1
|
Chen N, Zou C, Pan LL, Du H, Yang JJ, Liu SS, Wang XW. Cotton leaf curl Multan virus subverts the processing of hydroxyproline-rich systemin to suppress tobacco defenses against insect vectors. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5819-5838. [PMID: 38829390 DOI: 10.1093/jxb/erae257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
Insect vector-virus-plant interactions have important ecological and evolutionary implications. The constant struggle of plants against viruses and insect vectors has driven the evolution of multiple defense strategies in the host as well as counter-defense strategies in the viruses and insect vectors. Cotton leaf curl Multan virus (CLCuMuV) is a major causal agent of cotton leaf curl disease in Asia and is exclusively transmitted by the whitefly Bemisia tabaci. Here, we report that plants infected with CLCuMuV and its betasatellite CLCuMuB enhance the performance of the B. tabaci vector, and βC1 encoded by CLCuMuB plays an important role in begomovirus-whitefly-tobacco tripartite interactions. We showed that CLCuMuB βC1 suppresses the jasmonic acid signaling pathway by interacting with the subtilisin-like protease 1.7 (NtSBT1.7) protein, thereby enhancing whitefly performance on tobacco plants. Further studies revealed that in wild-type plants, NtSBT1.7 could process tobacco preprohydroxyproline-rich systemin B (NtpreproHypSysB). After CLCuMuB infection, CLCuMuB βC1 could interfere with the processing of NtpreproHypSysB by NtSBT1.7, thereby impairing plant defenses against whitefly. These results contribute to our understanding of tripartite interactions among virus, plant, and whitefly, thus offering ecological insights into the spread of vector insect populations and the prevalence of viral diseases.
Collapse
Affiliation(s)
- Na Chen
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Chi Zou
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
- Zhenhai Agricultural Technology Extension Station, 569 Minhe Road, Ningbo 310000, China
| | - Li-Long Pan
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Hui Du
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Jing-Jing Yang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Shu-Sheng Liu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Xiao-Wei Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
2
|
Iqbal Z, Shafiq M, Sattar MN, Ali I, Khurshid M, Farooq U, Munir M. Genetic Diversity, Evolutionary Dynamics, and Ongoing Spread of Pedilanthus Leaf Curl Virus. Viruses 2023; 15:2358. [PMID: 38140599 PMCID: PMC10747432 DOI: 10.3390/v15122358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Pedilanthus leaf curl virus (PeLCV) is a monopartite begomovirus (family Geminiviridae) discovered just a few decades ago. Since then, it has become a widely encountered virus, with reports from ca. 25 plant species across Pakistan and India, indicative of its notable evolutionary success. Viruses mutate at such a swift rate that their ecological and evolutionary behaviors are inextricably linked, and all of these behaviors are imprinted on their genomes as genetic diversity. So, all these imprints can be mapped by computational methods. This study was designed to map the sequence variation dynamics, genetic heterogeneity, regional diversity, phylogeny, and recombination events imprinted on the PeLCV genome. Phylogenetic and network analysis grouped the full-length genome sequences of 52 PeLCV isolates into 7 major clades, displaying some regional delineation but lacking host-specific demarcation. The progenitor of PeLCV was found to have originated in Multan, Pakistan, in 1977, from where it spread concurrently to India and various regions of Pakistan. A high proportion of recombination events, distributed unevenly throughout the genome and involving both inter- and intraspecies recombinants, were inferred. The findings of this study highlight that the PeLCV population is expanding under a high degree of genetic diversity (π = 0.073%), a high rate of mean nucleotide substitution (1.54 × 10-3), demographic selection, and a high rate of recombination. This sets PeLCV apart as a distinctive begomovirus among other begomoviruses. These factors could further exacerbate the PeLCV divergence and adaptation to new hosts. The insights of this study that pinpoint the emergence of PeLCV are outlined.
Collapse
Affiliation(s)
- Zafar Iqbal
- Central Laboratories, King Faisal University, Al-Ahsa P.O. Box 55110, Saudi Arabia;
| | - Muhammad Shafiq
- Department of Biotechnology, University of Management and Technology, Sialkot Campus, Sialkot P.O. Box 51340, Pakistan;
| | | | - Irfan Ali
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad P.O. Box 38000, Pakistan;
| | - Muhammad Khurshid
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore P.O. Box 54590, Pakistan;
| | - Umer Farooq
- Department of Biotechnology, University of Sialkot, Sialkot P.O. Box 51340, Pakistan;
| | - Muhammad Munir
- Date Palm Research Center of Excellence, King Faisal University, Al-Ahsa P.O. Box 31982, Saudi Arabia;
| |
Collapse
|
3
|
Lestari SM, Khatun MF, Acharya R, Sharma SR, Shrestha YK, Jahan SMH, Aye TT, Lynn OM, Win NKK, Hoat TX, Thi Dao H, Tsai CW, Lee J, Hwang HS, Kil EJ, Lee S, Kim SM, Lee KY. Genetic diversity of cryptic species of Bemisia tabaci in Asia. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21981. [PMID: 36331499 DOI: 10.1002/arch.21981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Bemisia tabaci is a species complex consisting of various genetically different cryptic species worldwide. To understand the genetic characteristics and geographic distribution of cryptic species of B. tabaci in Asia, we conducted an extensive collection of B. tabaci samples in ten Asian countries (Bangladesh, Indonesia, Japan, Korea, Myanmar, Nepal, Philippines, Singapore, Taiwan, and Vietnam) from 2013 to 2020 and determined 56 different partial sequences of mitochondrial cytochrome oxidase subunit I (COI) DNA. In addition, information on 129 COI sequences of B. tabaci identified from 16 Asian countries was downloaded from the GenBank database. Among the total 185 COI sequences of B. tabaci, the sequence variation reached to 19.68%. In addition, there were 31 cryptic species updated from 16 countries in Asia, that is, Asia I, Asia I India, Asia II (1-13), Asia III, Asia IV, Asia V, China 1-6, MEAM (1, 2, K), MED, Australia/Indonesia, Japan (1 and 2). Further, MED cryptic species consisted of 2 clades, Q1 and Q2. This study provides updated information to understand the genetic variation and geographic diversity of B. tabaci in Asia.
