1
|
Krüsemann JL, Rainaldi V, Cotton CA, Claassens NJ, Lindner SN. The cofactor challenge in synthetic methylotrophy: bioengineering and industrial applications. Curr Opin Biotechnol 2023; 82:102953. [PMID: 37320962 DOI: 10.1016/j.copbio.2023.102953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/03/2023] [Accepted: 05/14/2023] [Indexed: 06/17/2023]
Abstract
Methanol is a promising feedstock for industrial bioproduction: it can be produced renewably and has high solubility and limited microbial toxicity. One of the key challenges for its bio-industrial application is the first enzymatic oxidation step to formaldehyde. This reaction is catalysed by methanol dehydrogenases (MDH) that can use NAD+, O2 or pyrroloquinoline quinone (PQQ) as an electron acceptor. While NAD-dependent MDH are simple to express and have the highest energetic efficiency, they exhibit mediocre kinetics and poor thermodynamics at ambient temperatures. O2-dependent methanol oxidases require high oxygen concentrations, do not conserve energy and thus produce excessive heat as well as toxic H2O2. PQQ-dependent MDH provide a good compromise between energy efficiency and good kinetics that support fast growth rates without any drawbacks for process engineering. Therefore, we argue that this enzyme class represents a promising solution for industry and outline engineering strategies for the implementation of these complex systems in heterologous hosts.
Collapse
Affiliation(s)
- Jan L Krüsemann
- Charité - Universitätsmedizin Berlin, Department of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; Max Planck Institute for Terrestrial Microbiology, Department of Biochemistry and Synthetic Metabolism, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Vittorio Rainaldi
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | | | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Steffen N Lindner
- Charité - Universitätsmedizin Berlin, Department of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
2
|
Lahham M, Jha S, Goj D, Macheroux P, Wallner S. The family of sarcosine oxidases: Same reaction, different products. Arch Biochem Biophys 2021; 704:108868. [PMID: 33812916 DOI: 10.1016/j.abb.2021.108868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/11/2022]
Abstract
The subfamily of sarcosine oxidase is a set of enzymes within the larger family of amine oxidases. It is ubiquitously distributed among different kingdoms of life. The member enzymes catalyze the oxidization of an N-methyl amine bond of amino acids to yield unstable imine species that undergo subsequent spontaneous non-enzymatic reactions, forming an array of different products. These products range from demethylated simple species to complex alkaloids. The enzymes belonging to the sarcosine oxidase family, namely, monomeric and heterotetrameric sarcosine oxidase, l-pipecolate oxidase, N-methyltryptophan oxidase, NikD, l-proline dehydrogenase, FsqB, fructosamine oxidase and saccharopine oxidase have unique features differentiating them from other amine oxidases. This review highlights the key attributes of the sarcosine oxidase family enzymes, in terms of their substrate binding motif, type of oxidation reaction mediated and FAD regeneration, to define the boundaries of this group and demarcate these enzymes from other amine oxidase families.
Collapse
Affiliation(s)
- Majd Lahham
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Graz, Austria; Department of Biochemistry and Microbiology, Aljazeera Private University, Ghabagheb, Syria
| | - Shalinee Jha
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Dominic Goj
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Silvia Wallner
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Graz, Austria.
| |
Collapse
|
3
|
Yoneda S, Saito T, Nakajima D, Watanabe G. Potential of mean force and umbrella sampling simulation for the transport of 5-oxazolidinone in heterotetrameric sarcosine oxidase. Proteins 2021; 89:811-818. [PMID: 33576049 DOI: 10.1002/prot.26060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 01/04/2021] [Accepted: 01/31/2021] [Indexed: 11/11/2022]
Abstract
The structure of heterotetrameric sarcosine oxidase (HSO) contains a highly complex system composed of a large cavity and tunnels, which are essential for the reaction and migration of the reactants, products, and intermediates. Previous geometrical analysis using the CAVER program has predicted that there are three possible tunnels, T1, T2, and T3, for the exit pathway of the iminium intermediate, 5-oxazolidinone (5-OXA), of the enzyme reaction. Previous molecular dynamics (MD) simulation of HSO has identified the regions containing the water channels from the density distribution of water. The simulation indicated that tunnel T3 is the most probable exit pathway of 5-OXA. In the present study, the potential of mean force (PMF) for the transport of 5-OXA through tunnels T1, T2, and T3 was calculated using umbrella sampling (US) MD simulations and the weighted histogram analysis method. The PMF profiles for the three tunnels support the notion that tunnel T3 is the exit pathway of 5-OXA, and that 5-OXA tends to stay at the middle of the tunnel. The maximum errors of the calculated PMF for the predicted exit pathway, tunnel T3, were estimated by repeating the US simulations using different sets of initial positions. The PMF profile was also calculated for the transport of glycine within T3. The PMF profiles from the US simulations were in good agreement with the previous predictions that 5-OXA escape through tunnel T3 and how glycine is released to the outside of HSO was discussed.
