1
|
Dou X, Jurenka R. Pheromone biosynthesis activating neuropeptide family in insects: a review. Front Endocrinol (Lausanne) 2023; 14:1274750. [PMID: 38161974 PMCID: PMC10755894 DOI: 10.3389/fendo.2023.1274750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Neuropeptides are involved in almost all physiological activities of insects. Their classification is based on physiological function and the primary amino acid sequence. The pyrokinin (PK)/pheromone biosynthesis activating neuropeptides (PBAN) are one of the largest neuropeptide families in insects, with a conserved C-terminal domain of FXPRLamide. The peptide family is divided into two groups, PK1/diapause hormone (DH) with a WFGPRLa C-terminal ending and PK2/PBAN with FXPRLamide C-terminal ending. Since the development of cutting-edge technology, an increasing number of peptides have been sequenced primarily through genomic, transcriptomics, and proteomics, and their functions discovered using gene editing tools. In this review, we discussed newly discovered functions, and analyzed the distribution of genes encoding these peptides throughout different insect orders. In addition, the location of the peptides that were confirmed by PCR or immunocytochemistry is also described. A phylogenetic tree was constructed according to the sequences of the receptors of most insect orders. This review offers an understanding of the significance of this conserved peptide family in insects.
Collapse
Affiliation(s)
- Xiaoyi Dou
- Department of Entomology, University of Georgia, Athens, GA, United States
| | - Russell Jurenka
- Department of Plant Pathology, Entomology, Microbiology Iowa State University, Ames, IA, United States
| |
Collapse
|
2
|
Ashok K, Bhargava CN, Asokan R, Pradeep C, Pradhan SK, Kennedy JS, Balasubramani V, Murugan M, Jayakanthan M, Geethalakshmi V, Manamohan M. CRISPR/Cas9 mediated editing of pheromone biosynthesis activating neuropeptide ( PBAN) gene disrupts mating in the Fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). 3 Biotech 2023; 13:370. [PMID: 37849767 PMCID: PMC10577122 DOI: 10.1007/s13205-023-03798-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
The Fall armyworm, Spodoptera frugiperda, is a globally important invasive pest, primarily on corn, causing severe yield loss. Overuse of synthetic chemicals has caused significant ecological harm, and in many instances control has failed. Therefore, developing efficient, environmentally friendly substitutes for sustainable management of this pest is of high priority. CRISPR/Cas9-mediated gene editing causes site-specific mutations that typically result in loss-of-function of the target gene. In this regard, identifying key genes that govern the reproduction of S. frugiperda and finding ways to introduce mutations in the key genes is very important for successfully managing this pest. In this study, the pheromone biosynthesis activator neuropeptide (PBAN) gene of S. frugiperda was cloned and tested for its function via a loss-of-function approach using CRISPR/Cas9. Ribonucleoprotein (RNP) complex (single guide RNA (sgRNA) targeting the PBAN gene + Cas9 protein) was validated through in vitro restriction assay followed by embryonic microinjection into the G0 stage for in vivo editing of the target gene. Specific suppression of PBAN by CRISPR/Cas9 in females significantly affected mating. Mating studies between wild males and mutant females resulted in no fecundity. This was in contrast to when mutant males were crossed with wild females, which resulted in reduced fecundity. These results suggest that mating disruption is more robust where PBAN is edited in females. The behavioural bioassay using an olfactometer revealed that mutant females were less attractive to wild males compared to wild females. This study is the first of its kind, supporting CRISPR/Cas9 mediating editing of the PBAN gene disrupting mating in S. frugiperda. Understanding the potential use of these molecular techniques may help develop novel management strategies that target other key functional genes. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03798-3.