Collapse
Affiliation(s)
- Susanti Mugi Lestari
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Mst Fatema Khatun
- Department of Entomology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Dhaka, Bangladesh
| | - Rajendra Acharya
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sushant Raj Sharma
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | | | - S M Hemayet Jahan
- Department of Entomology, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh
| | - Tin-Tin Aye
- Department of Entomology, Yezin Agricultural University, Yezin, Myanmar
| | - Ohn Mar Lynn
- Department of Entomology, Yezin Agricultural University, Yezin, Myanmar
| | - Nang Kyu Kyu Win
- Department of Plant Pathology, Yezin Agricultural University, Yezin, Myanmar
| | | | - Hang Thi Dao
- Plant Protection Research Institute, Ha Noi, Vietnam
| | - Chi-Wei Tsai
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Jangha Lee
- PT. Koreana Seed Indonesia, Kediri Jawa Timur, Indonesia
| | - Hwal-Su Hwang
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Eui-Joon Kil
- Department of Plant Medicine, Andong National University, Andong, Republic of Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sunkyunkwan University, Suwon, Republic of Korea
| | - Sang-Mok Kim
- Plant Quarantine Technology Center, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Kyeong-Yeoll Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
4
|
Qasim Aslam M, Hussain A, Akram A, Hussain S, Zahra Naqvi R, Amin I, Saeed M, Mansoor S. Cotton Mi-1.2-like Gene: A potential source of whitefly resistance. Gene 2023; 851:146983. [DOI: 10.1016/j.gene.2022.146983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/27/2022]
|
5
|
Diverse Begomoviruses Evolutionarily Hijack Plant Terpenoid-Based Defense to Promote Whitefly Performance. Cells 2022; 12:cells12010149. [PMID: 36611943 PMCID: PMC9818243 DOI: 10.3390/cells12010149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/11/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Arthropod-borne pathogens and parasites are major threats to human health and global agriculture. They may directly or indirectly manipulate behaviors of arthropod vector for rapid transmission between hosts. The largest genus of plant viruses, Begomovirus, is transmitted exclusively by whitefly (Bemisia tabaci), a complex of at least 34 morphologically indistinguishable species. We have previously shown that plants infected with the tomato yellowleaf curl China virus (TYLCCNV) and its associated betasatellite (TYLCCNB) attract their whitefly vectors by subverting plant MYC2-regulated terpenoid biosynthesis, therefore forming an indirect mutualism between virus and vector via plant. However, the evolutionary mechanism of interactions between begomoviruses and their whitefly vectors is still poorly understood. Here we present evidence to suggest that indirect mutualism may happen over a millennium ago and at present extensively prevails. Detailed bioinformatics and functional analysis identified the serine-33 as an evolutionary conserved phosphorylation site in 105 of 119 Betasatellite species-encoded βC1 proteins, which are responsible for suppressing plant terpenoid-based defense by interfering with MYC2 dimerization and are essential to promote whitefly performance. The substitution of serine-33 of βC1 proteins with either aspartate (phosphorylation mimic mutants) or cysteine, the amino acid in the non-functional sβC1 encoded by Siegesbeckia yellow vein betasatellite SiYVB) impaired the ability of βC1 functions on suppression of MYC2 dimerization, whitefly attraction and fitness. Moreover the gain of function mutation of cysteine-31 to serine in sβC1 protein of SiYVB restored these functions of βC1 protein. Thus, the dynamic phosphorylation of serine-33 in βC1 proteins helps the virus to evade host defense against insect vectors with an evolutionarily conserved manner. Our data provide a mechanistic explanation of how arboviruses evolutionarily modulate host defenses for rapid transmission.
