1
|
Rao F, Yang J, Li X, Li R, Li Y, Shi X, Liu D, Xu Z. Conserved and Antenna-Biased Odorant Receptor in the Rape Stem Weevil Ceutorhynchus asper Tuned to Green Leaf Volatiles from Hosts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5116-5128. [PMID: 39965772 DOI: 10.1021/acs.jafc.4c11037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
The rape stem weevil, Ceutorhynchus asper Roel. (Coleoptera: Curculionidae), is a severe pest of oilseed rape. Currently, little is known about the chemosensory functions of odorant receptors (ORs) in coleopterans such as C. asper. Here, the antennal and body transcriptomes of adult C. asper were sequenced and annotated. In total, 49 ORs were identified in C. asper, and transcriptome and quantitative polymerase chain reaction (qPCR) analyses showed that CaspOR5 was antenna-biased. Phylogenetic analyses suggested that homologs of CaspOR5 were conserved among coleopterans. In single sensillum recordings of transgenic flies, CaspOR5 was found to be narrowly tuned to six green leaf volatiles (GLVs) of oilseed rape. Molecular docking indicated that active sites of CaspOR5 bound to GLVs were highly conserved. (E)-2-hexenol, 1-hexanol, and (Z)-3-hexenol were attractive for both sexes of C. asper, and (E)-2-hexenal was only attractive to male weevils. In conclusion, CaspOR5 can facilitate perception of GLVs, thereby playing crucial roles in host plant search and location of C. asper. Our investigation provides insights into the olfactory functions of the conserved CaspOR5 in Coleoptera and can facilitate future research on developing novel green strategies in management of related pest weevils.
Collapse
Affiliation(s)
- Fuqiang Rao
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jie Yang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinghao Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Rufan Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yonghong Li
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Xiaoqin Shi
- College of Language and Culture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Deguang Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhanyi Xu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Guo J, Liu P, Zhang X, An J, Li Y, Zhang T, Gao Z. Characterization of the ligand-binding properties of odorant-binding protein 38 from Riptortus pedestris when interacting with soybean volatiles. Front Physiol 2025; 15:1475489. [PMID: 39835200 PMCID: PMC11743672 DOI: 10.3389/fphys.2024.1475489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Background Riptortus pedestris (Fabricius) (Hemiptera: Alydidae) is a major soybean pest throughout East Asia that relies on its advanced olfactory system for the perception of plant-derived volatile compounds and aggregation pheromones for conspecific and host plant localization. Odorant binding proteins (OBPs) facilitate the transport of odorant compounds across the sensillum lymph within the insect olfactory system, enabling their interaction with odorant receptors (ORs). Methods Real-time quantitative PCR (qRT-PCR) analyses, fluorescence-based competitive binding assays, and molecular docking analyses were applied to assess the expression and ligand-binding properties of OBP38 from R. peddestris. Results The qRT-PCR analyses revealed high levels of RpedOBP38 expression in the antennae without any apparent sex bias, and it was also highly expressed in the adult stage. Recombinant RpedOBP38 was prepared by expressing it in E. coli BL21 (DE3) followed by its purification with a Ni-chelating affinity column. RpedOBP38 was found to bind most strongly to trans-2-decenal (Ki = 7.440) and trans-2-nonenal (Ki = 10.973), followed by β-pinene, (+) -4-terpineol, carvacrol, methyl salicylate, and (-)-carvone. The 3D structure of RpedOBP38 contains six α-helices and three interlocked disulfide bridges comprising a stable hydrophobic binding pocket. In a final series of molecular docking analyses, several polar (e.g., His 94, Glu97) and nonpolar (e.g., Leu29, Ile59) residues were found to be involved in RpedOBP38-ligand binding. Conclusion These data support a role for RpedOBP38 in the perception of volatiles derived from host plants, providing important insight into the mechanisms that govern olfactory recognition in R. pedestris, thereby informing the development of ecologically friendly approaches to managing R. pedestris infestations.
