1
|
Li C, Wang C, Yang X, Wang D, Wang F. Modeling the potential global distribution of the invasive Jack Beardsley mealybug (Hemiptera: Pseudococcidae) under climate change. JOURNAL OF ECONOMIC ENTOMOLOGY 2025; 118:589-599. [PMID: 40036180 DOI: 10.1093/jee/toaf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 03/06/2025]
Abstract
The Jack Beardsley mealybug, Pseudococcus jackbeardsleyi Gimpel & Miller (Hemiptera: Pseudococcidae), is a dangerous invasive pest that feeds on plants more than 115 genera from 54 families, and has spread over 59 countries or regions, often causing direct and indirect damage to host plants, and resulting in significant economic losses. In this study, we assessed the potential global distribution of P. jackbeardsleyi using a Maximum Entropy (MaxEnt) model under current and future climate scenarios. Here, we obtained prediction models with high credibility and accuracy, which showed that isothermality (Bio 3) and annual precipitation (Bio 12) were the environmental variables with the largest contribution on the potential distribution of this pest. The potential distribution areas predicted by this study were mainly located in South America, Central Africa, the southern regions of Asia and the eastern coast of Australia. Under future climate scenarios, the total geographical distribution of this pest will contract to varying degrees by the end of this century, but the highly suitable areas will increase. This study provides a reference for the development of control strategies, but also offers a scientific basis for the effective biological control of this pest.
Collapse
Affiliation(s)
- Caifeng Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Cuiying Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Xianwen Yang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Duo Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Fang Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| |
Collapse
|
2
|
Lv Z, Jiu S, Wang L, Xu Y, Wang J, Liu X, Xu J, Wang Y, Haider MS, Liu R, Zhang C. Climate change affects the suitability of Chinese cherry (Prunus pseudocerasus Lindl.) in China. MOLECULAR HORTICULTURE 2025; 5:26. [PMID: 40050949 PMCID: PMC11884058 DOI: 10.1186/s43897-024-00136-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/08/2024] [Indexed: 03/09/2025]
Abstract
The rapid development of Prunus pseudocerasus related industry has increasingly contributed to rural vitalization in China. This study employed a biomod2 ensemble model, utilizing environmental and species occurrence data from 151 P. pseudocerasus germplasm wild/local samples, to predict potential geographical distribution, suitability changes, climate dependence, and ecological niche dynamics. The optimized maximum entropy (MaxEnt) model yielded the most accurate predictions. The climate variables with the greatest impact on suitability were precipitation of warmest quarter and mean diurnal temperature range. The total potential suitable area for P. pseudocerasus was approximately 2.78 × 106 km2, increasing with CO2 concentration. The highly suitable area was primarily concentrated in basin terrains, plateaus, and plains of Sichuan Province. The current centroid in Lichuan exhibited gradual latitudinal and longitudinal movement. The predicted (2090s) ecological niche trends of P. pseudocerasus varied under different pathways and periods, with higher CO2 concentration associated with lower niche overlap. The CO2 emission concentration in the SSP246 scenario emerged as the most suitable climate model. Climate change is driving both the expansion of geographical distribution and the contraction of overlapping geographical distribution areas of P. pseudocerasus. These findings provide a theoretical basis for wild resource conservation, site selection for production, and introduction of allopatry for P. pseudocerasus.
