1
|
Knapp KM, Jenkins DE, Sullivan R, Harms FL, von Elsner L, Ockeloen CW, de Munnik S, Bongers EMHF, Murray J, Pachter N, Denecke J, Kutsche K, Bicknell LS. MCM complex members MCM3 and MCM7 are associated with a phenotypic spectrum from Meier-Gorlin syndrome to lipodystrophy and adrenal insufficiency. Eur J Hum Genet 2021; 29:1110-1120. [PMID: 33654309 PMCID: PMC8298597 DOI: 10.1038/s41431-021-00839-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 12/30/2022] Open
Abstract
The MCM2-7 helicase is a heterohexameric complex with essential roles as part of both the pre-replication and pre-initiation complexes in the early stages of DNA replication. Meier-Gorlin syndrome, a rare primordial dwarfism, is strongly associated with disruption to the pre-replication complex, including a single case described with variants in MCM5. Conversely, a biallelic pathogenic variant in MCM4 underlies immune deficiency with growth retardation, features also seen in individuals with pathogenic variants in other pre-initiation complex encoding genes such as GINS1, MCM10, and POLE. Through exome and chromium genome sequencing, supported by functional studies, we identify biallelic pathogenic variants in MCM7 and a strong candidate biallelic pathogenic variant in MCM3. We confirm variants in MCM7 are deleterious and through interfering with MCM complex formation, impact efficiency of S phase progression. The associated phenotypes are striking; one patient has typical Meier-Gorlin syndrome, whereas the second case has a multi-system disorder with neonatal progeroid appearance, lipodystrophy and adrenal insufficiency. We provide further insight into the developmental complexity of disrupted MCM function, highlighted by two patients with a similar variant profile in MCM7 but disparate clinical features. Our results build on other genetic findings linked to disruption of the pre-replication and pre-initiation complexes, and the replisome, and expand the complex clinical genetics landscape emerging due to disruption of DNA replication.
Collapse
Affiliation(s)
- Karen M Knapp
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Danielle E Jenkins
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Rosie Sullivan
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Frederike L Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonie von Elsner
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charlotte W Ockeloen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sonja de Munnik
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ernie M H F Bongers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jennie Murray
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- South East Scotland Clinical Genetics Service, NHS Lothian, Western General Hospital, Edinburgh, UK
| | - Nicholas Pachter
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA, Australia
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jonas Denecke
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Louise S Bicknell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
2
|
Zhu J, Jin L, Zhang A, Gao P, Dai G, Xu M, Xu L, Yang D. Coexpression Analysis of the EZH2 Gene Using The Cancer Genome Atlas and Oncomine Databases Identifies Coexpressed Genes Involved in Biological Networks in Breast Cancer, Glioblastoma, and Prostate Cancer. Med Sci Monit 2020; 26:e922346. [PMID: 32595202 PMCID: PMC7320634 DOI: 10.12659/msm.922346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND This study aimed to perform coexpression analysis of the EZH2 gene using The Cancer Genome Atlas (TCGA) and the Oncomine databases to identify coexpressed genes involved in biological networks in breast cancer, glioblastoma, and prostate cancer, with functional analysis of the EZH2 gene in the C4-2 human prostate cancer cell line in vitro. MATERIAL AND METHODS Data from TCGA and Oncomine databases were analyzed to determine the expression of EZH2 and the top five coexpressed genes in breast cancer, glioblastoma, and prostate cancer and the clinical significance the coexpressed genes. Gene Ontology (GO) analysis was performed to predict the functions and pathways of EZH2 using pathway annotation. The role of EZH2 in the C4-2 human prostate cancer cell line was studied in vitro. RESULTS Analysis of 16 micro-arrays identified 185 genes that were coexpressed with EZH2. The top five coexpressed genes were MCM4, KIAA0101, MKI67, RRM2, and CDC25a. Increased expression of these genes and EZH2 were associated with reduced survival. Coexpressed genes were involved in biological networks associated with the cell cycle, mitosis, and DNA damage. The effects of EZH2 on prostate cancer cell was validated in vitro as knockdown of EZH2 resulted in a G2/M cell cycle arrest, increased DNA damage, and reduced colony number. CONCLUSIONS Coexpression analysis of EZH2 identified its role in the cell cycle, mitosis, and DNA repair. The molecular mechanisms involved in EZH2 gene expression in the cell response to DNA damage requires further study to determine whether EZH2 is a potential human cancer biomarker.
Collapse
Affiliation(s)
- Jin Zhu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Lu Jin
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Aili Zhang
- Department of Pediatric, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Peng Gao
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Guangcheng Dai
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Ming Xu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Lijun Xu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Dongrong Yang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|