Collapse
Affiliation(s)
| | | | | | | | | | - Tao Zhang
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Innovation Center of Hebei Province, International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, China
| | - Zhanlin Gao
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Innovation Center of Hebei Province, International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, China
| |
Collapse
|
3
|
Li WZ, Dewer Y, Shi SL, Shang SQ, Kang WJ. The olfactory recognition between leaf-cutter bee Megachile saussurei and alfalfa floral volatiles mediated by odorant binding protein 4 (MsauOBP4). Int J Biol Macromol 2025; 287:138332. [PMID: 39653222 DOI: 10.1016/j.ijbiomac.2024.138332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/05/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
Megachile saussurei (Hymenoptera, Megachilidae) is a primary insect pollinator of alfalfa (Medicago sativa L.) in northwestern China. However, the mechanisms underlying the olfactory responses of M. saussurei induced by alfalfa volatiles is still unclear. Here, the interaction between MsauOBP4 and alfalfa floral volatiles was first elucidated. Results suggested that thirty-two alfalfa floral volatiles were identified and MsauOBP4 was successfully expressed with the consistent molecular mass as predicted results. MsauOBP4 displayed a broad binding spectrum to 32 volatiles, among which MsauOBP4 showed the strongest binding ability to (Z)-3-Hexen-1-ol. In the Y-tube olfactometer behavioral bioassay, M. saussurei elicited the most significant behavioral preference (Z)-3-Hexen-1-ol. MsauOBP4 showed an optimal binding feature to (Z)-3-Hexen-1-ol and valine was the key residue in binding the ligands. After silencing the MsauOBP4, the preference and EAG values of M. saussurei to (Z)-3-Hexen-1-ol were significantly decreased and selection rate of M. saussurei to alfalfa flowers dropped to 57.50 % from 83.33 %. These findings indicated that (Z)-3-Hexen-1-ol is a crucial component in the host location process mediated by MsauOBP4.
Collapse
Affiliation(s)
- Wei-Zhen Li
- Key Laboratory of Grassland Ecosystem of Ministry of Education, Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Giza 12618, Dokki, Egypt.
| | - Shang-Li Shi
- Key Laboratory of Grassland Ecosystem of Ministry of Education, Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Su-Qin Shang
- College of Plant Protection, Gansu Agricultural University/Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou 730070, China.
| | - Wen-Juan Kang
- Key Laboratory of Grassland Ecosystem of Ministry of Education, Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
4
|
Li P, Wei Y, Chen G, Sattar A. Perceptual Effects of Walnut Volatiles on the Codling Moth. INSECTS 2024; 15:402. [PMID: 38921117 PMCID: PMC11204062 DOI: 10.3390/insects15060402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
The volatile organic compounds (VOCs) of plant hosts allow insect localization through olfactory recognition. In this study, the oviposition behavior of the codling moth was investigated and the VOCs from different walnut organs were extracted and analyzed to systematically study their composition and content differences. The electrophysiological and behavioral responses of the codling moth to walnut VOCs were measured using gas chromatography-electroantennographic detection (GC-EAD) and a four-arm olfactometer to screen the key active contents. The field investigation results indicated that 90.3% of the eggs spawned by the first generation of adult codling moths were adjacent to the walnut fruits. Walnut VOCs are mainly composed of terpenes, aromatics, and alkanes. Twelve VOCs can produce electroantennogenic (EAG) responses in the codling moths. Both adult males and females exhibit concentration dependence, with notable disparities in their EAG response levels. In the olfactory behavioral bioassay, linalool, eucalyptol, and high doses of geranyl acetate showed repellent effects on the codling moths, while myrcene, β-ocimene, nonanal, methyl salicylate, α-farnesene, and heptaldehyde showed the opposite. The relative levels of heptaldehyde, geranyl acetate, nonanal, and methyl salicylate were high in the fruits, which is intimately related to the localization of the walnut fruit by females. These VOCs can influence the oviposition behavior of codling moths but their application in the control of this pest needs to be confirmed and improved through further field experiments.
Collapse
Affiliation(s)
- Peixuan Li
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Yang Wei
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China; (Y.W.); (G.C.)
| | - Guoxiang Chen
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China; (Y.W.); (G.C.)
| | - Adil Sattar
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China; (Y.W.); (G.C.)
| |
Collapse
|
5
|
Xi BX, Cui XN, Shang SQ, Li GW, Dewer Y, Li CN, Hu GX, Wang Y. Antennal Transcriptome Evaluation and Analysis for Odorant-Binding Proteins, Chemosensory Proteins, and Suitable Reference Genes in the Leaf Beetle Pest Diorhabda rybakowi Weise (Coleoptera: Chrysomelidae). INSECTS 2024; 15:251. [PMID: 38667381 PMCID: PMC11050234 DOI: 10.3390/insects15040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Diorhabda rybakowi Weise is one of the dominant pests feeding on Nitraria spp., a pioneer plant used for windbreaking and sand fixation purposes, and poses a threat to local livestock and ecosystems. To clarify the key olfactory genes of D. rybakowi and provide a theoretical basis for attractant and repellent development, the optimal reference genes under two different conditions (tissue and sex) were identified, and the bioinformatics and characterization of the tissue expression profiles of two categories of soluble olfactory proteins (OBPs and CSPs) were investigated. The results showed that the best reference genes were RPL13a and RPS18 for comparison among tissues, and RPL19 and RPS18 for comparison between sexes. Strong expressions of DrybOBP3, DrybOBP6, DrybOBP7, DrybOBP10, DrybOBP11, DrybCSP2, and DrybCSP5 were found in antennae, the most important olfactory organ for D. rybakowi. These findings not only provide a basis for further in-depth research on the olfactory molecular mechanisms of host-specialized pests but also provide a theoretical basis for the future development of new chemical attractants or repellents using volatiles to control D. rybakowi.