Collapse
Affiliation(s)
- Zhengxin Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Songtao Jiu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Li Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiyuan Wang
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui Province, 235000, China
| | - Xunju Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jieming Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuxuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | - Ruie Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Caixi Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Bao B, Wang X, Peng Z, Zhu Q, Li X, Zhang D. Pattern of Diversity and Prediction of Suitable Areas of Grasshoppers from the Qinghai-Tibet Plateau in China (Orthoptera: Acridoidea). INSECTS 2025; 16:191. [PMID: 40003820 PMCID: PMC11856823 DOI: 10.3390/insects16020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
The Qinghai-Tibet Plateau is recognized as a biodiversity hotspot, with a wide variety of grasshopper species, including several endemic to the region, which play significant roles in both agricultural and forestry ecosystems. The purpose of this study was to analyze the species diversity and distribution pattern of grasshoppers on the Qinghai-Tibet Plateau. A comprehensive database comprising 390 grasshopper species was established through specimen collection, a literature review, and a geographical distribution data analysis. Diversity analysis showed that the diversity of species under the five vegetation types was relatively average. However, the alpine cold vegetation of Qinghai-Tibet and subtropical evergreen broad-leaved forest still showed a relatively high Shannon index and Simpson index. Grasshopper species are mainly concentrated in the eastern and southern parts of the Qinghai-Tibet Plateau. The richness pattern showed that grasshopper species diversity was particularly high in certain mountain areas, with Bayankala Mountain and Hengduan Mountain being endemic hotspots. The MaxEnt models were used to assess the potential habitats for four dominant genera of grasshoppers under projected climate change scenarios for 2050 and 2070. Altitude was the factor affecting the distribution of Locusta, Chorthippus, and Kingdonella, while precipitation and temperature were the factors affecting the distribution of Leuconemacris. These findings improve our understanding of the distribution patterns of different grasshopper species across various habitat types on the Qinghai-Tibet Plateau and provide valuable insights for developing targeted ecological protection strategies in response to environmental changes.
Collapse
Affiliation(s)
| | | | | | | | - Xinjiang Li
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; (B.B.); (X.W.); (Z.P.); (Q.Z.)
| | - Daochuan Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; (B.B.); (X.W.); (Z.P.); (Q.Z.)
| |
Collapse
|
4
|
Fu C, Liu Z, Xu D, Peng Y, Liu B, Zhuo Z. Effects of Global Climate Warming on the Biological Characteristics of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). INSECTS 2024; 15:689. [PMID: 39336657 PMCID: PMC11432313 DOI: 10.3390/insects15090689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Spodoptera frugiperda (J.E. Smith) is a significant economic pest that has recently invaded Africa and Asia. However, much of the information regarding its ecological capabilities in these newly invaded environments remains largely unknown. In this study, the life history traits of the fall armyworm under conditions of increased temperature, different photoperiods, and varying humidity levels were systematically evaluated. Among 43 studies, a total of 20 studies were included in the analysis by passing the screening criteria, and random-effects meta-analysis, fixed-effects meta-analysis, and meta-regression were conducted. It has been found that with the increase in temperature above 20 °C, various physiological indicators of the fall armyworm are significantly enhanced. When the temperature reaches 32 °C, the physiological activities of S. frugiperda are at their highest point. As the temperature increases, the duration of each developmental stage of the fall armyworm decreases significantly, accompanied by an increase in oviposition quantity and period in females. Additionally, the pupal development time is shortened, which leads to an increase in the lifespan of the adult moth. Using temperature and relative humidity as environmental variables, the optimal survival conditions for each insect state of the fall armyworm were calculated. These findings can assist in predicting the population dynamics of the fall armyworm and in formulating appropriate and practical management strategies.
Collapse
Affiliation(s)
- Chun Fu
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, Leshan 614000, China;
| | - Zhiqian Liu
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637002, China; (Z.L.); (D.X.); (Y.P.); (B.L.)
| | - Danping Xu
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637002, China; (Z.L.); (D.X.); (Y.P.); (B.L.)
| | - Yaqin Peng
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637002, China; (Z.L.); (D.X.); (Y.P.); (B.L.)
| | - Biyu Liu
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637002, China; (Z.L.); (D.X.); (Y.P.); (B.L.)
| | - Zhihang Zhuo
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637002, China; (Z.L.); (D.X.); (Y.P.); (B.L.)