Collapse
|
6
|
Kaur R, Singh S, Joshi N. Pervasive Endosymbiont Arsenophonus Plays a Key Role in the Transmission of Cotton Leaf Curl Virus Vectored by Asia II-1 Genetic Group of Bemisia tabaci. ENVIRONMENTAL ENTOMOLOGY 2022; 51:564-577. [PMID: 35485184 DOI: 10.1093/ee/nvac024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 06/14/2023]
Abstract
Insects often coevolved with their mutualistic partners such as gut endosymbionts, which play a key in the physiology of host. Studies on such interactions between Bemisia tabaci and its primary and secondary endosymbionts have gained importance due to their indispensable roles in the biology of this insect. Present study reports the predominance of two secondary endosymbionts, Arsenophonus and Cardinium in the Asia II-1 genetic group of whitefly and elucidates their role in the transmission of its vectored Cotton leaf curl virus. Selective elimination of endosymbionts was optimized using serial concentration of ampicillin, chloramphenicol, kanamycin, tetracycline, and rifampicin administered to viruliferous whiteflies through sucrose diet. Primary endosymbiont, Portiera was unresponsive to all the antibiotics, however, rifampicin and tetracycline at 90 μg/ml selectively eliminated Arsenophonus from the whitefly. Elimination of Arsenophonus resulted in significant decrease in virus titer from viruliferous whitefly, further the CLCuV transmission efficiency of these whiteflies was significantly reduced compared to the control flies. Secondary endosymbiont, Cardinium could not be eliminated completely even with higher concentrations of antibiotics. Based on the findings, Arsenophonus plays a key role in the retention and transmission of CLCuV in the Asia II-1 genetic group of B. tabaci, while the role of Cardinium could not be established due to its unresponsiveness to antibiotics.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Regional Research Station, Punjab Agricultural University, Faridkot, Punjab, India
| | - Satnam Singh
- Regional Research Station, Punjab Agricultural University, Faridkot, Punjab, India
| | - Neelam Joshi
- Department of Entomology, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
7
|
Aslam MQ, Naqvi RZ, Zaidi SSEA, Asif M, Akhter KP, Scheffler BE, Scheffler JA, Liu SS, Amin I, Mansoor S. Analysis of a tetraploid cotton line Mac7 transcriptome reveals mechanisms underlying resistance against the whitefly Bemisia tabaci. Gene 2022; 820:146200. [PMID: 35131368 DOI: 10.1016/j.gene.2022.146200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 01/09/2023]
Abstract
Whitefly inflicts both direct and indirect losses to cotton crop. Whitefly resistant cotton germplasm is a high priority and considered among the best possible solutions to mitigate this issue. In this study, we evaluated cotton leaf curl disease (CLCuD) resistant cotton line Mac7 under whitefly stress. Furthermore, we utilized the already available transcriptome data of Mac7 concerning whitefly stress to elucidate associated mechanisms and identify functionally important genes in cotton. In transcriptomic data analysis, differentially expressed genes (DEGs) were found involved in complex relay pathways, activated on whitefly exposure. The response implicates signalling through resistance genes (R-genes), MAPK, ROS, VQs or RLKs, transcription factors, which leads to the activation of defence responses including, Ca2+messengers, phytohormonal cross-talk, gossypol, flavonoids, PhasiRNA and susceptibility genes (S-genes). The qRT-PCR assay of 10 functionally important genes also showed their involvement in differential responses at 24 and 48 h post whitefly infestation. Briefly, our study helps in understanding the resistant nature of Mac7 under whitefly stress.
Collapse
Affiliation(s)
- Muhammad Qasim Aslam
- National Institute for Biotechnology and Genetic Engineering, Constituent College of PIEAS, Faisalabad, Pakistan
| | - Rubab Zahra Naqvi
- National Institute for Biotechnology and Genetic Engineering, Constituent College of PIEAS, Faisalabad, Pakistan
| | | | - Muhammad Asif
- National Institute for Biotechnology and Genetic Engineering, Constituent College of PIEAS, Faisalabad, Pakistan
| | | | - Brian E Scheffler
- Genomics and Bioinformatics Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 141 Experimental Station Road, Stoneville, MS, United States
| | - Jodi A Scheffler
- Crop Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 141 Experimental Station Road, Stoneville, MS, United States
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering, Constituent College of PIEAS, Faisalabad, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering, Constituent College of PIEAS, Faisalabad, Pakistan.
| |
Collapse
|
8
|
Mahmood MA, Ahmed N, Hussain S, Muntaha ST, Amin I, Mansoor S. Dominance of Asia II 1 species of Bemisia tabaci in Pakistan and beyond. Sci Rep 2022; 12:1528. [PMID: 35087224 PMCID: PMC8795192 DOI: 10.1038/s41598-022-05612-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/05/2022] [Indexed: 01/09/2023] Open
Abstract
Globally, Whitefly (Bemisia tabaci) is one of the most important insect pests of crops that causes huge economical losses. The current study was designed to exclusively screen the B. tabaci species in the cotton field of Pakistan during 2017-2020 and have to conduct comparative analysis of B. tabaci species in Asia where Asia II 1 has been reported. A total of 5142 B. tabaci sequences of mitochondrial cytochrome oxidase 1 (mtCO1) from Asian countries were analyzed to determine the species and their distribution in the region. Our analysis over time and space showed that Asia II 1 has gradually dominated over Asia 1 in Punjab Province and over both Asia 1 and MEAM1 in Sindh Province. Asia has been divided into three regions i.e., South Asia (2524 sequences), Southeast Asia (757 sequences) and East Asia (1569 sequences) and dominance of different species of B. tabaci has been determined by calculating the relative percentage of each species. Interestingly, Asia II 1 has been found dominant in the neighboring region (northern zone) of India and also being dominant in its central zone. The dominance of Asia II 1 in Pakistan and northern India explains whitefly epidemic being reported in recent years.
