1
|
Takayama Y, Nakasako M. Similarity score for screening phase-retrieved maps in X-ray diffraction imaging - characterization in reciprocal space. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:95-112. [PMID: 38054944 PMCID: PMC10833420 DOI: 10.1107/s1600577523009827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/10/2023] [Indexed: 12/07/2023]
Abstract
X-ray diffraction imaging (XDI) is utilized for visualizing the structures of non-crystalline particles in material sciences and biology. In the structural analysis, phase-retrieval (PR) algorithms are applied to the diffraction amplitude data alone to reconstruct the electron density map of a specimen particle projected along the direction of the incident X-rays. However, PR calculations may not lead to good convergence because of a lack of diffraction patterns in small-angle regions and Poisson noise in X-ray detection. Therefore, the PR calculation is still a bottleneck for the efficient application of XDI in the structural analyses of non-crystalline particles. For screening maps from hundreds of trial PR calculations, we have been using a score and measuring the similarity between a pair of retrieved maps. Empirically, probable maps approximating the particle structures gave a score smaller than a threshold value, but the reasons for the effectiveness of the score are still unclear. In this study, the score is characterized in terms of the phase differences between the structure factors of the retrieved maps, the usefulness of the score in screening the maps retrieved from experimental diffraction patterns is demonstrated, and the effective resolution of similarity-score-selected maps is discussed.
Collapse
Affiliation(s)
- Yuki Takayama
- Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Sayo-gun, Hyogo 679-5148, Japan
- Synchrotron Radiation Research Center, Hyogo Science and Technology Association, 1-490-2 Kouto, Shingu, Tatsuno, Hyogo 679-5148, Japan
- International Center for Synchrotron Radiation Innovation Smart, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Masayoshi Nakasako
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Sayo-gun, Hyogo 679-5148, Japan
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
2
|
Yoshida S, Harada K, Uezu S, Takayama Y, Nakasako M. Protocol using similarity score and improved shrink-wrap algorithm for better convergence of phase-retrieval calculation in X-ray diffraction imaging. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:113-128. [PMID: 38054945 PMCID: PMC10833425 DOI: 10.1107/s1600577523009864] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
In X-ray diffraction imaging (XDI), electron density maps of a targeted particle are reconstructed computationally from the diffraction pattern alone using phase-retrieval (PR) algorithms. However, the PR calculations sometimes fail to yield realistic electron density maps that approximate the structure of the particle. This occurs due to the absence of structure amplitudes at and near the zero-scattering angle and the presence of Poisson noise in weak diffraction patterns. Consequently, the PR calculation becomes a bottleneck for XDI structure analyses. Here, a protocol to efficiently yield realistic maps is proposed. The protocol is based on the empirical observation that realistic maps tend to yield low similarity scores, as suggested in our prior study [Sekiguchi et al. (2017), J. Synchrotron Rad. 24, 1024-1038]. Among independently and concurrently executed PR calculations, the protocol modifies all maps using the electron-density maps exhibiting low similarity scores. This approach, along with a new protocol for estimating particle shape, improved the probability of obtaining realistic maps for diffraction patterns from various aggregates of colloidal gold particles, as compared with PR calculations performed without the protocol. Consequently, the protocol has the potential to reduce computational costs in PR calculations and enable efficient XDI structure analysis of non-crystalline particles using synchrotron X-rays and X-ray free-electron laser pulses.