| |
Collapse
|
5
|
Liu Z, Peng Y, Xu D, Zhuo Z. Meta-Analysis and MaxEnt Model Prediction of the Distribution of Phenacoccus solenopsis Tinsley in China under the Context of Climate Change. INSECTS 2024; 15:675. [PMID: 39336643 PMCID: PMC11432275 DOI: 10.3390/insects15090675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
Phenacoccus solenopsis Tinsley is a pest that poses a significant threat to agricultural crops, especially cotton, and is now widely distributed across many regions worldwide. In this study, we performed a meta-analysis on the collected experimental data and found that within the suitable temperature range, the survival rate of P. solenopsis increases with rising temperatures, indicating that climate plays a decisive role in its distribution. Using the MaxEnt model this study predicted that under three future climate scenarios (SSP1-2.6, SSP3-7.0, and SSP5-8.5), the distribution of P. solenopsis will expand and move towards higher latitudes. Climate change is the primary factor influencing changes in pest distribution. We conducted a meta-analysis of P. solenopsis, including seven independent studies covering 221 observation results, and examined the impact of temperature ranging from 18 °C to 39 °C on the developmental cycle of P. solenopsis. As the temperature rises, the development cycle of P. solenopsis gradually decreases. Additionally, by combining the MaxEnt model, we predicted the current and potential future distribution range of P. solenopsis. The results show that under future climate warming, the distribution area of P. solenopsis in China will expand. This research provides a theoretical basis for early monitoring and control of this pest's occurrence and spread. Therefore, the predictive results of this study will provide important information for managers in monitoring P. solenopsis and help them formulate relevant control strategies.
Collapse
Affiliation(s)
- Zhiqian Liu
- College of Life Science, China West Normal University, Nanchong 637002, China
| | - Yaqin Peng
- College of Life Science, China West Normal University, Nanchong 637002, China
| | - Danping Xu
- College of Life Science, China West Normal University, Nanchong 637002, China
| | - Zhihang Zhuo
- College of Life Science, China West Normal University, Nanchong 637002, China
| |
Collapse
|
6
|
Zhao Z, Yang L, Chen X. Globally suitable areas for Lycorma delicatula based on an optimized Maxent model. Ecol Evol 2024; 14:e70252. [PMID: 39310735 PMCID: PMC11413495 DOI: 10.1002/ece3.70252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024] Open
Abstract
Lycorma delicatula, a globally invasive pest, has caused considerable economic losses in many countries. Determining the potential distribution range of L. delicatula is crucial for its effective management and control; however, our understanding of this species remains limited. In this study, Maxent model with occurrence records and environmental variables were fit first and then optimized by selecting the best combination of feature classes and regularization multipliers using the lowest score of corrected Akaike information criterion. Subsequently, we predicted global suitable areas for L. delicatula both currently and in the future (2041-2060, 2061-2080, and 2081-2100). The results indicated that the mean temperature of the driest quarter is the most important environmental variable limiting L. delicatula distribution. Currently, the suitable areas are concentrated in East Asia (mainly in China, South Korea, and Japan), central and eastern United States, and southern Europe. Compared with current environmental conditions, in all future climate scenarios, the number of suitable areas for L. delicatula increased. In addition, we revealed that suitable areas are likely to expand northward in the future. Our study results suggest that policymakers and governments should prioritize the development of pest management measures in suitable areas for L. delicatula, especially in high suitable areas, to control this invasive pest and minimize global economic losses.