Collapse
Affiliation(s)
- Shigetaka Yoneda
- School of Science, Kitasato University, Sagamihara-Shi, Kanagawa-Ken, Japan
| | - Takami Saito
- School of Science, Kitasato University, Sagamihara-Shi, Kanagawa-Ken, Japan
| | - Daisuke Nakajima
- School of Science, Kitasato University, Sagamihara-Shi, Kanagawa-Ken, Japan
| | - Go Watanabe
- School of Science, Kitasato University, Sagamihara-Shi, Kanagawa-Ken, Japan
| |
Collapse
|
4
|
Kawasaki D, Chisuga T, Miyanaga A, Kudo F, Eguchi T. Structural Analysis of the Glycine Oxidase Homologue CmiS2 Reveals a Unique Substrate Recognition Mechanism for Formation of a β-Amino Acid Starter Unit in Cremimycin Biosynthesis. Biochemistry 2019; 58:2706-2709. [PMID: 31154757 DOI: 10.1021/acs.biochem.9b00444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The flavin adenine dinucleotide-dependent oxidase CmiS2 catalyzes the oxidation of N-carboxymethyl-3-aminononanoic acid to produce a 3-aminononanoic acid starter unit for the biosynthesis of cremimycin, a macrolactam polyketide. Although the sequence of CmiS2 is similar with that of the well-characterized glycine oxidase ThiO, the chemical structure of the substrate of CmiS2 is different from that of ThiO substrate glycine. Here, we present the biochemical and structural characterization of CmiS2. Kinetic analysis revealed that CmiS2 has a strong preference for N-carboxymethyl-3-aminononanoic acid over other substrates such as N-carboxymethyl-3-aminobutanoic acid and glycine, suggesting that CmiS2 recognizes the nonanoic acid moiety of the substrate as well as the glycine moiety. We determined the crystal structure of CmiS2 in complex with a substrate analogue, namely, S-carboxymethyl-3-thiononanoic acid, which enabled the identification of key amino acid residues involved in substrate recognition. We discovered that Asn49, Arg243, and Arg334 interact with the carboxyl group of the nonanoic acid moiety, while Pro46, Leu52, and Ile335 recognize the alkyl chain of the nonanoic acid moiety via hydrophobic interaction. These residues are highly conserved in CmiS2 homologues involved in the biosynthesis of related macrolactam polyketides but are not conserved in glycine oxidases such as ThiO. These results suggest that CmiS2-type enzymes employ a distinct mechanism of substrate recognition for the synthesis of β-amino acids.