Collapse
Affiliation(s)
- Karuppannasamy Ashok
- ICAR-Indian Institute of Horticultural Research, Bangalore, Karnataka India
- Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu India
| | - Chikmagalur Nagaraja Bhargava
- ICAR-Indian Institute of Horticultural Research, Bangalore, Karnataka India
- University of Agricultural Sciences, Bangalore, Karnataka India
| | - Ramasamy Asokan
- ICAR-Indian Institute of Horticultural Research, Bangalore, Karnataka India
| | - Chalapathi Pradeep
- ICAR-Indian Institute of Horticultural Research, Bangalore, Karnataka India
- University of Agricultural Sciences, Bangalore, Karnataka India
| | - Sanjay Kumar Pradhan
- ICAR-Indian Institute of Horticultural Research, Bangalore, Karnataka India
- University of Agricultural Sciences, Bangalore, Karnataka India
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
3
|
Khan F, Kim K, Sung J, Lim H, Kim SG, Choi MY, Kim Y. A novel physiological function of pheromone biosynthesis-activating neuropeptide in production of aggregation pheromone. Sci Rep 2023; 13:5551. [PMID: 37019976 PMCID: PMC10076286 DOI: 10.1038/s41598-023-32833-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/03/2023] [Indexed: 04/07/2023] Open
Abstract
The western flower thrips, Frankliniella occidentalis, is an insect pest, and its aggregation pheromone (AP) plays a crucial role in the recruitment of both sexes. A novel pheromone biosynthesis-activating neuropeptide (PBAN)-like gene is encoded in F. occidentalis genome, but its physiological function has yet to be elucidated. This study hypothesized the physiological role played by PBAN in mediating AP production. AP has been known to be produced only by male adults in F. occidentalis. Surprisingly, our extraction of headspace volatiles contained two AP components in females as well as in males with similar composition. PBAN injection elevated the AP production whereas RNA interference (RNAi) of the gene expression suppressed the AP production in both sexes. A biosynthetic pathway to produce AP components were predicted and the enzymes catalyzing the main steps were confirmed in their expressions. Individual RNAi treatments of these genes significantly suppressed AP production. RNAi of PBAN gene downregulated the expressions of these biosynthesis-associated genes in both sexes. These results suggest that the novel neuropeptide acts as PBAN mediating AP production through stimulating its biosynthetic machinery in F. occidentalis.
Collapse
Affiliation(s)
- Falguni Khan
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36720, Korea
| | - Keono Kim
- Department of Food Life Science, College of Life Sciences, Andong National University, Andong, 36720, Korea
| | - Jeehye Sung
- Department of Food Life Science, College of Life Sciences, Andong National University, Andong, 36720, Korea
| | - Hangah Lim
- Department of Biological Sciences, KAIST, Daejon, 34141, Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, KAIST, Daejon, 34141, Korea
| | - Man-Yeon Choi
- Horticultural Crops Research Unit, USADA-ARS, Corvalis, OR, 97330, USA
| | - Yonggyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36720, Korea.
| |
Collapse
|
4
|
Sengupta M, Vimal N, Angmo N, Seth RK. Effect of Irradiation on Reproduction of Female Spodoptera litura (Fabr.) (Lepidoptera: Noctuidae) in Relation to the Inherited Sterility Technique. INSECTS 2022; 13:898. [PMID: 36292846 PMCID: PMC9604188 DOI: 10.3390/insects13100898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Radiobiological investigations on the reproductive behavior of female Spodoptera litura (Fabr.) were conducted with the aim of determining the suitable radio-sterilizing dose for females in order to release them along with sub-sterile males for effective implementation of the Inherited Sterility technique against this pest. Calling and copulation duration significantly increased, while mating success, oviposition, fertility and longevity significantly decreased with increasing radiation dose (100-200 Gy) compared to control. In view of the effect of irradiation on mating behavior and reproductive viability of female S. litura, 130 Gy was identified as a suitable radio-sterilization dose. Further molecular studies were conducted to corroborate this dose for female sterilization, along with a higher dose of 200 Gy in order to validate the gradational response of ionizing radiation. GC-MS analysis indicated decreased sex pheromone titer at 130 Gy, which was more pronounced at 200 Gy. Pheromone-associated genes, PBAN and PBAN-R showed decreased expression at 130 Gy, and were drastically reduced at 200 Gy. The fertility-related Vg gene also showed a negative correlation with radiation exposure. Based on these radiation responses of female S. litura, 130 Gy might be considered a suitable dose for complete female sterility and its inclusion in sterile insect programs against S. litura.
