1
|
Davydova S, Yu D, Meccariello A. Genetic engineering for SIT application: a fruit fly-focused review. INSECT SCIENCE 2025. [PMID: 40195546 DOI: 10.1111/1744-7917.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 04/09/2025]
Abstract
Sterile insect technique (SIT) has become a key component of efficient pest control. Fruit fly pests from the Drosophilidae and Tephritidae families pose a substantial and overwhelmingly increasing threat to the agricultural industry, aggravated by climate change and globalization among other contributors. In this review, we discuss the advances in genetic engineering aimed to improve the SIT-mediated fruit fly pest control. This includes SIT enhancement strategies such as novel genetic sexing strain and female lethality approaches. Self-pervasive X-shredding and X-poisoning sex distorters, alongside gene drive varieties are also reviewed. The self-limiting precision-guided SIT, which aims to tackle female removal and male fertility via CRISPR/Cas9, is additionally introduced. By using examples of existing genetic tools in the fruit fly pests of interest, as well as model species, we illustrate that the population control intensity may be modulated depending on strategy selection.
Collapse
Affiliation(s)
- Serafima Davydova
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Danheng Yu
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Angela Meccariello
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Wang Q, Lei Y, Lin H, Chen X, Mo W, Guan B, Deng H. Gonadal Transcriptomic Analysis Reveals Novel Sex-Related Genes in Bactrocera dorsalis. INSECTS 2024; 15:424. [PMID: 38921139 PMCID: PMC11203884 DOI: 10.3390/insects15060424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/27/2024]
Abstract
Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) is one of the most devastating agricultural pests worldwide due to its high reproductive and invasive abilities. The elucidation of its gonadal developmental characteristics and the identification of sex-related genes will provide a useful genetic basis for reproductive-based pest control. Here, the gonadal transcriptome of B. dorsalis was sequenced, and novel gonad-specific expressed genes were analyzed. A total of 1338, 336, 35, and 479 differentially expressed genes (DEGs) were found in the testis (TE), ovary (OV), female accessory gland (FAG), and male accessory gland (MAG), respectively. Furthermore, 463 highly expressed gonad-specific genes were identified, with the TE having the highest number of specific highly expressed genes, at 402, followed by 51 in the OV, 9 in the MAG, and only 1 in the FAG. Strikingly, approximately half of highly expressed gonad-specific genes were uncharacterized. Then, it was found that 35, 17, 3, 2, and 1 of 202 uncharacterized highly expressed TE-specific genes encoded proteins that contained transmembrane domains, signal peptides, high-mobility group boxes, the zinc finger domain, and the BTB/POZ domain, respectively. Interestingly, approximately 40% of uncharacterized highly expressed gonad-specific genes encoding proteins were not predicted to possess functional motifs or domains. Finally, the spatiotemporal expression and sequence characterization of six novel highly expressed gonad-specific genes were analyzed. Altogether, our findings provide a valuable dataset for future functional analyses of sex-related genes and potential target sites for pest control.
Collapse
Affiliation(s)
- Qin Wang
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Guangzhou 510631, China; (Q.W.); (Y.L.); (H.L.); (X.C.); (W.M.); (B.G.)
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yuxuan Lei
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Guangzhou 510631, China; (Q.W.); (Y.L.); (H.L.); (X.C.); (W.M.); (B.G.)
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Hongjie Lin
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Guangzhou 510631, China; (Q.W.); (Y.L.); (H.L.); (X.C.); (W.M.); (B.G.)
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaoxin Chen
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Guangzhou 510631, China; (Q.W.); (Y.L.); (H.L.); (X.C.); (W.M.); (B.G.)
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wanyu Mo
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Guangzhou 510631, China; (Q.W.); (Y.L.); (H.L.); (X.C.); (W.M.); (B.G.)
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Boyang Guan
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Guangzhou 510631, China; (Q.W.); (Y.L.); (H.L.); (X.C.); (W.M.); (B.G.)
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Huimin Deng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Guangzhou 510631, China; (Q.W.); (Y.L.); (H.L.); (X.C.); (W.M.); (B.G.)