Collapse
Affiliation(s)
- Zhengxue Zhao
- Institute of EntomologyGuizhou UniversityGuiyangChina
- Provincial Special Key Laboratory for Development and Utilization of Insect Resources of GuizhouGuizhou UniversityGuiyangChina
- Guizhou Key Laboratory for Agricultural Pest Management of Mountainous RegionGuizhou UniversityGuiyangChina
- College of AgricultureAnshun UniversityAnshunChina
| | - Lin Yang
- Institute of EntomologyGuizhou UniversityGuiyangChina
- Provincial Special Key Laboratory for Development and Utilization of Insect Resources of GuizhouGuizhou UniversityGuiyangChina
- Guizhou Key Laboratory for Agricultural Pest Management of Mountainous RegionGuizhou UniversityGuiyangChina
| | - Xiangsheng Chen
- Institute of EntomologyGuizhou UniversityGuiyangChina
- Provincial Special Key Laboratory for Development and Utilization of Insect Resources of GuizhouGuizhou UniversityGuiyangChina
- Guizhou Key Laboratory for Agricultural Pest Management of Mountainous RegionGuizhou UniversityGuiyangChina
| |
Collapse
|
7
|
Yan W, Du L, Liu H, Li GY. Current and future invasion risk of tomato red spider mite under climate change. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1385-1395. [PMID: 38935039 DOI: 10.1093/jee/toae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Tomato red spider mite Tetranychus evansi Baker and Pritchard (Acari: Tetranychidae) is a phytophagous pest that causes severe damage to Solanaceous plants worldwide, resulting in significant economic losses. In this study, the maximum entropy model was used to predict the potential current (1970-2000) and future (2021-2060) global distribution of the species based on its past occurrence records and high-resolution environmental data. The results showed that the mean values of the area under the curve were all >0.96, indicating that the model performed well. The three bioclimatic variables with the highest contributions were the coldest quarterly mean temperature (bio11), coldest monthly minimum temperature (bio6), and annual precipitation (bio12). A wide range of suitable areas was found across continents except Antarctica, both currently and in the future, with a much larger distribution area in South America, Africa, and Oceania (Australia), dominated by moderately and low suitable areas. A comparison of current and future suitable areas reveals a general trend of north expansion and increasing expansion over time. This study provides information for the prevention and management of this pest mite in the future.
Collapse
Affiliation(s)
- Wenjie Yan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Liyan Du
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Huai Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Guang-Yun Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Zhao Z, Yang L, Long J, Chang Z, Chen X. Predicting suitable areas for Metcalfa pruinosa (Hemiptera: Flatidae) under climate change and implications for management. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:7. [PMID: 38717262 PMCID: PMC11078062 DOI: 10.1093/jisesa/ieae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/08/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
Climate change is a prominent factor reshaping the distribution of invasive species. Metcalfa pruinosa (Say 1830) (Hemiptera: Flatidae), native to North America, has invaded other continents and poses a serious threat to various agricultural crops and the human residential environment. Understanding the distribution of M. pruinosa based on climatic conditions is a critical first step to prevent its further invasion. Therefore, based on its occurrence records and associated environmental variables, a Maxent model was developed to predict suitable areas for this species in the present and future on a global scale. The model exhibited outstanding performance, with a mean area under the receiver operating characteristic curve and true skill statistic values of 0.9329 and 0.926, respectively. The model also indicated that annual precipitation (Bio12) and max temperature of the warmest month (Bio5) were the key environmental variables limiting the distribution of M. pruinosa. Moreover, the model revealed that the current suitable area is 1.01 × 107 km2 worldwide, with southern China, southern Europe, and the eastern United States predicted to be the primary and highly suitable areas in the latter 2 regions. This area is expected to increase under future climate scenarios, mainly in the northern direction. The study's findings contribute to our understanding of climate change's impact on M. pruinosa distribution, and they will aid governments in developing appropriate pest management strategies, including global monitoring and strict quarantine measures.