Collapse
|
5
|
Cha WH, Lee DW. Suppression of pheromone biosynthesis and mating behavior by RNA interference of pheromone gland-specific fatty acyl reductase in Maruca vitrata. INSECT SCIENCE 2022; 29:1135-1144. [PMID: 34971127 DOI: 10.1111/1744-7917.12999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
In moths, various enzymes, such as fatty acid synthases, fatty acyl desaturases, and fatty acyl reductases (FARs), are involved in pheromone biosynthesis. In particular, pheromone gland-specific FAR (pgFAR) plays an important role in converting the functional group from carboxylic to alcohol during pheromone biosynthesis. A novel pgFAR of Maruca vitrata, Mvi-pgFAR, was identified through transcriptome sequencing of its pheromone gland. To investigate the involvement of Mvi-pgFAR in pheromone biosynthesis, Mvi-pgFAR was cloned from the pheromone gland and suppressed by RNA interference (RNAi). Mvi-pgFAR harbored several conserved motifs related to NAD(P)H-binding, N-glycosylation, and adenosine / guanosine triphosphate binding. Phylogenetic analysis revealed that Mvi-pgFAR with other lepidopteran pgFARs formed an independent clade. Mvi-pgFAR was specifically expressed only in the pheromone gland. Quantitative real-time polymerase chain reaction showed that the diurnal expression levels of Mvi-pgFAR in the pheromone gland were the highest at 2 h before the scotophase. After primarily confirming Mvi-pgFAR suppression by RNAi, (E,E)-10,12-hexadecadienal (E10E12-16:Ald), a major sex pheromone component, was quantified by gas chromatography. When Mvi-pgFAR was successfully suppressed, E10E12-16:Ald production was reduced by up to half of that of the control, and the mating rate was subsequently decreased. Our results demonstrate that Mvi-pgFAR downregulation can suppress mating behavior by changing the relative sex pheromone component ratio, suggesting that Mvi-pgFAR can be used as a novel control target.
Collapse
Affiliation(s)
- Wook Hyun Cha
- Department of Biosafety, Kyungsung University, Busan, Republic of Korea
| | - Dae-Weon Lee
- Department of Biosafety, Kyungsung University, Busan, Republic of Korea
- Metabolomics Research Center for Functional Materials, Kyungsung University, Busan, Republic of Korea
| |
Collapse
|
6
|
List F, Tarone AM, Zhu‐Salzman K, Vargo EL. RNA meets toxicology: efficacy indicators from the experimental design of RNAi studies for insect pest management. PEST MANAGEMENT SCIENCE 2022; 78:3215-3225. [PMID: 35338587 PMCID: PMC9541735 DOI: 10.1002/ps.6884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/07/2022] [Accepted: 03/26/2022] [Indexed: 05/27/2023]
Abstract
RNA interference (RNAi) selectively targets genes and silences their expression in vivo, causing developmental defects, mortality and altered behavior. Consequently, RNAi has emerged as a promising research area for insect pest management. However, it is not yet a viable alternative over conventional pesticides despite several theoretical advantages in safety and specificity. As a first step toward a more standardized approach, a machine learning algorithm was used to identify factors that predict trial efficacy. Current research on RNAi for pest management is highly variable and relatively unstandardized. The applied random forest model was able to reliably predict mortality ranges based on bioassay parameters with 72.6% accuracy. Response time and target gene were the most important variables in the model, followed by applied dose, double-stranded RNA (dsRNA) construct size and target species, further supported by generalized linear mixed effect modeling. Our results identified informative trends, supporting the idea that basic principles of toxicology apply to RNAi bioassays and provide initial guidelines standardizing future research similar to studies of traditional insecticides. We advocate for training that integrates genetic, organismal, and toxicological approaches to accelerate the development of RNAi as an effective tool for pest management. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Fabian List
- Department of EntomologyTexas A&M UniversityCollege StationTXUSA
| | - Aaron M Tarone
- Department of EntomologyTexas A&M UniversityCollege StationTXUSA
| | | | - Edward L Vargo
- Department of EntomologyTexas A&M UniversityCollege StationTXUSA
| |
Collapse
|
7
|
Choi MY, Vander Meer RK. GPCR-Based Bioactive Peptide Screening Using Phage-Displayed Peptides and an Insect Cell System for Insecticide Discovery. Biomolecules 2021; 11:biom11040583. [PMID: 33923387 PMCID: PMC8071521 DOI: 10.3390/biom11040583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 01/12/2023] Open
Abstract
The discovery of new insecticides improves integrated pest management (IPM), but is usually a long high-risk process with a low probability of success. For over two decades, insect neuropeptides (NPs) and their G-protein coupled receptors (GPCRs) have been considered as biological targets for insect pest control, because they are involved in almost all physiological processes associated with insect life stages. A key roadblock to success has been the question of how large volume chemical libraries can be efficiently screened for active compounds. New genomic and proteomic tools have advanced and facilitated the development of new approaches to insecticide discovery. In this study, we report a novel GPCR-based screening technology that uses millions of short peptides randomly generated by bacteriophages, and a method using an insect Sf9 cell expression system. The fire ant is a good model system, since bioactive peptides have been identified for a specific GPCR. The novel small peptides could interfere with the target GPCR-ligand functions. Therefore, we refer to this new mechanism as “receptor interference” (RECEPTORi). The GPCR-based bioactive peptide screening method offers multiple advantages. Libraries of phage-displayed peptides (~109 peptides) are inexpensive. An insect cell-based screening system rapidly leads to target specific GPCR agonists or antagonists in weeks. Delivery of bioactive peptides to target pests can be flexible, such as topical, ingestion, and plant-incorporated protectants. A variety of GPCR targets are available, thus minimizing the development of potential insecticide resistance. This report provides the first proof-of-concept for the development of novel arthropod pest management strategies using neuropeptides, and GPCRs.