Collapse
Affiliation(s)
- Daisuke Kawasaki
- Department of Chemistry , Tokyo Institute of Technology , 2-12-1 O-okayama , Meguro-ku, Tokyo 152-8551 , Japan
| | - Taichi Chisuga
- Department of Chemistry , Tokyo Institute of Technology , 2-12-1 O-okayama , Meguro-ku, Tokyo 152-8551 , Japan
| | - Akimasa Miyanaga
- Department of Chemistry , Tokyo Institute of Technology , 2-12-1 O-okayama , Meguro-ku, Tokyo 152-8551 , Japan
| | - Fumitaka Kudo
- Department of Chemistry , Tokyo Institute of Technology , 2-12-1 O-okayama , Meguro-ku, Tokyo 152-8551 , Japan
| | - Tadashi Eguchi
- Department of Chemistry , Tokyo Institute of Technology , 2-12-1 O-okayama , Meguro-ku, Tokyo 152-8551 , Japan
| |
Collapse
|
5
|
Hassani S, Haghbeen K, Fazli M. Non-specific binding sites help to explain mixed inhibition in mushroom tyrosinase activities. Eur J Med Chem 2016; 122:138-148. [PMID: 27344491 DOI: 10.1016/j.ejmech.2016.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/30/2016] [Accepted: 06/10/2016] [Indexed: 12/16/2022]
Abstract
Inhibition and activation studies of tyrosinase could prove beneficial to agricultural, food, cosmetic, and pharmaceutical industries. Although non-competitive and mixed-inhibition are frequent modes observed in kinetics studies on mushroom tyrosinase (MT) activities, the phenomena are left unexplained. In this study, dual effects of phthalic acid (PA) and cinnamic acid (CA) on MT during mono-phenolase activity were demonstrated. PA activated and inhibited MT at concentrations lower and higher than 150 μM, respectively. In contrast, CA inhibited and activated MT at concentrations lower and higher than 5 μM. The mode of inhibition for both effectors was mixed-type. Complex kinetics of MT in the presence of a modulator could partly be ascribed to its mixed-cooperativity. However, to explain mixed-inhibition mode, it is necessary to demonstrate how the ternary complex of substrate/enzyme/effector is formed. Therefore, we looked for possible non-specific binding sites using MT tropolone-bound PDB (2Y9X) in the computational studies. When tropolone was in MTPa (active site), PA and CA occupied different pockets (named MTPb and MTPc, respectively). The close Moldock scores of PA binding posed in MTPb and MTPa suggested that MTPb could be a secondary binding site for PA. Similar results were obtained for CA. Ensuing results from 10 ns molecular dynamics simulations for 2Y9X-effector complexes indicated that the structures were gradually stabilized during simulation. Tunnel analysis by using CAVER Analyst and CHEXVIS resulted in identifying two distinct channels that assumingly participate in exchanging the effectors when the direct channel to MTPa is not accessible.
Collapse
Affiliation(s)
- Sorour Hassani
- Department of Chemistry, Faculty of Science, Semnan University, Semnan, Iran
| | - Kamahldin Haghbeen
- Department of Plant Bioproducts, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran.
| | - Mostafa Fazli
- Department of Chemistry, Faculty of Science, Semnan University, Semnan, Iran
| |
Collapse
|
6
|
Motta P, Molla G, Pollegioni L, Nardini M. Structure-Function Relationships in l-Amino Acid Deaminase, a Flavoprotein Belonging to a Novel Class of Biotechnologically Relevant Enzymes. J Biol Chem 2016; 291:10457-75. [PMID: 27022028 DOI: 10.1074/jbc.m115.703819] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Indexed: 01/11/2023] Open
Abstract
l-Amino acid deaminase from Proteus myxofaciens (PmaLAAD) is a membrane flavoenzyme that catalyzes the deamination of neutral and aromatic l-amino acids into α-keto acids and ammonia. PmaLAAD does not use dioxygen to re-oxidize reduced FADH2 and thus does not produce hydrogen peroxide; instead, it uses a cytochrome b-like protein as an electron acceptor. Although the overall fold of this enzyme resembles that of known amine or amino acid oxidases, it shows the following specific structural features: an additional novel α+β subdomain placed close to the putative transmembrane α-helix and to the active-site entrance; an FAD isoalloxazine ring exposed to solvent; and a large and accessible active site suitable to bind large hydrophobic substrates. In addition, PmaLAAD requires substrate-induced conformational changes of part of the active site, particularly in Arg-316 and Phe-318, to achieve the correct geometry for catalysis. These studies are expected to pave the way for rationally improving the versatility of this flavoenzyme, which is critical for biocatalysis of enantiomerically pure amino acids.
