1
|
Jobin K, Müller DN, Jantsch J, Kurts C. Sodium and its manifold impact on our immune system. Trends Immunol 2021; 42:469-479. [PMID: 33962888 DOI: 10.1016/j.it.2021.04.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022]
Abstract
The Western diet is rich in salt, and a high salt diet (HSD) is suspected to be a risk factor for cardiovascular diseases. It is now widely accepted that an experimental HSD can stimulate components of the immune system, potentially exacerbating certain autoimmune diseases, or alternatively, improving defenses against certain infections, such as cutaneous leishmaniasis. However, recent findings show that an experimental HSD may also aggravate other infections (e.g., pyelonephritis or systemic listeriosis). Here, we discuss the modulatory effects of a HSD on the microbiota, metabolic signaling, hormonal responses, local sodium concentrations, and their effects on various immune cell types in different tissues. We describe how these factors are integrated, resulting either in immune stimulation or suppression in various tissues and disease settings.
Collapse
Affiliation(s)
- Katarzyna Jobin
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany; Würzburg Institute of Systems Immunology, Max-Planck Research Group, University of Würzburg, Würzburg, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, and Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany.
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany; Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Jobin K, Stumpf NE, Schwab S, Eichler M, Neubert P, Rauh M, Adamowski M, Babyak O, Hinze D, Sivalingam S, Weisheit C, Hochheiser K, Schmidt SV, Meissner M, Garbi N, Abdullah Z, Wenzel U, Hölzel M, Jantsch J, Kurts C. A high-salt diet compromises antibacterial neutrophil responses through hormonal perturbation. Sci Transl Med 2020; 12:12/536/eaay3850. [DOI: 10.1126/scitranslmed.aay3850] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
Abstract
The Western diet is rich in salt, which poses various health risks. A high-salt diet (HSD) can stimulate immunity through the nuclear factor of activated T cells 5 (Nfat5)–signaling pathway, especially in the skin, where sodium is stored. The kidney medulla also accumulates sodium to build an osmotic gradient for water conservation. Here, we studied the effect of an HSD on the immune defense against uropathogenic E. coli–induced pyelonephritis, the most common kidney infection. Unexpectedly, pyelonephritis was aggravated in mice on an HSD by two mechanisms. First, on an HSD, sodium must be excreted; therefore, the kidney used urea instead to build the osmotic gradient. However, in contrast to sodium, urea suppressed the antibacterial functionality of neutrophils, the principal immune effectors against pyelonephritis. Second, the body excretes sodium by lowering mineralocorticoid production via suppressing aldosterone synthase. This caused an accumulation of aldosterone precursors with glucocorticoid functionality, which abolished the diurnal adrenocorticotropic hormone–driven glucocorticoid rhythm and compromised neutrophil development and antibacterial functionality systemically. Consistently, under an HSD, systemic Listeria monocytogenes infection was also aggravated in a glucocorticoid-dependent manner. Glucocorticoids directly induced Nfat5 expression, but pharmacological normalization of renal Nfat5 expression failed to restore the antibacterial defense. Last, healthy humans consuming an HSD for 1 week showed hyperglucocorticoidism and impaired antibacterial neutrophil function. In summary, an HSD suppresses intrarenal neutrophils Nfat5-independently by altering the local microenvironment and systemically by glucocorticoid-mediated immunosuppression. These findings argue against high-salt consumption during bacterial infections.
Collapse
Affiliation(s)
- Katarzyna Jobin
- Institute of Experimental Immunology, University Hospital of Bonn, Rheinische Friedrich Wilhelm University, 53127 Bonn, Germany
- Institute for Systems Immunology, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Natascha E. Stumpf
- Institute of Experimental Immunology, University Hospital of Bonn, Rheinische Friedrich Wilhelm University, 53127 Bonn, Germany
| | - Sebastian Schwab
- Institute of Experimental Immunology, University Hospital of Bonn, Rheinische Friedrich Wilhelm University, 53127 Bonn, Germany
- Medizinische Klinik I, University Hospital of Bonn, Rheinische Friedrich Wilhelm University, 53127 Bonn, Germany
| | - Melanie Eichler
- Institute of Experimental Immunology, University Hospital of Bonn, Rheinische Friedrich Wilhelm University, 53127 Bonn, Germany
| | - Patrick Neubert
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Manfred Rauh
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Loschgestraβe 15, 91054 Erlangen, Germany
| | - Marek Adamowski
- Institute of Experimental Immunology, University Hospital of Bonn, Rheinische Friedrich Wilhelm University, 53127 Bonn, Germany
| | - Olena Babyak
- Institute of Experimental Immunology, University Hospital of Bonn, Rheinische Friedrich Wilhelm University, 53127 Bonn, Germany
| | - Daniel Hinze