Collapse
Affiliation(s)
- Man-Yeon Choi
- USDA-ARS, Horticultural Crops Research Laboratory, Corvallis, OR 97330, USA
- Correspondence:
| | - Robert K. Vander Meer
- USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL 32608, USA;
| |
Collapse
|
8
|
Wang XF, Chen Z, Wang XB, Xu J, Chen P, Ye H. Bacterial-mediated RNAi and functional analysis of Natalisin in a moth. Sci Rep 2021; 11:4662. [PMID: 33633211 PMCID: PMC7907129 DOI: 10.1038/s41598-021-84104-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/12/2021] [Indexed: 11/09/2022] Open
Abstract
The neuropeptide natalisin (NTL) has been determined to play essential roles in reproduction in two Diptera and one Coleoptera species. Whether NTL has similar or even different functions in Lepidoptera remains to be determined. Here, we cloned the NTL transcript in the common cutworm moth Spodoptera litura. This transcript encodes a 438-amino acid protein. Twelve putative Sl-NTL neuropeptides were defined by cleavage sites. These NTL peptides share a DDPFWxxRamide C-terminal motif. The expressions of Sl-NTL is low during the egg and larval stages, which increased to a higher level during the pupal stage, and then reached the maximum during the adult stage. Moreover, the expression pattern during the pupal stage is similar between sexes while during the adult stage, it is dimorphic. To explore the function of Sl-NTL and assess its potential as a target for pest control, we knocked down the expression of Sl-NTL in both sexes by using bacteria-mediated RNAi. This technique significantly down regulated (reduced up to 83%) the expression of Sl-NTL in both sexes. Knocking down Sl-NTL expression did not significantly affect its development, survival and morphology but significantly reduced adults' reproductive behavior (including female calling, male courtship, mating and remating patterns and rates) and reproductive output (offspring gain reduced more than 70%).
Collapse
Affiliation(s)
- Xia-Fei Wang
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, 650224, China.,School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Zhe Chen
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, 650224, China
| | - Xu-Bo Wang
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, 650224, China
| | - Jin Xu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, 650224, China.
| | - Peng Chen
- Yunnan Academy of Forestry and Grassland, Kunming, 650201, China.