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
3
|
Fu B, Ma R, Liu F, Chen X, Wang M, Jin W, Zhang S, Wang Y, Sun L. New insights into ginsenoside Rg1 regulating the niche to inhibit age-induced germline stem cells depletion through targeting ECR/BMP signaling pathway in Drosophila. Aging (Albany NY) 2024; 16:3612-3630. [PMID: 38364249 PMCID: PMC10929810 DOI: 10.18632/aging.205548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
PURPOSE The age-induced imbalance in ecological niches leads to the loss of GSCs, which is the main reason for ovarian germline senescence. Ginsenoside Rg1 can delay ovarian senescence. Here, we shed light on new insights of ginsenoside Rg1 in regulating the niche to maintain GSCs self-renewal and discussing related molecular mechanisms. METHODS The differences among GSC number, reproductive capacity of naturally aging female Drosophila after ginsenoside Rg1 feeding were analyzed by immunofluorescence and behavior monitoring. The expressions of the active factors in the niche and the BMP signaling were analyzed through Western blot and RT-qPCR. The target effect was verified in the ECR mutant and combined with the molecular docking. RESULTS Ginsenoside Rg1 inhibited the age-induced reduction of the GSCs number and restored offspring production and development. Ginsenoside Rg1 promoted the expression of anchor proteins E-cadherin, stemness maintenance factor Nos and differentiation promoting factor Bam, thereby GSCs niche homeostasis was regulated. In addition, ginsenoside Rg1 was bound to the LBD region of the hormone receptor ECR. Ginsenoside Rg1 promotes the regeneration of GSCs by targeting the ECR to increase pSmad1/5/8 expression and thereby activating the BMP signaling pathway. In addition, ginsenoside Rg1 maintenance of niche homeostasis to promote GSCs regeneration is dependent on ECR as demonstrated in ECR mutants. CONCLUSIONS Ginsenoside Rg1 regulated the ecological niche homeostasis of GSCs and promoted the regeneration of GSCs by targeting the ECR/BMP signaling pathway in hormone-deficient states in aging ovaries. It is of great significance for prolonging fertility potential and delaying ovarian senescence.
Collapse
Affiliation(s)
- Baoyu Fu
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Rui Ma
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Fangbing Liu
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Xuenan Chen
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Manying Wang
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Wenqi Jin
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Shuai Zhang
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Yanping Wang
- Obstetrics and Gynecology Diagnosis and Treatment Center, The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130062, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| |
Collapse
|
4
|
Xia Y, Zhao J, Ding J, Xu K, Zhou X, Xiang M, Xue H, Wang H, Wang R, Yang Y. Geographical distribution of two major quarantine fruit flies ( Bactrocera minax Enderlein and Bactrocera dorsalis Hendel) in Sichuan Basin based on four SDMs. PeerJ 2024; 12:e16745. [PMID: 38213771 PMCID: PMC10782948 DOI: 10.7717/peerj.16745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024] Open
Abstract
Both Bactrocera minax and Bactrocera dorsalis are phytophagous insects, and their larvae are latent feeders, which cause great damage and economic losses to agriculture production and trade. This study aimed to provide a scientific reference for researching and developing the feasible countermeasures against these two pests. Based on the distribution data of B. minax and B. dorsalis in China, obtained from the Chinese herbaria, investigation and literature. Four niche models (Garp, Bioclim, Domain, and Maxent) were used to analyze the key environmental factors affecting the distribution of both pests and to build prediction models of the potential distribution in Sichuan Basin. Combined with two statistical standards, area under the receiver operating characteristic curve (AUC) and Kappa, the validity of prediction models were analyzed and compared. The results show that: the average AUC values of the four models are all above 0.90, and the average Kappa values are all above 0.75, indicating that the four models are suitable for predicting the potential distribution area of B. minax and B. dorsalis. The annual range of temperature, the mean temperature in the driest quarter, the mean temperature in the warmest quarter, the annual precipitation, and the precipitation in driest month are the key environmental factors affecting the distribution of B. minax, while the mean diurnal temperature range, the mean temperature in the driest quarter, the seasonal temperature variations and the precipitation in driest month affect the potential distribution of B. dorsalis. The suitable areas for B. minax are mainly concentrated in the eastern of Sichuan Basin, while the suitable areas for B. dorsalis are concentrated in the southeastern. Except for the Bioclim model, the highly-suitable area for both pests predicted by the other three models are all greater than 15.94 × 104 km2 and the moderately-suitable areas are greater than 13.57 × 104 km2. In conclusion, the suitable areas for both pests in Sichuan Basin are quite wide. Therefore, the relevant authorities should be given strengthened monitoring of both pests, especially in areas with high incursion rates.
