1
|
Dos Santos ÉM, Borges Toti TR, Coco JC, Luna Silvério LA, Santinon C, Ataide JA, Ramos Dos Santos YJ, Giacon VM, Paiva-Santos AC, Fardim P, Mazzola PG. What we know about açaí by-products and topical formulations: A review. Int J Pharm 2025:125732. [PMID: 40381669 DOI: 10.1016/j.ijpharm.2025.125732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/28/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Açaí (Euterpe oleracea Mart. and Euterpe precatoria), a native Brazilian Amazon fruit, holds significant cultural, nutritional, and economic importance, generating millions of dollars annually. During the processing of açaí, various by-products are generated, including seeds, fiber, leaves, roots, oil, and seed flour. The pulp, which is the edible part, represents 20 % of the fruit. These by-products, mainly seeds and fibers, cause serious environmental and public health damage. Therefore, it is essential to align production with the sustainable use of these residues to develop high-value-added products. Considering the composition of the fruit and its by-products, the development of pharmaceutical and cosmetic products emerges as a promising alternative, offering both environmental benefits and strong consumer appeal. It was found that açaí by-products have several biological activities, such as antioxidant, antimicrobial, anti-inflammatory, healing, anti-aging, and sunscreen effects. These properties derive from their bioactive compounds, such as anthocyanins, flavonoids, phytosterols, and fatty acids. Therefore, their diverse range of biological activities and favorable characteristics, including low cost, sustainability, safety, and efficacy, açaí by-products represent a viable alternative for incorporation into topical pharmaceutical and cosmetic formulations. Most studies focus primarily on seeds and fiber, with limited research on leaves, roots, oil, and seed flour, and even fewer on final products. This highlights the need for further investigations to fully explore the potential of açaí by-products in high-value applications.
Collapse
Affiliation(s)
- Érica Mendes Dos Santos
- Faculty of Pharmaceutical Sciences, Universidade de Campinas (UNICAMP), Rua Cândido Portinari, 200, Campinas 13083-871 São Paulo, Brazil
| | - Thairiny Raiany Borges Toti
- Faculty of Pharmaceutical Sciences, Universidade de Campinas (UNICAMP), Rua Cândido Portinari, 200, Campinas 13083-871 São Paulo, Brazil
| | - Julia Cedran Coco
- Faculty of Pharmaceutical Sciences, Universidade de Campinas (UNICAMP), Rua Cândido Portinari, 200, Campinas 13083-871 São Paulo, Brazil
| | - Luiza Aparecida Luna Silvério
- Faculty of Pharmaceutical Sciences, Universidade de Campinas (UNICAMP), Rua Cândido Portinari, 200, Campinas 13083-871 São Paulo, Brazil.
| | - Caroline Santinon
- Faculty of Pharmaceutical Sciences, Universidade de Campinas (UNICAMP), Rua Cândido Portinari, 200, Campinas 13083-871 São Paulo, Brazil
| | - Janaína Artem Ataide
- Faculty of Pharmaceutical Sciences, Universidade de Campinas (UNICAMP), Rua Cândido Portinari, 200, Campinas 13083-871 São Paulo, Brazil; Farmácia da Terra Laboratory, Faculty of Pharmacy, Federal University of Bahia, Rua Barão de Jeremoabo, 147, Ondina, Salvador 40170-115 Bahia, Brazil
| | | | - Virginia Mansanares Giacon
- Laboratory of Amazonian Materials and Composites, Federal University of Amazonas, Manaus, Av. General Rodrigo Octávio, 6200, Coroado I 69080-900 Amazonas, Brazil
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Pedro Fardim
- Chemical and Biochemical Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200f, box 2424, 3001 Leuven, Belgium
| | - Priscila Gava Mazzola
- Faculty of Pharmaceutical Sciences, Universidade de Campinas (UNICAMP), Rua Cândido Portinari, 200, Campinas 13083-871 São Paulo, Brazil
| |
Collapse
|
2
|