Collapse
Affiliation(s)
- Paolo Motta
- From the Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi deII'Insubria, via J. H. Dunant 3, 21100 Varese
| | - Gianluca Molla
- From the Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi deII'Insubria, via J. H. Dunant 3, 21100 Varese, The Protein Factory, Politecnico di Milano and Università degli Studi deII'Insubria, 21100 Varese, and
| | - Loredano Pollegioni
- From the Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi deII'Insubria, via J. H. Dunant 3, 21100 Varese, The Protein Factory, Politecnico di Milano and Università degli Studi deII'Insubria, 21100 Varese, and
| | - Marco Nardini
- the Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
7
|
Jacewicz A, Schnell R, Lindqvist Y, Schneider G. Crystal structure of the flavoenzyme PA4991 from Pseudomonas aeruginosa. Acta Crystallogr F Struct Biol Commun 2016; 72:105-11. [PMID: 26841760 PMCID: PMC4741190 DOI: 10.1107/s2053230x15024437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 12/18/2015] [Indexed: 11/13/2022] Open
Abstract
The locus PA4991 in Pseudomonas aeruginosa encodes an open reading frame that has been identified as essential for the virulence and/or survival of this pathogenic organism in the infected host. Here, it is shown that this gene encodes a monomeric FAD-binding protein of molecular mass 42.2 kDa. The structure of PA4991 was determined by a combination of molecular replacement using a search model generated with Rosetta and phase improvement by a low-occupancy heavy-metal derivative. PA4991 belongs to the GR2 family of FAD-dependent oxidoreductases, comprising an FAD-binding domain typical of the glutathione reductase family and a second domain dominated by an eight-stranded mixed β-sheet. Most of the protein-FAD interactions are via the FAD-binding domain, but the isoalloxazine ring is located at the domain interface and interacts with residues from both domains. A comparison with the structurally related glycine oxidase and glycerol-3-phosphate dehydrogenase shows that in spite of very low amino-acid sequence identity (<18%) several active-site residues involved in substrate binding in these enzymes are conserved in PA4991. However, enzymatic assays show that PA4991 does not display amino-acid oxidase or glycerol-3-phosphate dehydrogenase activities, suggesting that it requires different substrates for activity.
Collapse
Affiliation(s)
- Agata Jacewicz
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Ylva Lindqvist
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Gunter Schneider
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| |
Collapse
|
8
|
Watanabe G, Nakajima D, Hiroshima A, Suzuki H, Yoneda S. Analysis of water channels by molecular dynamics simulation of heterotetrameric sarcosine oxidase. Biophys Physicobiol 2015; 12:131-7. [PMID: 27493862 PMCID: PMC4736832 DOI: 10.2142/biophysico.12.0_131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/16/2015] [Indexed: 12/01/2022] Open
Abstract
A precise 100-ns molecular dynamics simulation in aquo was performed for the heterotetrameric sarcosine oxidase bound with a substrate analogue, dimethylglycine. The spatial region including the protein was divided into small rectangular cells. The average number of the water molecules locating within each cell was calculated based on the simulation trajectory. The clusters of the cells filled with water molecules were used to determine the water channels. The narrowness of the channels, the average hydropathy indices of the residues of the channels, and the number of migration events of water molecules through the channels were consistent with the selective transport hypothesis whereby tunnel T3 is the pathway for the exit of the iminium intermediate of the enzyme reaction.
Collapse
Affiliation(s)
- Go Watanabe
- School of Science, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Daisuke Nakajima
- School of Science, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Akinori Hiroshima
- School of Science, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Haruo Suzuki
- School of Science, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Shigetaka Yoneda
- School of Science, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
9
|
Enhancement of soluble expression of codon-optimized Thermomicrobium roseum sarcosine oxidase in Escherichia coli via chaperone co-expression. J Biotechnol 2015; 218:75-84. [PMID: 26626227 DOI: 10.1016/j.jbiotec.2015.11.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 12/30/2022]
Abstract
The codon-optimized sarcosine oxidase from Thermomicrobium roseum (TrSOX) was successfully expressed in Escherichia coli and its soluble expression was significantly enhanced via the co-expression of chaperones. With the assistance of whole-genome analysis of T. roseum DSM 5159, the sox gene was predicated and its sequence was optimized based on the codon bias of E. coli. The TrSOX gene was successfully constructed in the pET28a plasmid. After induction with IPTG for 8h, SDS-PAGE analysis of crude enzyme solutions showed a significant 43 kDa protein band, indicating SOX was successfully expressed in E. coli. However, the dark band corresponding to the intracellular insoluble fraction indicated that most of TrSOX enzyme existed in the inactive form in "inclusion bodies" owing to the "hot spots" of TrSOX. Furthermore, the co-expression of five different combinations of chaperones indicated that the soluble expression of TrSOX was greatly improved by the co-expression of molecular chaperones GroES-GroEL and DnaK-DnaJ-GrpE-GroES-GroEL. Additionally, the analysis of intramolecular forces indicated that the hydrophobic amino acids, hydrogen bonds, and ionic bonds were favorable for enhancing the interaction and stability of TrSOX secondary structure. This study provides a novel strategy for enhancing the soluble expression of TrSOX in E. coli.
