-ray crystallographic study of ethanolamine ammonia-lyase from Escherichia coli. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:709-711. [PMID: 20516606 PMCID: PMC2882776 DOI: 10.1107/s1744309110014478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 04/20/2010] [Indexed: 05/29/2023]
Abstract
Ethanolamine ammonia-lyase (EAL) catalyzes the adenosylcobalamin-dependent conversion of ethanolamine to acetaldehyde and ammonia. The wild-type enzyme shows a very low solubility. N-terminal truncation of the Escherichia coli EAL beta-subunit dramatically increases the solubility of the enzyme without altering its catalytic properties. Two deletion mutants of the enzyme [EAL(betaDelta4-30) and EAL(betaDelta4-43)] have been overexpressed, purified and crystallized using the sitting-drop vapour-diffusion method. Crystals of EAL(betaDelta4-30) and EAL(betaDelta4-43) diffracted to approximately 8.0 and 2.1 A resolution, respectively.
Collapse
Affiliation(s)
- Naoki Shibata
- Department of Life Science, Graduate School of Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|