1
|
Wang X, Zhao X, Tu H. Study on the variations in acaricide sensitivity between two spider mite species, Amphitetranychus viennensis and Tetranychus urticae, in Chinese orchards. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 210:106367. [PMID: 40262878 DOI: 10.1016/j.pestbp.2025.106367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/23/2025] [Accepted: 03/03/2025] [Indexed: 04/24/2025]
Abstract
Amphitetranychus viennensis and Tetranychus urticae, are destructive agricultural and horticultural pests. Their management primarily relies on acaricides; however, little is known about the susceptibility of these two species to these chemicals. The current study assessed the susceptibility of A. viennensis and T. urticae to ten acaricides, investigated the detoxification enzyme activities, and conducted transcriptional analyses after bifenazate and cyetpyrafen exposure. The results showed that the LC50 values of most acaricides against T. urticae were notably higher than those for A. viennensis at different developmental stages. At the adult stage, A. viennensis was more tolerant to bifenazate than T. urticae, while A. viennensis showed increased sensitivity to cyetpyrafen than T. urticae. After cyetpyrafen exposure, glutathione S-transferases (GSTs) activity in T. urticae were markedly higher at 6 and 12 h, whereas that in A. viennensis increased only at 6 h. No notable differences in cytochrome P450 monooxygenases (P450s) levels were found in T. urticae between the control and treatment groups (cyetpyrafen or bifenazate). However, A. viennensis treated with either cyetpyrafen or bifenazate showed a marked decrease in P450 levels at 12 h. Furthermore, more detoxification genes in both species were activated in response to bifenazate or cyetpyrafen. Differential metabolic detoxification mediated by P450 and GST genes may primarily account for the distinct responses of these species to bifenazate and cyetpyrafen. These findings reveal the distinct detoxification capacities of the two species in response to acaricides and highlight the importance of applying species-specific management strategies for these pests.
Collapse
Affiliation(s)
- Xueli Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453004, China
| | - Xiangjie Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453004, China; Agricultural Technology Extension and Service Center of Jiading District of Shanghai, Shanghai 201899, China
| | - Hongtao Tu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453004, China.
| |
Collapse
|
2
|
Duan Y, Wang Y, Yang F, Gao Y, Liu Z, Zhang P, Lu J, Fan R, Zhou X, Yang J, Ren M. Molecular target for sprayable double-stranded RNA-based biopesticide against Amphitetranychus viennensis (Acari, Tetranychidae). Int J Biol Macromol 2025; 289:138982. [PMID: 39706416 DOI: 10.1016/j.ijbiomac.2024.138982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Amphitetranychus viennensis, a destructive pest mite of fruit plants in Europe and Asia, poses a serious challenge due to its adaptability and resistance to multiple acaricides. RNA interference (RNAi)-based technologies offer a promising alternative to address this emerging issue. In this study, we screened for candidate genes that can be targeted for spray-induced gene silencing (SIGS). Suppression of AvSrp54k, AveIF4A-1, AvHel31B, AvCOPB2 and AvProsbeta5 led to a significantly higher mortality and caused minor damages to leaf discs in comparison to the controls. Among them, AvCOPB2 and AvProsbeta5 were the best candidates with the highest mortality (>95 %) and minimal leaf damages (<13 %). Given that LdProsbeta5 is the active ingredient of the first sprayable dsRNA-based biopesticide, Ledprona, against the Colorado Potato Beetle, Leptinotarsa decemlineata, we examined the suitability of AvProsbeta5 in managing A. viennensis. In comparison to the control, A. viennensis population was suppressed by >95 % at day-17, and the plant defoliation rate decreased to 0 at day-24. Our combined results not only provide two viable molecular targets for sprayable dsRNA-based biopesticides, but also confirm the practical implications of SIGS in managing A. viennensis, one of the most destructive arthropod pests in orchards and ornamental plants.