Collapse
Affiliation(s)
- Syouyo Yoshida
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayogun, Hyogo, Japan
| | - Kosei Harada
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayogun, Hyogo, Japan
| | - So Uezu
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayogun, Hyogo, Japan
| | - Yuki Takayama
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayogun, Hyogo, Japan
- International Center for Synchrotron Radiation Innovation Smart, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Masayoshi Nakasako
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayogun, Hyogo, Japan
| |
Collapse
|
3
|
Fukui N, Yamamoto H, Miyabe M, Aoyama Y, Hongo K, Mizobata T, Kawahata I, Yabuki Y, Shinoda Y, Fukunaga K, Kawata Y. An α-synuclein decoy peptide prevents cytotoxic α-synuclein aggregation caused by fatty acid binding protein 3. J Biol Chem 2021; 296:100663. [PMID: 33862084 PMCID: PMC8131325 DOI: 10.1016/j.jbc.2021.100663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
α-synuclein (αSyn) is a protein known to form intracellular aggregates during the manifestation of Parkinson’s disease. Previously, it was shown that αSyn aggregation was strongly suppressed in the midbrain region of mice that did not possess the gene encoding the lipid transport protein fatty acid binding protein 3 (FABP3). An interaction between these two proteins was detected in vitro, suggesting that FABP3 may play a role in the aggregation and deposition of αSyn in neurons. To characterize the molecular mechanisms that underlie the interactions between FABP3 and αSyn that modulate the cellular accumulation of the latter, in this report, we used in vitro fluorescence assays combined with fluorescence microscopy, transmission electron microscopy, and quartz crystal microbalance assays to characterize in detail the process and consequences of FABP3–αSyn interaction. We demonstrated that binding of FABP3 to αSyn results in changes in the aggregation mechanism of the latter; specifically, a suppression of fibrillar forms of αSyn and also the production of aggregates with an enhanced cytotoxicity toward mice neuro2A cells. Because this interaction involved the C-terminal sequence region of αSyn, we tested a peptide derived from this region of αSyn (αSynP130-140) as a decoy to prevent the FABP3–αSyn interaction. We observed that the peptide competitively inhibited binding of αSyn to FABP3 in vitro and in cultured cells. We propose that administration of αSynP130-140 might be used to prevent the accumulation of toxic FABP3-αSyn oligomers in cells, thereby preventing the progression of Parkinson’s disease.
Collapse
Affiliation(s)
- Naoya Fukui
- Department of Chemistry and Biotechnology, Faculty of Engineering/Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Hanae Yamamoto
- Department of Chemistry and Biotechnology, Faculty of Engineering/Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Moe Miyabe
- Department of Chemistry and Biotechnology, Faculty of Engineering/Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Yuki Aoyama
- Department of Chemistry and Biotechnology, Faculty of Engineering/Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Kunihiro Hongo
- Department of Chemistry and Biotechnology, Faculty of Engineering/Graduate School of Engineering, Tottori University, Tottori, Japan; Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori, Japan; Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - Tomohiro Mizobata
- Department of Chemistry and Biotechnology, Faculty of Engineering/Graduate School of Engineering, Tottori University, Tottori, Japan; Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori, Japan; Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - Ichiro Kawahata
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasuharu Shinoda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasushi Kawata
- Department of Chemistry and Biotechnology, Faculty of Engineering/Graduate School of Engineering, Tottori University, Tottori, Japan; Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori, Japan; Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan.
| |
Collapse
|
4
|
Kobayashi A, Takayama Y, Hirakawa T, Okajima K, Oide M, Oroguchi T, Inui Y, Yamamoto M, Matsunaga S, Nakasako M. Common architectures in cyanobacteria Prochlorococcus cells visualized by X-ray diffraction imaging using X-ray free electron laser. Sci Rep 2021; 11:3877. [PMID: 33594220 PMCID: PMC7886902 DOI: 10.1038/s41598-021-83401-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 02/02/2021] [Indexed: 11/24/2022] Open
Abstract
Visualization of intracellular structures and their spatial organization inside cells without any modification is essential to understand the mechanisms underlying the biological functions of cells. Here, we investigated the intracellular structure of cyanobacteria Prochlorococcus in the interphase by X-ray diffraction imaging using X-ray free-electron laser. A number of diffraction patterns from single cells smaller than 1 µm in size were collected with high signal-to-noise ratio with a resolution of up to 30 nm. From diffraction patterns, a set of electron density maps projected along the direction of the incident X-ray were retrieved with high reliability. The most characteristic structure found to be common among the cells was a C-shaped arrangement of 100-nm sized high-density spots, which surrounded a low-density area of 100 nm. Furthermore, a three-dimensional map reconstructed from the projection maps of individual cells was non-uniform, indicating the presence of common structures among cyanobacteria cells in the interphase. By referring to the fluorescent images for distributions of thylakoid membranes, nucleoids, and carboxysomes, we inferred and represented their spatial arrangements in the three-dimensional map. The arrangement allowed us to discuss the relevance of the intracellular organization to the biological functions of cyanobacteria.