Collapse
Affiliation(s)
- Zhengxue Zhao
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Provincial Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Guizhou Key Laboratory for Agricultural Pest Management of Mountainous Region, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Key Laboratory of High-efficiency Agricultural Plant Protection Informatization in Central Guizhou, College of Agriculture, Anshun University, Anshun 561000, PR China
| | - Lin Yang
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Provincial Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Guizhou Key Laboratory for Agricultural Pest Management of Mountainous Region, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Jiankun Long
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Provincial Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Guizhou Key Laboratory for Agricultural Pest Management of Mountainous Region, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Zhimin Chang
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Provincial Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Guizhou Key Laboratory for Agricultural Pest Management of Mountainous Region, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Xiangsheng Chen
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Provincial Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Guizhou Key Laboratory for Agricultural Pest Management of Mountainous Region, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
9
|
Su J, Liu W, Hu F, Miao P, Xing L, Hua Y. The Distribution Pattern and Species Richness of Scorpionflies (Mecoptera: Panorpidae). INSECTS 2023; 14:332. [PMID: 37103147 PMCID: PMC10146745 DOI: 10.3390/insects14040332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
The uneven distribution of species diversity on earth, with mountainous regions housing half of the high species diversity areas, makes mountain ecosystems vital to biodiversity conservation. The Panorpidae are ecological indicators, ideal for studying the impact of climate change on potential insect distribution. This study examines the impact of environmental factors on the distribution of the Panorpidae and analyzes how their distribution has changed over three historical periods, the Last Interglacial (LIG), the Last Glacial Maximum (LGM), and Current. The MaxEnt model is used to predict the potential distribution area of Panorpidae based on global distribution data. The results show that precipitation and elevation are the primary factors affecting species richness, and the suitable areas for Panorpidae are distributed in southeastern North America, Europe, and southeastern Asia. Throughout the three historical periods, there was an initial increase followed by a decrease in the area of suitable habitats. During the LGM period, there was a maximum range of suitable habitats for cool-adapted insects, such as scorpionflies. Under the scenarios of global warming, the suitable habitats for Panorpidae would shrink, posing a challenge to the conservation of biodiversity. The study provides insights into the potential geographic range of Panorpidae and helps understand the impact of climate change on their distribution.
Collapse
Affiliation(s)
- Jian Su
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Wanjing Liu
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Fangcheng Hu
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Panpan Miao
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Lianxi Xing
- College of Life Sciences, Northwest University, Xi’an 710069, China
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi’an 710069, China
| | - Yuan Hua
- College of Life Sciences, Northwest University, Xi’an 710069, China
| |
Collapse
|
10
|
Shan Y, Gao X, Hu X, Hou Y, Wang F. Current and future potential distribution of the invasive scale Ceroplastes rusci (L., 1758) (Hemiptera: Coccidae) under climate niche. PEST MANAGEMENT SCIENCE 2023; 79:1184-1192. [PMID: 36394192 DOI: 10.1002/ps.7290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The fig wax scale, Ceroplastes rusci is an invasive pest that feeds on more than 94 genera from 52 families that is spread across 60 countries, causing negative impacts to agriculture and forestry. Understanding the potential distribution of invasive species under climate change is crucial for the management and monitoring purposes. Thus, we predicted the potential distribution areas of C. rusci using Maximum Entropy (MaxEnt) based on the occurrence data and environmental variables under current and future climatic scenarios. RESULTS Our results showed that the temperature annual range (Bio 7) and mean temperature of the warmest quarter (Bio 10) attributed to a higher contribution to the current model of the distribution of C. rusci. The potential distribution maps illustrated the main concentrated areas of C. rusci which included South America, Africa, Asia, and Oceania. In addition, potential range expansions or reductions were predicted under different future climate change scenarios, which showed that the total suitable areas of the fig wax scale presented an increasing trend until 2100. CONCLUSION Our study provides significant data to understand the potential distribution of C. rusci around the world. It also serves as an early warning for the highly suitable habitat areas that even offers a platform to the currently non-infested regions or countries who are yet to develop monitoring strategies in response to the possible C. rusci outbreak. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yiman Shan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation center for Eco-Environment, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Xinyue Gao