Collapse
Affiliation(s)
- Yuanpeng Duan
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China
| | - Yifei Wang
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China
| | - Fan Yang
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China
| | - Yue Gao
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China
| | - Zhongfang Liu
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China
| | - Pengjiu Zhang
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China
| | - Junjiao Lu
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China
| | - Renjun Fan
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China
| | - Xuguo Zhou
- Department of Entomology, School of Integrative Biology, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jing Yang
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China.
| | - Meifeng Ren
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China.
| |
Collapse
|
3
|
Liu X, Gu H, Xu Q, Jiang Z, Li B, Wei J. Determination of suitable reference genes for RT-qPCR normalisation in Bombyx mori (Lepidoptera: Bombycidae) infected by the parasitoid Exorista sorbillans (Diptera, Tachinidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:845-857. [PMID: 37997795 DOI: 10.1017/s0007485323000536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The silkworm Bombyx mori (Lepidoptera: Bombycidae) is a lepidopteran model insect of great economic importance. The parasitoid Exorista sorbillans (Diptera, Tachinidae) is the major pest of B. mori and also a promising candidate for biological control. However, the molecular interactions between hosts and dipteran parasitoids have only partially been studied. Gene expression analysis by reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) is indispensable to characterise their interactions. Accurate normalisation of RT-qPCR-based gene expression requires the use of reference genes that are constantly expressed irrespective of experimental conditions. In this study, the expression stability of 13 traditionally used reference genes was estimated by five statistical algorithms (ΔCt, geNorm, Normfinder, BestKeeper, and RefFinder) to determine the best reference genes for gene expression studies in different tissues of B. mori under E. sorbillans parasitism. Specifically, TATA-box-binding protein was the best reference gene in epidermis and testis, while elongation factor 1α was the most stable gene in prothoracic gland and midgut. Elongation factor 1γ, ribosomal protein L3, actin A1, ribosomal protein L40, glyceraldehyde-3-phosphate dehydrogenase and eukaryotic translation initiation factor 4A were the most suitable genes in head, silk gland, fat body, haemolymph, Malpighian tubule and ovary, respectively. Our study offers a set of suitable reference genes for gene expression normalisation in B. mori under the parasitic stress of E. sorbillans, which will benefit the in-depth exploration of host-dipteran parasitoid interactions, and also provide insights for further improvements of B. mori resistance against parasitoids and biocontrol efficacy of dipteran parasitoids.
Collapse
Affiliation(s)
- Xinyi Liu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Haoyi Gu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qian Xu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhe Jiang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
- Sericulture Institute of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jing Wei
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
- Sericulture Institute of Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
4
|
Liu H, Liu J, Chen P, Zhang X, Wang K, Lu J, Li Y. Selection and Validation of Optimal RT-qPCR Reference Genes for the Normalization of Gene Expression under Different Experimental Conditions in Lindera megaphylla. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112185. [PMID: 37299163 DOI: 10.3390/plants12112185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Lindera megaphylla, a broad-leaved evergreen that is used as a landscape ornamental plant and medicinal plant, is an ecologically important and dominant tree species. However, little is known about the molecular mechanisms of its growth, development, and metabolism. The selection of suitable reference genes is critical for molecular biological analyses. To date, no research on reference genes as a foundation for gene expression analysis has been undertaken in L. megaphylla. In this study, 14 candidate genes were selected from the transcriptome database of L. megaphylla for RT-qPCR assay under different conditions. Results showed that helicase-15 and UBC28 were most stable in different tissues of seedlings and adult trees. For different leaf developmental stages, the best combination of reference genes was ACT7 and UBC36. UBC36 and TCTP were the best under cold treatment, while PAB2 and CYP20-2 were the best under heat treatment. Finally, a RT-qPCR assay of LmNAC83 and LmERF60 genes were used to further verify the reliability of selected reference genes above. This work is the first to select and evaluate the stability of reference genes for the normalization of gene expression analysis in L. megaphylla and will provide an important foundation for future genetic studies of this species.