Collapse
|
10
|
Bucci A, Abrams CF. Oxygen Pathways and Allostery in Monomeric Sarcosine Oxidase via Single-Sweep Free-Energy Reconstruction. J Chem Theory Comput 2014; 10:2668-2676. [PMID: 25061440 PMCID: PMC4095932 DOI: 10.1021/ct500088z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Indexed: 01/12/2023]
Abstract
Monomeric sarcosine oxidase (MSOX) is a flavoprotein D-amino acid oxidase with reported sarcosine and oxygen activation sites on the re and si faces of the flavin ring, respectively. O2 transport routes to the catalytic interior are not well understood and are difficult to ascertain solely from MSOX crystal structures. A composite free-energy method known as single-sweep is used to map and thermodynamically characterize oxygen sites and routes leading to the catalytically active Lys265 from the protein surface. The result is a network of pathways and free energies within MSOX illustrating that oxygen can access two free-energy minima on the re face of the reduced flavin from four separate solvent portals. No such minimum is observed on the si face. The pathways are geometrically similar for three major states of the enzyme: (1) apo with a closed flavin cleft, (2) apo with an open flavin cleft, and (3) inhibitor-bound with a closed flavin cleft. Interestingly, free energies along these transport pathways display significantly deeper minima when the substrate-mimicking inhibitor 2-furoic acid is bound at the sarcosine site, even at locations far from this site. This suggests a substrate-dependent allosteric modulation of the kinetics of O2 transport from the solvent to the active site.
Collapse
Affiliation(s)
- Anthony Bucci
- Dept. Chemical and Biological
Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Cameron F. Abrams
- Dept. Chemical and Biological
Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
11
|
Wargo MJ. Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa. Appl Environ Microbiol 2013; 79:2112-20. [PMID: 23354714 PMCID: PMC3623244 DOI: 10.1128/aem.03565-12] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most sequenced bacteria possess mechanisms to import choline and glycine betaine (GB) into the cytoplasm. The primary role of choline in bacteria appears to be as the precursor to GB, and GB is thought to primarily act as a potent osmoprotectant. Choline and GB may play accessory roles in shaping microbial communities, based on their limited availability and ability to enhance survival under stress conditions. Choline and GB enrichment near eukaryotes suggests a role in the chemical relationships between these two kingdoms, and some of these interactions have been experimentally demonstrated. While many bacteria can convert choline to GB for osmoprotection, a variety of soil- and water-dwelling bacteria have catabolic pathways for the multistep conversion of choline, via GB, to glycine and can thereby use choline and GB as sole sources of carbon and nitrogen. In these choline catabolizers, the GB intermediate represents a metabolic decision point to determine whether GB is catabolized or stored as an osmo- and stress protectant. This minireview focuses on this decision point in Pseudomonas aeruginosa, which aerobically catabolizes choline and can use GB as an osmoprotectant and a nutrient source. P. aeruginosa is an experimentally tractable and ecologically relevant model to study the regulatory pathways controlling choline and GB homeostasis in choline-catabolizing bacteria. The study of P. aeruginosa associations with eukaryotes and other bacteria also makes this a powerful model to study the impact of choline and GB, and their associated regulatory and catabolic pathways, on host-microbe and microbe-microbe relationships.
Collapse
Affiliation(s)
- Matthew J Wargo
- Department of Microbiology and Molecular Genetics and The Vermont Lung Center, University of Vermont College of Medicine, Burlington, Vermont, USA.