Collapse
Affiliation(s)
- Amane Kobayashi
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Yuki Takayama
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
- Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan
| | - Takeshi Hirakawa
- Department of Applied Biological Science Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Koji Okajima
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Mao Oide
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Tomotaka Oroguchi
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Yayoi Inui
- Department of Applied Biological Science Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Masaki Yamamoto
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological Science Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Masayoshi Nakasako
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.
| |
Collapse
|
5
|
Nakasako M, Kobayashi A, Takayama Y, Asakura K, Oide M, Okajima K, Oroguchi T, Yamamoto M. Methods and application of coherent X-ray diffraction imaging of noncrystalline particles. Biophys Rev 2020; 12:541-567. [PMID: 32180121 DOI: 10.1007/s12551-020-00690-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/05/2020] [Indexed: 11/26/2022] Open
Abstract
Microscopic imaging techniques have been developed to visualize events occurring in biological cells. Coherent X-ray diffraction imaging is one of the techniques applicable to structural analyses of cells and organelles, which have never been crystallized. In the experiment, a single noncrystalline particle is illuminated by an X-ray beam with almost complete spatial coherence. The structure of the particle projected along the direction of the beam is, in principle, retrieved from a finely recorded diffraction pattern alone by using iterative phase-retrieval algorithms. Here, we describe fundamental theory and experimental methods of coherent X-ray diffraction imaging and the recent application in structural studies of noncrystalline specimens by using X-rays available at Super Photon Ring of 8-Gev and SPring-8 Angstrom Compact Free Electron Laser in Japan.
Collapse
Affiliation(s)
- Masayoshi Nakasako
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
- RIKEN SPring-8 Center, 1-1-1 Kohto, Sayo, Sayo-gun, Hyogo, 679-5148, Japan.
| | - Amane Kobayashi
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kohto, Sayo, Sayo-gun, Hyogo, 679-5148, Japan
| | - Yuki Takayama
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kohto, Sayo, Sayo-gun, Hyogo, 679-5148, Japan
- Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan
| | - Kenta Asakura
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kohto, Sayo, Sayo-gun, Hyogo, 679-5148, Japan
| | - Mao Oide
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kohto, Sayo, Sayo-gun, Hyogo, 679-5148, Japan
| | - Koji Okajima
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kohto, Sayo, Sayo-gun, Hyogo, 679-5148, Japan
| | - Tomotaka Oroguchi
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kohto, Sayo, Sayo-gun, Hyogo, 679-5148, Japan
| | - Masaki Yamamoto
- RIKEN SPring-8 Center, 1-1-1 Kohto, Sayo, Sayo-gun, Hyogo, 679-5148, Japan
| |
Collapse
|
6
|
Yamaguchi KI, Kuwata K. Formation and properties of amyloid fibrils of prion protein. Biophys Rev 2018; 10:517-525. [PMID: 29204880 PMCID: PMC5899736 DOI: 10.1007/s12551-017-0377-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/23/2017] [Indexed: 02/06/2023] Open
Abstract
Amyloid fibrils formed from prion protein (PrP) are associated with prion diseases. In this review we discuss a number of extrinsic and intrinsic experimental factors related to the formation of PrP amyloid fibrils in vitro. We first examined the effects of ultrasonic power on the induction of amyloid fibrillation from PrP. The most important conclusion drawn from the results is that an applied ultrasonic power of approximately 2 W enhanced the nucleation of amyloid fibrils efficiently but that more powerful ultrasonication led to retardation of growth. We also reviewed evidence on the amyloidogenic regions of PrP based on peptide screening throughout the polypeptide sequence. These results showed that helix 2 (H2) peptides of PrP were capable of both the fibrillation and propagation of straight, long fibrils. Moreover, the conformation of preformed H2 fibrils changed reversibly depending on the pH of the solution, implying that interactions between side-chains modulated the conformation of amyloid fibrils. The evidence discussed in this review relates specifically to PrP but may be relevant to other amyloidogenic proteins.
Collapse
Affiliation(s)
- Kei-ichi Yamaguchi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 Japan
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido 1-1, Gifu, 501-1193 Japan
| | - Kazuo Kuwata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido 1-1, Gifu, 501-1193 Japan
- Graduate School of Medicine, Gifu University, Yanagido 1-1, Gifu, 501-1193 Japan
| |
Collapse
|