Bagheri M, Zoric A, von Kohout M, Fuchs PC, Schiefer JL, Opländer C. The Antimicrobial Efficacy of Topically Applied Mafenide Acetate, Citric Acid and Wound Irrigation Solutions Lavanox and Prontosan against Pseudomonas aeruginosa. Antibiotics (Basel) 2024; 13:42. [PMID: 38247601 PMCID: PMC10812663 DOI: 10.3390/antibiotics13010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Since burn wound infections caused by Pseudomonas aeruginosa (PA) lead to major complications and sepsis, this study evaluates the antimicrobial efficacy of the wound irrigation solutions Prontosan (PRT), Lavanox (LAV), citric acid (CA) and mafenide acetate (MA) using microbiology assays and an ex vivo skin wound model. In suspension assays, all the solutions showed significant reductions in bacterial number (log10 reduction: CA 5.77; LAV 4.91; PRT 4.74; MA 1.23). The biofilm assay revealed that PRT and LAV reduced biofilm formation by ~25% after a 15 min treatment, while PRT was most effective after a 24 h treatment (~68%). The number of PA in biofilms measured directly after a 15 min treatment was reduced most effectively with CA and LAV (log10 reductions ~2.5), whereas after a 24 h treatment, all solutions achieved only 1.36-1.65 log10 reductions. In the skin wound model, PRT and LAV provided the highest bacterial reduction after a 15 min treatment (log10 reduction 1.8-1.9), while MA was more effective after a 22 h treatment (log10 reduction 3.6). The results demonstrated the antimicrobial efficacy of all solutions against PA. Further investigation is needed to explore the potential clinical applications of a combination or alternating use of these solutions for infection prophylaxis and treatment of wound infections caused by PA.
Collapse
Affiliation(s)
- Mahsa Bagheri
- Department of Plastic and Aesthetic Surgery, Hand Surgery, HELIOS Hospital Emil von Behring, Walterhoeferstr. 11, 14165 Berlin, Germany
| | - Andreas Zoric
- Plastic, Reconstructive and Aesthetic Surgery, RKH Hospital Bietigheim-Vaihingen, Riedstr. 12, 74321 Bietigheim-Bissingen, Germany
| | - Maria von Kohout
- Plastic Surgery, Hand Surgery, Burn Center, Cologne-Merheim Hospital, Witten/Herdecke University, Ostmerheimer Str. 200, 51109 Cologne, Germany
| | - Paul C. Fuchs
- Plastic Surgery, Hand Surgery, Burn Center, Cologne-Merheim Hospital, Witten/Herdecke University, Ostmerheimer Str. 200, 51109 Cologne, Germany
| | - Jennifer Lynn. Schiefer
- Plastic Surgery, Hand Surgery, Burn Center, Cologne-Merheim Hospital, Witten/Herdecke University, Ostmerheimer Str. 200, 51109 Cologne, Germany
| | - Christian Opländer
- Institute for Research in Operative Medicine (IFOM), Cologne-Merheim Medical Center, Witten/Herdecke University, Ostmerheimer Str. 200, 51109 Cologne, Germany
| |
Collapse
|
3
|
Muacevic A, Adler JR. Pediatric First-Degree Burn Management With Honey and 1% Silver Sulfadiazine (Ag-SD): Comparison and Contrast. Cureus 2022; 14:e32842. [PMID: 36570107 PMCID: PMC9779910 DOI: 10.7759/cureus.32842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Background The cardinal area of managing fire wounds is guided by adequately evaluating the burn-induced lesion's profundity and size. Superficial second-degree burns are often treated through daily reinstating with fresh sterile bandaging with appropriate topical antimicrobials to allow rapid spontaneous epithelialization. Around the world, a wide variety of substances are used to treat these wounds, from honey to synthetic biological dressings. Objective This study intended to determine honey's therapeutic potential compared with 1% silver sulfadiazine (Ag-SD) in arsenal-caused contusion medicament fulfillment. Methods A total of 70 cases were evaluated in this research work after fulfilling the required selection criteria during the study period of January 2014 to December 2014 and January 2017 to December 2017. Purposive selection criteria were adopted in the study to select research patients. The patients in Group-1 (n = 35) relied on honey as medication, while patients in Group-2 (n = 35) relied on 1% Ag-SD. Results In Group-1, exudation (68.4%) and sloughing (82.9%) were substantially reduced by Days 3 and 5 of therapeutic intervention, respectively. However, in Group-2, a reduction of exudation (17.1%) and sloughing (22.9%) occurred after Days 3 and 5 of treatment, respectively. Completion of the epithelialization process was observed among Group-1 and Group-2 cases. It was detected after Days 7 and 10 of treatment at 36.3% and 77% (Group-1) and 27% and 67% (Group-2), respectively. Around 3 ml of 1% honey was required per body surface area per dressing in Group-1. On the other hand, in Group-2, 2 gm Ag-SD was needed per body surface area per dressing. Conclusion Patients treated with honey found better clinical outcomes in managing superficial partial-thickness burns.