Collapse
Affiliation(s)
- Muhammad Arslan Mahmood
- Agricultural Biotechnological Division, National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Nasim Ahmed
- Agricultural Biotechnological Division, National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Sonia Hussain
- Agricultural Biotechnological Division, National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Sidra Tul Muntaha
- Agricultural Biotechnological Division, National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Imran Amin
- Agricultural Biotechnological Division, National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnological Division, National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan.
| |
Collapse
|
9
|
Paredes‐Montero JR, Rizental M, Quintela ED, de Abreu AG, Brown JK. Earlier than expected introductions of the Bemisia tabaci B mitotype in Brazil reveal an unprecedented, rapid invasion history. Ecol Evol 2022; 12:e8557. [PMID: 35127052 PMCID: PMC8796915 DOI: 10.1002/ece3.8557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 11/09/2022] Open
Abstract
During 1991, in Brazil, the presence of the exotic Bemisia tabaci B mitotype was reported in São Paulo state. However, the duration from the time of initial introduction to population upsurges is not known. To investigate whether the 1991 B mitotype outbreaks in Brazil originated in São Paulo or from migrating populations from neighboring introduction sites, country-wide field samples of B. tabaci archived from 1989-2005 collections were subjected to analysis of mitochondrial cytochrome oxidase I (mtCOI) and nuclear RNA-binding protein 15 (RP-15) sequences. The results of mtCOI sequence analysis identified all B. tabaci as the NAFME 8 haplotype of the B mitotype. Phylogenetic analyses of RP-15 sequences revealed that the B mitotype was likely a hybrid between a B type parent related to a haplotype Ethiopian endemism (NAFME 1-3), and an unidentified parent from the North Africa-Middle East (NAF-ME) region. Results provide the first evidence that this widely invasive B mitotype has evolved from a previously undocumented hybridization event. Samples from Rio de Janeiro (1989) and Ceará state (1990), respectively, are the earliest known B mitotype records in Brazil. A simulated migration for the 1989 introduction predicted a dispersal rate of 200-500 km/year, indicating that the population was unlikely to have reached Ceará by 1990. Results implicated two independent introductions of the B mitotype in Brazil in 1989 and 1990, that together were predicted to have contributed to the complete invasion of Brazil in only 30 generations.
Collapse
Affiliation(s)
- Jorge R. Paredes‐Montero
- School of Plant SciencesThe University of ArizonaTucsonArizonaUSA
- Facultad de Ciencias de la VidaEscuela Superior Politécnica del LitoralESPOLGuayaquilEcuador
| | - Muriel Rizental
- Federal University of GoiásGoiâniaBrazil
- EMBRAPA Rice and BeansSanto Antônio de GoiásBrazil
| | | | | | - Judith K. Brown
- School of Plant SciencesThe University of ArizonaTucsonArizonaUSA
| |
Collapse
|
10
|
Phylogeographic and SNPs Analyses of Bemisia tabaci B Mitotype Populations Reveal Only Two of Eight Haplotypes Are Invasive. BIOLOGY 2021; 10:biology10101048. [PMID: 34681147 PMCID: PMC8533152 DOI: 10.3390/biology10101048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/22/2022]
Abstract
Simple Summary The whitefly Bemisia tabaci taxon consists of an undefined number of morphologically identical genetic variants of which only a few, including the B, harbor invasive haplotypes. These haplotypes have potential to upsurge and become important pests and plant virus vectors in irrigated agroecosystems worldwide. In the 1980s, unprecedented outbreaks associated with the B variant were reported worldwide, however, the precise origin(s) of the invasive haplotypes has not been determined. In this study, available B. tabaci mitochondrial gene sequences were examined for patterns of conserved single nucleotide changes (SNPs). The whitefly sequence records represented North Africa-Middle Eastern habitats, the proposed B variant center of origin, and distant locales recently invaded by haplotype(s) of the B variant. Unexpectedly, the analysis revealed eight SNPs groups (haplotypes) demonstrating that the genetic architecture of the B mitoype is more complex than previously recognized. Also, the distribution patterns of the eight B haplotypes were tightly linked to well-defined eco-geographic regions, suggesting the different groups have diversified by geographic isolation. Contrary to claims that collectively, the B variant is invasive, only two of the eight haplotypic groups have established in geographical locations outside of their zone of endemism. Abstract The Bemisia tabaci cryptic species contains 39 known mitotypes of which the B and Q are best recognized for having established outside their extant endemic range. In the 1980s, previously uncharacterized haplotype(s) of the B mitotype rapidly established in tropical and subtropical locales distant from their presumed center of origin, leading to displacement of several native mitotypes and extreme damage to crops and other vegetation particularly in irrigated agroecosystems. To trace the natural and evolutionary history of the invasive B haplotypes, a phylo-biogeographic study was undertaken. Patterns of single nucleotide polymorphisms (SNPs) and signatures potentially indicative of geographic isolation were investigated using a globally representative mitochondrial cytochrome oxidase I gene (mtCOI) sequence database. Eight haplotype groups within the North Africa-Middle East (NAFME) region were differentiated, NAFME 1–8. The NAFME 1–3 haplotypes were members of the same population that is associated with warm desert climate niches of the Arabian Peninsula and east coastal Africa-Ethiopia. The NAFME 4 and 5 haplotypes are endemic to warm and cold semi-arid niches delimited by the Irano-Turanian floristic region, itself harboring extensive biodiversity. Haplotypes 6 and 7 co-occurred in the Middle East along eastern Mediterranean Sea landmasses, while NAFME 8 was found to be endemic to Cyprus, Turkey, and desert micro-niches throughout Egypt and Israel. Contrary to claims that collectively, the B mitotype is invasive, NAFME 6 and 8 are the only haplotypes to have established in geographical locations outside of their zone of endemism.