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Xinyu Hu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation center for Eco-Environment, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yunfeng Hou
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation center for Eco-Environment, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Fang Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation center for Eco-Environment, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| |
Collapse
|
11
|
Di Sora N, Mannu R, Rossini L, Contarini M, Gallego D, Speranza S. Using Species Distribution Models (SDMs) to Estimate the Suitability of European Mediterranean Non-Native Area for the Establishment of Toumeyella Parvicornis (Hemiptera: Coccidae). INSECTS 2023; 14:46. [PMID: 36661974 PMCID: PMC9862868 DOI: 10.3390/insects14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
The pine tortoise scale, Toumeyella parvicornis, is an insect native to the Nearctic region that is able to infest several Pinus species. It can cause weakening, defoliation and, at high infestation levels, tree death. After its first report in Italy in 2015, the pest spread rapidly over the surrounding areas and was reported in France in 2021. Due to the threat that this pest poses to pine trees, the suitability of European Mediterranean basin areas for T. parvicornis at different spatial scales was estimated by constructing species distribution models (SDMs) using bioclimatic variables. Our results showed that several coastal areas of the Mediterranean basin area could be suitable for T. parvicornis. Based on performance assessment, all the SDMs tested provided a good representation of the suitability of European Mediterranean non-native area for T. parvicornis at different spatial scales. In particular, most of the areas with a medium or high level of suitability corresponded to the geographical range of distribution of different Pinus spp. in Europe. Predicting the suitability of European Mediterranean areas for T. parvicornis provides a fundamental tool for early detection and management of the spread of this pest in Europe.
Collapse
Affiliation(s)
- Nicolò Di Sora
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Roberto Mannu
- Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39A, 07100 Sassari, Italy
| | - Luca Rossini
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
- Service d’Automatique et d’Analyse des Systèmes, Université Libre de Bruxelles, v. F.D. Roosvelt 50, CP 165/55, 1050 Brussels, Belgium
| | - Mario Contarini
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Diego Gallego
- Department of Ecology, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Stefano Speranza
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| |
Collapse
|
12
|
Eigenbrode SD, Adhikari S, Kistner-Thomas E, Neven L. Introduction to the Collection: Climate Change, Insect Pests, and Beneficial Arthropods in Production Systems. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1315-1319. [PMID: 35899796 DOI: 10.1093/jee/toac107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Climate change is expected to alter pressure from insect pests and the abundance and effectiveness of insect pollinators across diverse agriculture and forestry systems. In response to warming, insects are undergoing or are projected to undergo shifts in their geographic ranges, voltinism, abundance, and phenology. Drivers include direct effects on the focal insects and indirect effects mediated by their interactions with species at higher or lower trophic levels. These climate-driven effects are complex and variable, sometimes increasing pest pressure or reducing pollination and sometimes with opposite effects depending on climatic baseline conditions and the interplay of these drivers. This special collection includes several papers illustrative of these biological effects on pests and pollinators. In addition, in response to or anticipating climate change, producers are modifying production systems by introducing more or different crops into rotations or as cover crops or intercrops or changing crop varieties, with potentially substantial effects on associated insect communities, an aspect of climate change that is relatively understudied. This collection includes several papers illustrating these indirect production system-level effects. Together, biological and management-related effects on insects comprise the necessary scope for anticipating and responding to the effects of climate change on insects in agriculture and forest systems.
Collapse
Affiliation(s)
- Sanford D Eigenbrode
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA
| | - Subodh Adhikari
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA
| | - Erica Kistner-Thomas
- Institute of Food Production and Sustainability, National Institute of Food and Agriculture, Kansas City, MO, USA
| | - Lisa Neven
- USDA-ARS, Temperate Tree Fruit and Vegetable Research Unit, Wapato, WA, USA
| |
Collapse
|
13
|
Rios-Suarez O, Universidad de Córdoba, Fernandez-Herrera C, Pérez-García K, Universidad de Córdoba, Universidad de Córdoba. Caracterización de daño y distribución espacial de Ceroplastes cirripediformis en maracuyá en el Caribe Colombiano. REVISTA U.D.C.A ACTUALIDAD & DIVULGACIÓN CIENTÍFICA 2022. [DOI: 10.31910/rudca.v25.n1.2022.1739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|