- Institute of Experimental Oncology, University Hospital of Bonn, Rheinische Friedrich Wilhelm University, Bonn, Germany
| | - Sugirthan Sivalingam
- Institute of Experimental Oncology, University Hospital of Bonn, Rheinische Friedrich Wilhelm University, Bonn, Germany
| | - Christina Weisheit
- Institute of Experimental Immunology, University Hospital of Bonn, Rheinische Friedrich Wilhelm University, 53127 Bonn, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Bonn, Rheinische Friedrich Wilhelm University, 53127 Bonn, Germany
| | - Katharina Hochheiser
- Institute of Experimental Immunology, University Hospital of Bonn, Rheinische Friedrich Wilhelm University, 53127 Bonn, Germany
| | - Susanne V. Schmidt
- Institute of Innate Immunity, University Hospital of Bonn, Rheinische Friedrich Wilhelm University, 53127 Bonn, Germany
| | - Mirjam Meissner
- Institute of Experimental Immunology, University Hospital of Bonn, Rheinische Friedrich Wilhelm University, 53127 Bonn, Germany
| | - Natalio Garbi
- Institute of Experimental Immunology, University Hospital of Bonn, Rheinische Friedrich Wilhelm University, 53127 Bonn, Germany
| | - Zeinab Abdullah
- Institute of Experimental Immunology, University Hospital of Bonn, Rheinische Friedrich Wilhelm University, 53127 Bonn, Germany
| | - Ulrich Wenzel
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital of Bonn, Rheinische Friedrich Wilhelm University, Bonn, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, University Hospital of Bonn, Rheinische Friedrich Wilhelm University, 53127 Bonn, Germany
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
5
|
Wazawa T, Yasui SI, Morimoto N, Suzuki M. 1,3-Diethylurea-enhanced Mg-ATPase activity of skeletal muscle myosin with a converse effect on the sliding motility. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2620-9. [PMID: 23954499 DOI: 10.1016/j.bbapap.2013.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 12/01/2022]
Abstract
We investigate the effects of urea and its derivatives on the ATPase activity and on the in vitro motility of chicken skeletal muscle actomyosin. Mg-ATPase rate of myosin subfragment-1 (S1) is increased by 4-fold by 0.3M 1,3-diethylurea (DEU), but it is unaffected by urea, thiourea, and 1,3-dimethylurea at ≤1M concentration. Thus, we further examine the effects of DEU in comparison to those of urea as reference. In in vitro motility assay, we find that in the presence of 0.3M DEU, the sliding speeds of actin filaments driven by myosin and heavy meromyosin (HMM) are significantly decreased to 1/16 and 1/6.6, respectively, compared with the controls. However, the measurement of the actin-activated ATPase activity of HMM shows that the maximal rate, Vmax, is almost unchanged with DEU. Thus, the myosin-driven sliding motility of actin filaments is significantly impeded in the presence of 0.3M DEU, whereas the cyclic interaction of myosin with F-actin occurs during the ATP turnover, the rate of which is close to that without DEU. In contrast to DEU, 0.3M urea exhibits only modest effects on both actin-activated ATPase and sliding motility of actomyosin. Thus, DEU has the effect of uncoupling the sliding motility of actomyosin from its ATP turnover.
Collapse
Affiliation(s)
- Tetsuichi Wazawa
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, Aoba-yama 02, Aoba-ku, Sendai 980-8579, Japan
| | | | | | | |
Collapse
|
7
|
Selective reduction of hydroperoxyeicosatetraenoic acids to their hydroxy derivatives by apolipoprotein D: implications for lipid antioxidant activity and Alzheimer's disease. Biochem J 2012; 442:713-21. [PMID: 22150111 DOI: 10.1042/bj20111166] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ApoD (apolipoprotein D) is up-regulated in AD (Alzheimer's disease) and upon oxidative stress. ApoD inhibits brain lipid peroxidation in vivo, but the mechanism is unknown. Specific methionine residues may inhibit lipid peroxidation by reducing radical-propagating L-OOHs (lipid hydroperoxides) to non-reactive hydroxides via a reaction that generates MetSO (methionine sulfoxide). Since apoD has three conserved methionine residues (Met(49), Met(93) and Met(157)), we generated recombinant proteins with either one or all methionine residues replaced by alanine and assessed their capacity to reduce HpETEs (hydroperoxyeicosatetraenoic acids) to their HETE (hydroxyeicosatetraenoic acid) derivatives. ApoD, apoD(M49-A) and apoD(M157-A) all catalysed the reduction of HpETEs to their corresponding HETEs. Amino acid analysis of HpETE-treated apoD revealed a loss of one third of the methionine residues accompanied by the formation of MetSO. Additional studies using apoD(M93-A) indicated that Met(93) was required for HpETE reduction. We also assessed the impact that apoD MetSO formation has on protein aggregation by Western blotting of HpETE-treated apoD and human brain samples. ApoD methionine oxidation was associated with formation of apoD aggregates that were also detected in the hippocampus of AD patients. In conclusion, conversion of HpETE into HETE is mediated by apoD Met(93), a process that may contribute to apoD antioxidant function.
Collapse
|