Collapse
|
11
|
Lei T, Zhao J, Wang HL, Liu YQ, Liu SS. Impact of a novel Rickettsia symbiont on the life history and virus transmission capacity of its host whitefly (Bemisia tabaci). INSECT SCIENCE 2021; 28:377-391. [PMID: 32365268 DOI: 10.1111/1744-7917.12797] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Rickettsia consists of some of the most prevalent symbionts of insects and often plays a significant role in the biology of its hosts. Recently, a maternally inherited Torix group Rickettsia, provisionally named as RiTBt, was recorded in a species of notorious pest whitefly, tentatively named as Asia II 1, from the Bemisia tabaci complex. The role of this Rickettsia in the biology of its host is unknown. Here we investigated the impact of RiTBt on the performance and virus transmission capacity of Asia II 1. RiTBt did not significantly affect the life history parameters of the whitefly when the host insect was reared on tobacco, tomato, and cotton, three host plants with relatively low, medium and high suitability to the whitefly. Intriguingly, RiTBt slightly enhanced whitefly transmission of cotton leaf curl Multan virus (CLCuMuV), a virus that is transmitted by the whitefly in the field and has caused extensive damage to cotton production. Specifically, compared with whiteflies without RiTBt, following a 48 h virus acquisition whiteflies with RiTBt had higher titer of virus and showed higher efficiency of virus transmission. A rickettsial secretory protein BtR242 was identified as a putative virus-binding protein, and was observed to interact with the coat protein of CLCuMuV in vitro. Viral infection of the whitefly downregulated gene transcript levels of the BtR242 gene. These observations indicate that RiTBt has limited impact on the biology of the Asia II 1 whitefly, and whether this symbiont has functions in the biology of other host whiteflies warrants future investigation.
Collapse
Affiliation(s)
- Teng Lei
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jing Zhao
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hua-Ling Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yin-Quan Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Venkataravanappa V, Ashwathappa KV, Reddy CNL, Shankarappa KS, Reddy MK. Characterization of Tomato leaf curl New Delhi virus associated with leaf curl and yellowing disease of Watermelon and development of LAMP assay for its detection. 3 Biotech 2020; 10:282. [PMID: 32550101 DOI: 10.1007/s13205-020-02245-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
Diseases caused by begomoviruses are becoming the major limiting factors for the production of watermelon in India. Survey for the incidence of plants showing symptoms typical to begomovirus infection was conducted in watermelon fields. The study revealed that 40% of the watermelon plants were showing the yellowing and downward curling symptoms. Twenty infected samples were collected from the different farmer's fields to know the association of begomoviruses. The PCR amplification using begomovirus-specific primers resulted in an expected 1.2 kb PCR product indicating the begomovirus association with the watermelon samples. The sequence comparison results of 1.2 kb representing partial genome revealed that all sequences obtained from watermelon samples have a nucleotide (nt) identity of more than 98% among them and are maximum homology with Tomato leaf curl New Delhi virus (ToLCNDV). One watermelon sample (WM1) was selected for complete genome amplification using RCA method (rolling-circle amplification). Amplification of DNA B and no amplification of betasatellites and alphasatellite indicated this virus as bipartite. Sequence Demarcation Tool (SDT) analysis of the DNA A component of the WM1 isolate showed the maximum nt identity of 94.6-97.9% and 85.2-95.8% with ToLCNDV infecting cucurbits. The recombinant analysis showed that the genome was likely to be derived from the recombination of already reported begomoviruses (ToLCNDV, ToLCPalV, and MYMIV) infecting diverse crops. The whitefly cryptic species predominant in the begomovirus-infected watermelon fields were identified as Asia-II-5 group. The LAMP assay developed based on coat protein gene sequence was able to detect the ToLCNDV in the infected samples. Visual detection of the LAMP-amplified products was observed with the hydroxy naphthol blue. LAMP assay was also validated with ToLCNDV infected sponge gourd, spine gourd, ivy gourd, ridge gourd, and cucumber. This is the first report of ToLCNDV association with leaf curl and yellowing disease of watermelon from India and World based on complete genome sequencing.
Collapse
Affiliation(s)
- V Venkataravanappa
- ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, 560089 Karnataka India
- Division of Plant Pathology, Central Horticultural Experiment Station, Chettalli, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, India
| | - K V Ashwathappa
- ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, 560089 Karnataka India
| | - C N Lakshminarayana Reddy
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, 560065 Karnataka India
| | - K S Shankarappa
- Department of Plant Pathology, College of Horticulture, Bangaluru, 560065 India
- University of Horticultural Sciences, Bagalkot, Karnataka India
| | - M Krishna Reddy
- ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, 560089 Karnataka India
| |
Collapse
|
13
|
Shah SHJ, Malik AH, Zhang B, Bao Y, Qazi J. Metagenomic analysis of relative abundance and diversity of bacterial microbiota in Bemisia tabaci infesting cotton crop in Pakistan. INFECTION GENETICS AND EVOLUTION 2020; 84:104381. [PMID: 32470630 DOI: 10.1016/j.meegid.2020.104381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/03/2020] [Accepted: 05/24/2020] [Indexed: 10/24/2022]
Abstract
B. tabaci species complex are among the world's most devastating agricultural pests causing economic losses by direct feeding and more importantly by transmitting plant viruses like cotton leaf curl disease (CLCuD) associated viruses to cultivated cotton in Pakistan. Taxonomic diversity of B. tabaci associated bacterial communities using NGS techniques so far is reported from insects grown on artificial diet under lab conditions. In this study 16S rDNA metagenome sequencing analysis was used to characterize bacterial compositions in wild adult B. tabaci infesting cultivated cotton in eight major cotton growing districts of southern Punjab, Pakistan. We have identified 50 known and 7 unknown genera of bacteria belonging to 10 phyla, 20 classes, 30 orders and 40 families. Beta diversity analysis of our data sets reveal that whiteflies infesting cotton in geographically distinct locations had similar bacterial diversity. These results for the first time provide insights into the microbiome diversity of wild type whiteflies infesting a cultivated crop.