Collapse
|
4
|
Qi L, Liang R, Duan J, Song S, Pan Y, Liu H, Zhu M, Li L. Synergistic antibacterial and anti-biofilm activities of resveratrol and polymyxin B against multidrug-resistant Pseudomonas aeruginosa. J Antibiot (Tokyo) 2022; 75:567-575. [PMID: 35999263 DOI: 10.1038/s41429-022-00555-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022]
Abstract
Bacterial infection caused by multidrug-resistant Pseudomonas aeruginosa has become a challenge in clinical practice. Polymyxins are used as the last resort agent for otherwise untreatable Gram-negative bacteria, including multidrug-resistant P.aeruginosa. However, pharmacodynamic (PD) and pharmacokinetic (PK) data on polymyxins suggest that polymyxin monotherapy is unlikely to generate reliably efficacious plasma concentrations. Also, polymyxin resistance has been frequently reported, especially among multidrug-resistant P.aeruginosa, which further limits its clinical use. A strategy for improving the antibacterial activity of polymyxins and preventing the development of polymyxin resistance is to use polymyxins in combination with other agents. In this study, we have demonstrated that resveratrol, a well tolerated compound, has synergistic effects when tested in vitro with polymyxin B on antibacterial and anti-biofilm activities. However, its' systemic use is limited as the required high plasma levels of resveratrol are not achievable. This suggests that it could be a partner for the combination therapy of polymyxin B in the treatment of topical bacterial infection caused by MDR P.aeruginosa.
Collapse
Affiliation(s)
- Lin Qi
- Department of Clinical Laboratory, Jinzhou Medical University Graduate Training Base, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Rongxin Liang
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Jingjing Duan
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Songze Song
- Jinzhou Medical University, Jinzhou, Liaoning, 121001, P. R. China
| | - Yunjun Pan
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Hui Liu
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Mingan Zhu
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Lian Li
- Department of Clinical Laboratory, Jinzhou Medical University Graduate Training Base, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China. .,Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China.
| |
Collapse
|
5
|
Felgueiras HP. An Insight into Biomolecules for the Treatment of Skin Infectious Diseases. Pharmaceutics 2021; 13:pharmaceutics13071012. [PMID: 34371704 PMCID: PMC8309093 DOI: 10.3390/pharmaceutics13071012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/31/2022] Open
Abstract
In assigning priorities, skin infectious diseases are frequently classified as minor when compared to infectious diseases of high mortality rates, such as tuberculosis or HIV. However, skin infections are amongst the most common and prevalent diseases worldwide. Elderly individuals present an increased susceptibility to skin infections, which may develop atypical signs and symptoms or even complicate pre-existing chronic disorders. When the skin fails to correct or inhibit the action of certain pathogenic microorganisms, biomolecules endowed with antimicrobial features are frequently administered topically or systemically to assist or treat such conditions. (1) Antibiotics, (2) antimicrobial peptides, or (3) natural extracts display important features that can actively inhibit the propagation of these pathogens and prevent the evolution of infectious diseases. This review highlights the properties and mechanisms of action of these biomolecules, emphasizing their effects on the most prevalent and difficult to treat skin infections caused by pathogenic bacteria, fungi, and viruses. The versatility of biomolecules’ actions, their symbiotic effects with skin cells and other inherent antimicrobial components, and their target-directed signatures are also explored here.
Collapse
Affiliation(s)
- Helena P Felgueiras
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| |
Collapse
|