Collapse
Affiliation(s)
- Yanli Xia
- School of Food and Bioengineering, Chengdu University, Chengdu, China
| | - Jinpeng Zhao
- Sichuan Provincial Rural Economic Information Center, Chengdu, China
| | - Jian Ding
- Sichuan Science and Technology Exchange Center, Chengdu, China
| | - Ke Xu
- Sichuan Horticultural Crop Technology Extension Station, Chengdu, China
| | - Xianjian Zhou
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Traditional Chinese Medicine Sciences, Chengdu, China
| | - Mian Xiang
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Traditional Chinese Medicine Sciences, Chengdu, China
| | - Huiling Xue
- School of Food and Bioengineering, Chengdu University, Chengdu, China
| | - Huan Wang
- School of Food and Bioengineering, Chengdu University, Chengdu, China
| | - Rulin Wang
- Sichuan Provincial Rural Economic Information Center, Chengdu, China
| | - Yuxia Yang
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Traditional Chinese Medicine Sciences, Chengdu, China
| |
Collapse
|
5
|
Berg C, Sieber M, Sun J. Finishing the egg. Genetics 2024; 226:iyad183. [PMID: 38000906 PMCID: PMC10763546 DOI: 10.1093/genetics/iyad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.
Collapse
Affiliation(s)
- Celeste Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065 USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
6
|
Cullen G, Gilligan JB, Guhlin JG, Dearden PK. Germline progenitors and oocyte production in the honeybee queen ovary. Genetics 2023; 225:iyad138. [PMID: 37487025 PMCID: PMC10471204 DOI: 10.1093/genetics/iyad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/26/2023] Open
Abstract
Understanding the reproduction of honeybee queens is crucial to support populations of this economically important insect. Here we examine the structure of the honeybee ovary to determine the nature of the germline progenitors in the ovary. Using a panel of marker genes that mark somatic or germline tissue in other insects we determine which cells in the honeybee ovary are somatic and which germline. We examine patterns of cell division and demonstrate that, unlike Drosophila, there is no evidence of single germline stem cells that provide the germline in honeybees. Germline progenitors are clustered in groups of 8 cells, joined by a polyfusome, and collections of these, in each ovariole, appear to maintain the germline during reproduction. We also show that these 8-cell clusters can divide and that their division occurs such that the numbers of germline progenitors are relatively constant over the reproductive life of queen honeybees. This information helps us to understand the diversity of structures in insect reproduction, and provide information to better support honeybee reproduction.
Collapse
Affiliation(s)
- Georgia Cullen
- Laboratory for Evolution and Development, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
| | - Joshua B Gilligan
- Laboratory for Evolution and Development, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
- Biological Heritage National Science Challenge, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
| | - Joseph G Guhlin
- Laboratory for Evolution and Development, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
- Genomics Aotearoa, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
| | - Peter K Dearden
- Laboratory for Evolution and Development, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
- Biological Heritage National Science Challenge, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
- Genomics Aotearoa, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
| |
Collapse
|
7
|
Fu J, Li L, Dai C, Zhang Y, Hu Y, Hu C, Li H. Transcriptomic analysis of Mythimna separata ovaries and identification of genes involved in reproduction. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY PART D: GENOMICS AND PROTEOMICS 2023; 46:101075. [PMID: 37031498 DOI: 10.1016/j.cbd.2023.101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
The migratory insect Mythimna separata is a major pest of grain crops in Asia. Unfortunately, the molecular mechanisms that control and regulate reproduction in this species remain unclear. In this study, transcriptome sequencing was utilized to identify genes associated with ovary development and oogenesis. Clean sequences totaling 117.71 Gb were assembled into 178,534 unigenes with a mean length of 647.37 bp and N50 length of 837 bp. Transcriptome analysis showed that 7921 unigenes were significantly expressed in ovaries with 4403 and 3518 unigenes up- and down-regulated, respectively. Enrichment analysis with the Kyoto Encyclopedia of Genes and Genomes database suggested that 729 differentially expressed genes were significantly enriched in the top 20 pathways (q-values <0.05). Twenty genes were associated with ovary development and oogenesis and included lipases, Nanos, small heat shock proteins (sHsps) and histones; these were further verified by qRT-PCR and may play essential roles in M. separata reproduction. Collectively, our findings reveal underlying mechanisms of M.separata reproduction and may lead to RNAi-based management strategies targeting reproductive physiology.
Collapse
|