Collapse
Affiliation(s)
| | | | - Bing Zhang
- Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, China
| | - Yiming Bao
- Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, China
| | - Javaria Qazi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
14
|
Pan LL, Chi Y, Liu C, Fan YY, Liu SS. Mutations in the coat protein of a begomovirus result in altered transmission by different species of whitefly vectors. Virus Evol 2020; 6:veaa014. [PMID: 32153997 PMCID: PMC7055206 DOI: 10.1093/ve/veaa014] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
For many crop pathogens including viruses, high genetic variation provides them with potential to adapt to and prevail in a changing environment. Understanding genetic variation in viruses and their significance is a key to elaborate virus epidemiology and evolution. While genetic variation of plant viruses has been documented to impact virus–host interactions, how it affects virus–insect vector interactions remains elusive. Here, we report the impact of mutations in the coat protein of squash leaf curl China virus (SLCCNV), a begomovirus, on the interaction between the virus and its whitefly vectors. We characterized mutations in the coat protein of SLCCNV and found that some residues exhibited higher mutation frequency than the others. We assayed the impact of mutation on infectivity using agroinoculation and found these mutations marginally affect virus infectivity. We further analyze their functions using virus acquisition and transmission trials and found some of mutations resulted in altered transmission of SLCCNV by different species of the whitefly Bemisia tabaci complex. We then identified the key amino acid residue(s) involved by constructing several mutant viruses and found that a single-residue mutation in the coat protein of SLCCNV was sufficient to significantly alter the whitefly transmission characteristics of SLCCNV. We examined the competition between different genotypes of SLCCNV in plant infection and whitefly transmission. We found that mutations in the coat protein did not alter the fitness of SLCCNV in plants, but they rendered the virus more competitive in transmission by certain species of whiteflies. Our findings indicate that mutations in the coat protein may play a key role in both the adaptation of begomoviruses to the changing vector populations and the evolution of begomoviruses.
Collapse
Affiliation(s)
- Li-Long Pan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yao Chi
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chao Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yun-Yun Fan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Paredes‐Montero JR, Zia‐Ur‐Rehman M, Hameed U, Haider MS, Herrmann H, Brown JK. Genetic variability, community structure, and horizontal transfer of endosymbionts among three Asia II- Bemisia tabaci mitotypes in Pakistan. Ecol Evol 2020; 10:2928-2943. [PMID: 32211166 PMCID: PMC7083670 DOI: 10.1002/ece3.6107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 11/24/2022] Open
Abstract
Endosymbionts associated with the whitefly Bemisia tabaci cryptic species are known to contribute to host fitness and environmental adaptation. The genetic diversity and population complexity were investigated for endosymbiont communities of B. tabaci occupying different micro-environments in Pakistan. Mitotypes of B. tabaci were identified by comparative sequence analysis of the mitochondria cytochrome oxidase I (mtCOI) gene sequence. Whitefly mitotypes belonged to the Asia II-1, -5, and -7 mitotypes of the Asia II major clade. The whitefly-endosymbiont communities were characterized based on 16S ribosomal RNA operational taxonomic unit (OTU) assignments, resulting in 43 OTUs. Most of the OTUs occurred in the Asia II-1 and II-7 mitotypes (r 2 = .9, p < .005), while the Asia II-5 microbiome was less complex. The microbiome OTU groups were mitotype-specific, clustering with a basis in phylogeographical distribution and the corresponding ecological niche of their whitefly host, suggesting mitotype-microbiome co-adaptation. The primary endosymbiont Portiera was represented by a single, highly homologous OTU (0%-0.67% divergence). Two of six Arsenophonus OTUs were uniquely associated with Asia II-5 and -7, and one occurred exclusively in Asia II-1, two only in Asia II-5, and one in both Asia II-1 and -7. Four other secondary endosymbionts, Cardinium, Hemipteriphilus, Rickettsia, and Wolbachia OTUs, were found at ≤29% frequencies. The most prevalent Arsenophonus OTU was found in all three Asia II mitotypes (55% frequency), whereas the same strain of Cardinium and Wolbachia was found in both Asia II-1 and -5, and a single Hemipteriphilus OTU occurred in Asia II-1 and -7. This pattern is indicative of horizontal transfer, suggestive of a proximity between mitotypes sufficient for gene flow at overlapping mitotype ecological niches.