| |
Collapse
|
12
|
Nieh CH, Tsujimura S, Shirai O, Kano K. Electrostatic and steric interaction between redox polymers and some flavoenzymes in mediated bioelectrocatalysis. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2012.11.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput Biol 2012; 8:e1002708. [PMID: 23093919 PMCID: PMC3475669 DOI: 10.1371/journal.pcbi.1002708] [Citation(s) in RCA: 932] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 08/01/2012] [Indexed: 11/19/2022] Open
Abstract
Tunnels and channels facilitate the transport of small molecules, ions and water solvent in a large variety of proteins. Characteristics of individual transport pathways, including their geometry, physico-chemical properties and dynamics are instrumental for understanding of structure-function relationships of these proteins, for the design of new inhibitors and construction of improved biocatalysts. CAVER is a software tool widely used for the identification and characterization of transport pathways in static macromolecular structures. Herein we present a new version of CAVER enabling automatic analysis of tunnels and channels in large ensembles of protein conformations. CAVER 3.0 implements new algorithms for the calculation and clustering of pathways. A trajectory from a molecular dynamics simulation serves as the typical input, while detailed characteristics and summary statistics of the time evolution of individual pathways are provided in the outputs. To illustrate the capabilities of CAVER 3.0, the tool was applied for the analysis of molecular dynamics simulation of the microbial enzyme haloalkane dehalogenase DhaA. CAVER 3.0 safely identified and reliably estimated the importance of all previously published DhaA tunnels, including the tunnels closed in DhaA crystal structures. Obtained results clearly demonstrate that analysis of molecular dynamics simulation is essential for the estimation of pathway characteristics and elucidation of the structural basis of the tunnel gating. CAVER 3.0 paves the way for the study of important biochemical phenomena in the area of molecular transport, molecular recognition and enzymatic catalysis. The software is freely available as a multiplatform command-line application at http://www.caver.cz.
Collapse
|
14
|
Saito M, Itoh A, Suzuki H. Deuterium kinetic isotope effects in heterotetrameric sarcosine oxidase from Corynebacterium sp. U-96: the anionic form of the substrate in the enzyme-substrate complex is a reactive species. J Biochem 2012; 151:633-42. [PMID: 22528666 DOI: 10.1093/jb/mvs045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Heterotetrameric sarcosine oxidase is a flavoprotein that catalyses the oxidative demethylation of sarcosine. It is thought that the dehydrogenated substrate is the anionic form of sarcosine. To verify this assumption, the rate of flavin-adenine dinucleotide (FAD) reduction (k(red)) was analysed using protiated and deuterated sarcosine (N-methyl-d(3)-Gly) at various pH values using stopped-flow method. By increasing the pH from 6.2 to 9.8, k(red) increased for both substrates and reached a plateau, but the pK(a) value (reflecting the ionization of the enzyme-substrate complex) was 6.8 and 7.1 for protiated and deuterated sarcosine, respectively, and the kinetic isotope effect of k(red) decreased from approximately 19 to 8, indicating deprotonation of the bound sarcosine. The k(red)/K(d) (K(d), sarcosine dissociation constant) increased with increasing pH and reached a plateau. The pK (reflecting the ionization of free enzyme or free sarcosine) was 7.0 for both substrates, suggesting deprotonation of the βLys358 residue, which has a pK(a) of 6.7, as the pK(a) of the free sarcosine amine proton was determined to be approximately 10.1. These results indicate that the amine proton of sarcosine is transferred to the unprotonated Lys residue in the enzyme-substrate complex.
Collapse
Affiliation(s)
- Mutsumi Saito
- Division of Bioscience, Graduate School of Basic Life Science, Kitasato University, Kitasato, Sagamihara-shi, Japan
| | | | | |
Collapse
|
15
|
Brezovsky J, Chovancova E, Gora A, Pavelka A, Biedermannova L, Damborsky J. Software tools for identification, visualization and analysis of protein tunnels and channels. Biotechnol Adv 2012; 31:38-49. [PMID: 22349130 DOI: 10.1016/j.biotechadv.2012.02.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 01/17/2012] [Accepted: 02/02/2012] [Indexed: 01/09/2023]
Abstract
Protein structures contain highly complex systems of voids, making up specific features such as surface clefts or grooves, pockets, protrusions, cavities, pores or channels, and tunnels. Many of them are essential for the migration of solvents, ions and small molecules through proteins, and their binding to the functional sites. Analysis of these structural features is very important for understanding of structure-function relationships, for the design of potential inhibitors or proteins with improved functional properties. Here we critically review existing software tools specialized in rapid identification, visualization, analysis and design of protein tunnels and channels. The strengths and weaknesses of individual tools are reported together with examples of their applications for the analysis and engineering of various biological systems. This review can assist users with selecting a proper software tool for study of their biological problem as well as highlighting possible avenues for further development of existing tools. Development of novel descriptors representing not only geometry, but also electrostatics, hydrophobicity or dynamics, is needed for reliable identification of biologically relevant tunnels and channels.
Collapse
Affiliation(s)
- Jan Brezovsky
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|