| | - Hui Ye
- School of Life Sciences, Yunnan University, Kunming, 650091, China
| |
Collapse
|
9
|
Gao B, Song XQ, Yu H, Fu DY, Xu J, Ye H. Mating-Induced Differential Expression in Genes Related to Reproduction and Immunity in Spodoptera litura (Lepidoptera: Noctuidae) Female Moths. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:10. [PMID: 32092133 PMCID: PMC7039226 DOI: 10.1093/jisesa/ieaa003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Mating promotes reproductive activity, which may impact immune performance. Paradoxically, mating frequently challenges females' immunity (e.g., infections). Therefore, studies of postmating resource allocation between reproduction and survival are likely to shed new light on life-history trade-off and sexual selection. Here, we used RNAseq to test whether and how mating affected mRNA expression in genes related to reproduction and immunity in Spodoptera litura female moths. Results show a divergent change in the differentially expressed genes (DEGs) between reproduction and immunity: the immune response was largely downregulated shortly after mating (~6 h postmating), which has some recovery at 24 h postmating; reproductive response is trivial shortly after mating (~6 h postmating), but it largely upregulated at 24 h postmating (e.g., egg maturation related genes were highly upregulated). Considering the fact that most of the total DEGs downregulated from 0 to 6 h postmating (from 51/68 to 214/260) but most of the total DEGs upregulated at 24 h postmating (816/928), it is possible that trade-offs between reproduction and immunity occurred in mated females. For example, they may shut down immunity to favor sperm storage and save limited resources to support the increased energy required in reproduction (e.g., egg maturation and oviposition). Mating-induced infections should be trivial due to low polyandry in S. litura. A reduced immune defense may have no threat to S. litura survival but may benefit reproduction significantly. Furthermore, obvious expression changes were detected in genes related to hormone production, suggesting that endocrine changes could play important roles in postmating responses.
Collapse
Affiliation(s)
- Bo Gao
- School of Life Sciences, Yunnan University, Kunming, China
| | - Xiao-Qian Song
- School of Life Sciences, Yunnan University, Kunming, China
| | - Hong Yu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Da-Ying Fu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Jin Xu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Hui Ye
- School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
10
|
Xu J, Gao B, Shi MR, Yu H, Huang LY, Chen P, Li YH. Copulation Exerts Significant Effects on mRNA Expression of Cryptochrome Genes in a Moth. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:3. [PMID: 30817821 PMCID: PMC6394973 DOI: 10.1093/jisesa/iez016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/23/2019] [Accepted: 01/31/2019] [Indexed: 05/12/2023]
Abstract
It is recognized that the behavioral rhythms of organisms are controlled by the circadian clock, while the reverse direction, i.e., whether changes in physiology and behavior react to the internal rhythms, is unclear. Cryptochromes (CRYs) are photolyase-like flavoproteins with blue-light receptor function and other functions on circadian clock and migration in animals. Here, we cloned the full-length cDNA of CRY1 and CRY2 in Spodoptera litura (Fabricius, 1775) (Lepidoptera: Noctuidae). Sl-CRYs show high similarity to orthologs from other insects, and their conserved regions contain a DNA photolyase domain and a FAD-binding seven domain. The expression levels of both genes were relatively low during the larval stage, which increased during the pupal stage and then peaked at the adult stage. The expression of Sl-CRY1 and Sl-CRY2 showed differences between males and females and between scotophase and photophase. Further, our study demonstrated that copulation has a significant effect on the expression of Sl-CRYs. More interestingly, the changes in the expression of Sl-CRY1 and Sl-CRY2 due to copulation showed the same trend in both sexes, in which the expression levels of both genes in copulated males and females decreased in the subsequent scotophase after copulation and then increased significantly in the following photophase. Considering the nature of the dramatic changes in reproductive behavior and physiology after copulation in S. litura, we propose that the changes in the expression of Sl-CRYs after copulation could have some function in the reproductive process.
Collapse
Affiliation(s)
- Jin Xu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Bo Gao
- School of Life Sciences, Yunnan University, Kunming, China
| | - Min-Rui Shi
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Hong Yu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Ling-Yan Huang
- School of Life Sciences, Yunnan University, Kunming, China
| | - Peng Chen
- Yunnan Academy of Forestry, Kunming, China
| | - Yong-He Li
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| |
Collapse
|
11
|
Choi MY, Vander Meer RK. Phenotypic Effects of PBAN RNAi Using Oral Delivery of dsRNA to Corn Earworm (Lepidoptera: Noctuidae) and Tobacco Budworm Larvae. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:434-439. [PMID: 30508147 DOI: 10.1093/jee/toy356] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Indexed: 05/27/2023]
Abstract
Insect neuropeptides represent more than 90% of all insect hormones. The pheromone biosynthesis activating neuropeptide (PBAN)/pyrokinin family is a major group of insect neuropeptides. These neuropeptides regulate a variety of biological functions from embryo to adult in moths including, sex pheromone biosynthesis and diapause. Other functions are yet to be determined. The identification of suitable target genes is most important for the successful application of RNA interference (RNAi) for pest insect control. Insect neuropeptide genes including PBAN are known to have multiple functions and could be a good target for RNAi suppression. In this study, we selected the PBAN gene and its neuropeptide products as an RNAi target for two economically important moth species, the corn earworm, Helicoverpa zea (Boddie), and the tobacco budworm, Heliothis virescens (Fabricius). We investigated RNAi effects on immature moths that had ingested the specific double-stranded RNA (dsRNA) starting at the first instar larva through pupation. We report that RNAi treatments resulted in delay of larval growth, interference of pupal development, and mortality in the two pest moths. In addition, we selected small interfering RNAs (siRNAs) to determine if they have negative phenotypic effects similar to their full-length RNAi parents. This is one of the few examples of negative RNAi effects on lepidopteran pests via feeding and suggests possible RNAi-based control of pest moths.