Collapse
Affiliation(s)
- Jorge R. Paredes‐Montero
- School of Plant SciencesUniversity of ArizonaTucsonAZUSA
- Facultad de Ciencias de la VidaEscuela Superior Politécnica del Litoral (ESPOL)GuayaquilEcuador
| | | | - Usman Hameed
- Institute of Agricultural SciencesUniversity of the PunjabLahorePakistan
| | | | | | | |
Collapse
|
16
|
Zaidi SS, Naqvi RZ, Asif M, Strickler S, Shakir S, Shafiq M, Khan AM, Amin I, Mishra B, Mukhtar MS, Scheffler BE, Scheffler JA, Mueller LA, Mansoor S. Molecular insight into cotton leaf curl geminivirus disease resistance in cultivated cotton (Gossypium hirsutum). PLANT BIOTECHNOLOGY JOURNAL 2020; 18:691-706. [PMID: 31448544 PMCID: PMC7004920 DOI: 10.1111/pbi.13236] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/01/2019] [Accepted: 08/15/2019] [Indexed: 05/21/2023]
Abstract
Cultivated cotton (Gossypium hirsutum) is the most important fibre crop in the world. Cotton leaf curl disease (CLCuD) is the major limiting factor and a threat to textile industry in India and Pakistan. All the local cotton cultivars exhibit moderate to no resistance against CLCuD. In this study, we evaluated an exotic cotton accession Mac7 as a resistance source to CLCuD by challenging it with viruliferous whiteflies and performing qPCR to evaluate the presence/absence and relative titre of CLCuD-associated geminiviruses/betasatellites. The results indicated that replication of pathogenicity determinant betasatellite is significantly attenuated in Mac7 and probably responsible for resistance phenotype. Afterwards, to decipher the genetic basis of CLCuD resistance in Mac7, we performed RNA sequencing on CLCuD-infested Mac7 and validated RNA-Seq data with qPCR on 24 independent genes. We performed co-expression network and pathway analysis for regulation of geminivirus/betasatellite-interacting genes. We identified nine novel modules with 52 hubs of highly connected genes in network topology within the co-expression network. Analysis of these hubs indicated the differential regulation of auxin stimulus and cellular localization pathways in response to CLCuD. We also analysed the differential regulation of geminivirus/betasatellite-interacting genes in Mac7. We further performed the functional validation of selected candidate genes via virus-induced gene silencing (VIGS). Finally, we evaluated the genomic context of resistance responsive genes and found that these genes are not specific to A or D sub-genomes of G. hirsutum. These results have important implications in understanding CLCuD resistance mechanism and developing a durable resistance in cultivated cotton.
Collapse
Affiliation(s)
- Syed Shan‐e‐Ali Zaidi
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
- Boyce Thompson InstituteIthacaNYUSA
- Plant Genetics LabTERRA Teaching and Research CenterGembloux Agro-Bio TechUniversity of LiègeGemblouxBelgium
| | - Rubab Zahra Naqvi
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
- Boyce Thompson InstituteIthacaNYUSA
| | - Muhammad Asif
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
| | | | - Sara Shakir
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
- Boyce Thompson InstituteIthacaNYUSA
- Plant Genetics LabTERRA Teaching and Research CenterGembloux Agro-Bio TechUniversity of LiègeGemblouxBelgium
| | - Muhammad Shafiq
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
- Present address:
Department of BiotechnologyUniversity of OkaraOkaraPakistan
| | - Abdul Manan Khan
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
| | - Imran Amin
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
| | - Bharat Mishra
- Department of BiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - M. Shahid Mukhtar
- Department of BiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Brian E. Scheffler
- Genomics and Bioinformatics Research UnitUnited States Department of Agriculture‐Agricultural Research Service (USDA‐ARS)StonevilleMSUSA
| | - Jodi A. Scheffler
- Crop Genetics Research UnitUnited States Department of Agriculture‐Agricultural Research Service (USDA‐ARS)StonevilleMSUSA
| | | | - Shahid Mansoor
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
| |
Collapse
|
17
|
Chen T, Saeed Q, He Z, Lu L. Transmission efficiency of Cotton leaf curl Multan virus by three cryptic species of Bemisia tabaci complex in cotton cultivars. PeerJ 2019; 7:e7788. [PMID: 31592168 PMCID: PMC6777476 DOI: 10.7717/peerj.7788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/29/2019] [Indexed: 01/09/2023] Open
Abstract
Cotton leaf curl Multan virus (CLCuMuV) is a serious and economically important viral disease agent in cotton and ornamental plants like Hibiscus in many regions of the world, especially in South Asia. CLCuMuV is transmitted exclusively by Bemisia tabaci cryptic species complex. This virus was recently recorded in southern China, presumably an invasion from South Asia. This study was performed to estimate the efficiency of three species of the B. tabaci whitefly complex (tentatively named as MEAM1, MED and Asia II 7, respectively) to transmit CLCuMuV and Cotton leaf curl multan virus betasatelite (CLCuMuB). Transmission assays and real-time quantitative PCR were conducted using three cultivars of cotton, Gossypium hirsutum, including 112-2, Xinhai-21 and Zhongmian-40. The results indicated that Asia II 7 was able to transmit the virus to two of the cotton cultivars, i.e. 112-2 and Xinhai-21, with the highest transmission efficiencies of 40% and 30%, respectively, but was unable to transmit the virus to the cotton cultivar Zhongmian-40. MEAM1 and MED failed to transmit CLCuMuV and CLCuMuB to any of the three cotton cultivars. After the three cryptic species of whiteflies had fed on virus-infected cotton plants for 48 h, the relative quantity of CLCuMuV in Asia II 7 was detected to be significantly higher than that in both MEAM1 and MED (P < 0.05). These results indicate that among the three species of whiteflies Asia II 7 is likely the most efficient vector for CLCuMuV and CLCuMuB in Malvaceae crops in China. Our findings provide valuable information to the control of viral diseases caused by CLCuMuV in the field.