Collapse
Affiliation(s)
- Hongli Liu
- International Union Laboratory of Landscape Architecture of Henan, College of Landscape Architecture and Arts, Henan Agricultural University, Zhengzhou 450003, China
| | - Jing Liu
- International Union Laboratory of Landscape Architecture of Henan, College of Landscape Architecture and Arts, Henan Agricultural University, Zhengzhou 450003, China
| | - Peng Chen
- International Union Laboratory of Landscape Architecture of Henan, College of Landscape Architecture and Arts, Henan Agricultural University, Zhengzhou 450003, China
| | - Xin Zhang
- International Union Laboratory of Landscape Architecture of Henan, College of Landscape Architecture and Arts, Henan Agricultural University, Zhengzhou 450003, China
| | - Ke Wang
- Zhengzhou Botanical Garden, Zhengzhou 450042, China
| | - Jiuxing Lu
- International Union Laboratory of Landscape Architecture of Henan, College of Landscape Architecture and Arts, Henan Agricultural University, Zhengzhou 450003, China
| | - Yonghua Li
- International Union Laboratory of Landscape Architecture of Henan, College of Landscape Architecture and Arts, Henan Agricultural University, Zhengzhou 450003, China
| |
Collapse
|
5
|
Chen J, Wang Y, Yang Z, Liu D, Jin Y, Li X, Deng Y, Wang B, Zhang Z, Ma Y. Identification and validation of the reference genes in the echiuran worm Urechis unicinctus based on transcriptome data. BMC Genomics 2023; 24:248. [PMID: 37165306 PMCID: PMC10170059 DOI: 10.1186/s12864-023-09358-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Real-time quantitative PCR (RT-qPCR) is a crucial and widely used method for gene expression analysis. Selecting suitable reference genes is extremely important for the accuracy of RT-qPCR results. Commonly used reference genes are not always stable in various organisms or under different environmental conditions. With the increasing application of high-throughput sequencing, transcriptome analysis has become an effective method for identifying novel stable reference genes. RESULTS In this study, we identified candidate reference genes based on transcriptome data covering embryos and larvae of early development, normal adult tissues, and the hindgut under sulfide stress using the coefficient of variation (CV) method in the echiuran Urechis unicinctus, resulting in 6834 (15.82%), 7110 (16.85%) and 13880 (35.87%) candidate reference genes, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the candidate reference genes were significantly enriched in cellular metabolic process, protein metabolic process and ribosome in early development and normal adult tissues as well as in cellular localization and endocytosis in the hindgut under sulfide stress. Subsequently, ten genes including five new candidate reference genes and five commonly used reference genes, were validated by RT-qPCR. The expression stability of the ten genes was analyzed using four methods (geNorm, NormFinder, BestKeeper, and ∆Ct). The comprehensive results indicated that the new candidate reference genes were more stable than most commonly used reference genes. The commonly used ACTB was the most unstable gene. The candidate reference genes STX12, EHMT1, and LYAG were the most stable genes in early development, normal adult tissues, and hindgut under sulfide stress, respectively. The log2(TPM) of the transcriptome data was significantly negatively correlated with the Ct values of RT-qPCR (Ct = - 0.5405 log2(TPM) + 34.51), which made it possible to estimate the Ct value before RT-qPCR using transcriptome data. CONCLUSION Our study is the first to select reference genes for RT-qPCR from transcriptome data in Echiura and provides important information for future gene expression studies in U. unicinctus.
Collapse
Affiliation(s)
- Jiao Chen
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yunjian Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhi Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Danwen Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yao Jin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xixi Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yuhang Deng
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Boya Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| |
Collapse
|
6
|
Xu J, Yang M, Shao AZ, Pan HW, Fan YX, Chen KP. Identification and Validation of Common Reference Genes for Normalization of Esophageal Squamous Cell Carcinoma Gene Expression Profiles. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9125242. [PMID: 36467891 PMCID: PMC9711964 DOI: 10.1155/2022/9125242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 09/04/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the subtypes of esophageal cancer with Chinese characteristics, and its five-year survival rate is less than 20%. Early diagnosis is beneficial to improving the survival rate of ESCC significantly. Quantitative Real-Time Polymerase Chain Reaction is a high-throughput technique that can quantify tumor-related genes for early diagnosis. Its accuracy largely depends on the stability of the reference gene. There is no systematic scientific basis to demonstrate which reference gene expression is stable in ESCC and no consensus on the selection of internal reference. Therefore, this research used four software programs (The comparative delta-Ct method, GeNorm, NormFinder, and BestKeeper) to evaluate the expression stability of eight candidate reference genes commonly used in other tumor tissues and generated a comprehensive analysis by RefFinder. Randomly selected transcriptome sequencing analysis confirmed the SPP1 gene is closely related to ESCC. It was found that the expression trend of SPP1 obtained by RPS18 and PPIA as internal reference genes were the same as that of sequencing. The results show that RPS18 and PPIA are stable reference genes, and PPIA + RPS18 are a suitable reference gene combination. This is a reference gene report that combines transcriptome sequencing analysis and only focuses on ESCC, which makes the quantification more precise, systematic, and standardized, and promotes gene regulation research and the early diagnosis of ESCC in the future.
Collapse
Affiliation(s)
- Jia Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ming Yang
- Department of General Surgery, Fifth People's Hospital of Huaian City, Huaian, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ai-zhong Shao
- Department of Cardiothorac Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Hui-wen Pan
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yi-xuan Fan
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ke-ping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|