Collapse
Affiliation(s)
- Man-Yeon Choi
- Horticultural Crops Research Unit, USDA-ARS, Corvallis, OR
| | - Robert K Vander Meer
- Center for Medical, Agricultural and Veterinary Entomology (CMAVE), USDA-ARS, Gainesville, FL
| |
Collapse
|
12
|
Jurenka R. Regulation of pheromone biosynthesis in moths. CURRENT OPINION IN INSECT SCIENCE 2017; 24:29-35. [PMID: 29208220 DOI: 10.1016/j.cois.2017.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/14/2017] [Accepted: 09/06/2017] [Indexed: 05/28/2023]
Abstract
Female moths release sex pheromones for attracting males from a distance. Most moths are nocturnal so there is a periodicity to the release of sex pheromone. The temporal release of sex pheromone in most moths is regulated by calling behavior and by the biosynthesis of sex pheromone. In most moths, biosynthesis occurs in the pheromone gland and is controlled by the neuropeptide PBAN (pheromone biosynthesis activating neuropeptide). PBAN is produced in the subesophageal ganglion and released into circulation where it travels to the pheromone gland to activate pheromone biosynthesis. The G-protein coupled receptor that binds PBAN has been identified as well as aspects of signal transduction to activate the biosynthetic pathway. This review will highlight recent advances in the study of regulation of pheromone biosynthesis in moths.
Collapse
Affiliation(s)
- Russell Jurenka
- Department of Entomology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
13
|
Xu J, Wang XF, Chen P, Liu FT, Zheng SC, Ye H, Mo MH. RNA Interference in Moths: Mechanisms, Applications, and Progress. Genes (Basel) 2016; 7:E88. [PMID: 27775569 PMCID: PMC5083927 DOI: 10.3390/genes7100088] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 12/14/2022] Open
Abstract
The vast majority of lepidopterans, about 90%, are moths. Some moths, particularly their caterpillars, are major agricultural and forestry pests in many parts of the world. However, some other members of moths, such as the silkworm Bombyx mori, are famous for their economic value. Fire et al. in 1998 initially found that exogenous double-stranded RNA (dsRNA) can silence the homolog endogenous mRNA in organisms, which is called RNA interference (RNAi). Soon after, the RNAi technique proved to be very promising not only in gene function determination but also in pest control. However, later studies demonstrate that performing RNAi in moths is not as straightforward as shown in other insect taxa. Nevertheless, since 2007, especially after 2010, an increasing number of reports have been published that describe successful RNAi experiments in different moth species either on gene function analysis or on pest management exploration. So far, more than 100 peer-reviewed papers have reported successful RNAi experiments in moths, covering 10 families and 25 species. By using classic and novel dsRNA delivery methods, these studies effectively silence the expression of various target genes and determine their function in larval development, reproduction, immunology, resistance against chemicals, and other biological processes. In addition, a number of laboratory and field trials have demonstrated that RNAi is also a potential strategy for moth pest management. In this review, therefore, we summarize and discuss the mechanisms and applications of the RNAi technique in moths by focusing on recent progresses.
Collapse
Affiliation(s)
- Jin Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.
- Institute of Plant Protection, Yunnan Academy of Forestry, Kunming 650201, China.
| | - Xia-Fei Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.
| | - Peng Chen
- Institute of Plant Protection, Yunnan Academy of Forestry, Kunming 650201, China.
| | - Fang-Tao Liu
- School of Physical Education, Wenshan Institute, Wenshan 663000, China.
| | - Shuai-Chao Zheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.
| | - Hui Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.
| | - Ming-He Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.
| |
Collapse
|