Collapse
Affiliation(s)
- Ting Chen
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Qamar Saeed
- Entomology, Department of Entomology, Bahauddin, Zakariya University, Multan, Pakistan
| | - Zifu He
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Lihua Lu
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| |
Collapse
|
18
|
Hussain S, Farooq M, Malik HJ, Amin I, Scheffler BE, Scheffler JA, Liu SS, Mansoor S. Whole genome sequencing of Asia II 1 species of whitefly reveals that genes involved in virus transmission and insecticide resistance have genetic variances between Asia II 1 and MEAM1 species. BMC Genomics 2019; 20:507. [PMID: 31215403 PMCID: PMC6582559 DOI: 10.1186/s12864-019-5877-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/31/2019] [Indexed: 01/09/2023] Open
Abstract
Background Whiteflies (Bemisia tabaci) are phloem sap-sucking pests that because of their broad host range and ability to transmit viruses damage crop plants worldwide. B. tabaci are now known to be a complex of cryptic species that differ from each other in many characteristics such as mode of interaction with viruses, invasiveness, and resistance to insecticides. Asia II 1 is an indigenous species found on the Indian sub-continent and south-east Asia while the species named as Middle East Asia Minor 1 (MEAM1), likely originated from the Middle-East and has spread worldwide in recent decades. The purpose of this study is to find genomic differences between these two species. Results Sequencing of the nuclear genome of Asia II 1 with Illumina HiSeq and MiSeq generated 198.90 million reads that covers 88% of the reference genome. The sequence comparison with MEAM1 identified 2,327,972 SNPs and 202,479 INDELs. In Total, 1294 genes were detected with high impact variants. The functional analysis revealed that some of the genes are involved in virus transmission including 4 genes in Tomato yellow leaf curl virus (TYLCV) transmission, 96 in Tomato crinivirus (ToCV) transmission, and 14 genes in insecticide resistance. Conclusions These genetic differences between Asia II 1 and MEAM1 may underlie the major biological differences between the two species such as virus transmission, insecticide resistance, and range of host plants. The present study provides new genomic data and information resources for Asia II 1 that will not only contribute to the species delimitation of whitefly, but also help in conceiving future research studies to develop more targeted management strategies against whitefly. Electronic supplementary material The online version of this article (10.1186/s12864-019-5877-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sonia Hussain
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.,Department of Biotechnology, Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Muhammad Farooq
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Hassan Jamil Malik
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.,Department of Biotechnology, Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Brian E Scheffler
- USDA-ARS, Genomics and Bioinformatics Research Unit, 141 Experiment Station Rd., Stoneville, MS, 38776, USA
| | - Jodi A Scheffler
- USDA-ARS, Crop Genetics Research Unit, 141 Experiment Station Rd, Stoneville, MS, 38776, USA
| | - Shu-Sheng Liu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.
| |
Collapse
|
19
|
Masood M, Briddon RW. Transmission of cotton leaf curl disease: answer to a long-standing question. Virus Genes 2018; 54:743-745. [DOI: 10.1007/s11262-018-1605-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/03/2018] [Indexed: 11/28/2022]
|
20
|
Pan LL, Cui XY, Chen QF, Wang XW, Liu SS. Cotton Leaf Curl Disease: Which Whitefly Is the Vector? PHYTOPATHOLOGY 2018; 108:1172-1183. [PMID: 29714092 DOI: 10.1094/phyto-01-18-0015-r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cotton leaf curl disease is one of the most significant constraints to the production of cotton. In the past decades our understanding of the begomoviruses (family Geminiviridae) causing the disease has improved, but little is known regarding transmission of these viruses by the different species of whiteflies in the Bemisia tabaci complex. We compared transmission efficiency of cotton leaf curl Multan virus (CLCuMuV), one of the major begomoviruses associated with cotton leaf curl disease, by four whitefly species, of which two are indigenous to Asia and two are invasive worldwide. Only the indigenous Asia II 1 species was able to transmit this virus with high efficiency. By quantifying the virus and using immunoflorescence assays, we found that the differential transmission was associated with the varying efficiency of CLCuMuV to cross the midgut of various whitefly species. Further, we verified the role of coat protein in the whitefly transmission of CLCuMuV. Based on a phylogenetic analysis of the virus coat proteins, we found that most begomoviruses associated with cotton leaf curl disease might share similar whitefly transmission characteristics. These findings advance our understanding of the nature of cotton leaf curl disease and provide information for the development of control and preventive strategies against this disease.
Collapse
Affiliation(s)
- Li-Long Pan
- First, second, third, fourth, and fifth authors: Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xi-Yun Cui
- First, second, third, fourth, and fifth authors: Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qun-Fang Chen
- First, second, third, fourth, and fifth authors: Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Wei Wang
- First, second, third, fourth, and fifth authors: Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shu-Sheng Liu
- First, second, third, fourth, and fifth authors: Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
Ahmad M, Akhtar KP. Susceptibility of cotton whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) to diverse pesticides in Pakistan. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:1834-1841. [PMID: 29912420 DOI: 10.1093/jee/toy112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Indexed: 06/08/2023]
Abstract
The cotton whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a serious pest of several summer crops in hot and dry climates. Its field populations (Asia II-1 biotype) were assessed for their susceptibility to diverse pesticides by using leaf-dip bioassay. There was no or a very low resistance to amitraz, hexythiazox, and pyridaben during 1992-2015. B. tabaci also exhibited no resistance to endosulfan during 1992-1997 and a very low resistance during 1998-2010, which then rose to a low level during 2011-2015. Chlorfenapyr resistance was very low during 1997-2008 and it reached to a high level during 2009-2011 and to a very high level in 2013 and 2015. Among avermectins, abamectin showed a very low resistance up to 2013 but a high resistance in 2015. Emamectin benzoate also demonstrated a very low resistance up to 2010, but a moderate-to-high resistance during 2011-2015. It may be concluded that the diverse chemistries, having novel modes of action and showing no, very low or low levels of resistance, can be substituted in rotation in the wake of resistance development to conventional insecticides.
Collapse
Affiliation(s)
- Mushtaq Ahmad
- Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Khalid P Akhtar
- Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| |
Collapse
|