Collapse
Affiliation(s)
- Bo-Xin Xi
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (B.-X.X.); (Y.W.)
| | - Xiao-Ning Cui
- Key Laboratory for Grassland Ecosystem of Education Ministry, College of Pratacultural, Gansu Agricultural University, Lanzhou 730070, China; (C.-N.L.); (G.-X.H.)
| | - Su-Qin Shang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (B.-X.X.); (Y.W.)
| | - Guang-Wei Li
- College of Life Science, Yan’an University, Yan’an 716000, China;
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Giza 12618, Egypt;
| | - Chang-Ning Li
- Key Laboratory for Grassland Ecosystem of Education Ministry, College of Pratacultural, Gansu Agricultural University, Lanzhou 730070, China; (C.-N.L.); (G.-X.H.)
| | - Gui-Xin Hu
- Key Laboratory for Grassland Ecosystem of Education Ministry, College of Pratacultural, Gansu Agricultural University, Lanzhou 730070, China; (C.-N.L.); (G.-X.H.)
| | - Yan Wang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (B.-X.X.); (Y.W.)
| |
Collapse
|
6
|
Zhai Y, Zhang F, Tian T, Yang Y, Li Y, Ren B, Hong B. The Sequence Characteristics and Binding Properties of the Odorant-Binding Protein SvelOBP1 from Sympiezomias velatus (Coleoptera: Curculionidae) to Jujube Volatiles. Life (Basel) 2024; 14:192. [PMID: 38398701 PMCID: PMC10890569 DOI: 10.3390/life14020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Sympiezomias velatus (Chevrolat) (Coleoptera: Curculionidae) has caused serious damage on jujube trees (Ziziphus jujuba Mill) in northern China. Semiochemicals emerging from the host are essential in the process of insects identifying and localizing the host. The highly expressed odorant-binding protein 1 of S. velatus (SvelOBP1) was assumed to play a possible role in the recognition of host volatiles. In this study, SvelOBP1 was cloned based on the antennal transcriptome of S. velatus. The recombinant SvelOBP1 protein was expressed in Escherichia coli and purified by Ni-NTA resin. The predicted protein SvelOBP1 belonged to a classic OBP subfamily. The expression patterns revealed that SvelOBP1 was mainly expressed in the antennae of both males and females, whereas the expression of SvelOBP1 in other body parts could be neglected. The fluorescence binding assay indicated that SvelOBP1 displayed very strong binding affinities to dibutyl benzene-1,2-dicarboxylate and (Z)-hex-3-en-1-ol (Ki = 6.66 ± 0.03 and 7.98 ± 0.06 μM). The molecular docking results showed that residues Trp114, Phe115 and Asp110 may be involved in binding to both dibutyl benzene-1,2-dicarboxylate and (Z)-hex-3-en-1-ol and may have a great impact on odorant recognition of S. velatus. Our results provide evidence that SvelOBP1 might participate in the olfactory molecular perception of S. velatus and would promote the development of pest attractants for S. velatus control.
Collapse
Affiliation(s)
- Yingyan Zhai
- Shaanxi Key Laboratory of Qinling Ecological Security, Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi’an 710043, China; (Y.Z.); (F.Z.); (T.T.); (Y.Y.)
| | - Feng Zhang
- Shaanxi Key Laboratory of Qinling Ecological Security, Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi’an 710043, China; (Y.Z.); (F.Z.); (T.T.); (Y.Y.)
| | - Tianqi Tian
- Shaanxi Key Laboratory of Qinling Ecological Security, Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi’an 710043, China; (Y.Z.); (F.Z.); (T.T.); (Y.Y.)
| | - Yiwei Yang
- Shaanxi Key Laboratory of Qinling Ecological Security, Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi’an 710043, China; (Y.Z.); (F.Z.); (T.T.); (Y.Y.)
| | - Yang Li
- Chang’an University Journal Center, Chang’an University, Xi’an 710064, China;
| | - Bowen Ren
- Institute of Forest Protection, Shaanxi Academy of Forestry, Xi’an 710016, China;
| | - Bo Hong
- Shaanxi Key Laboratory of Qinling Ecological Security, Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi’an 710043, China; (Y.Z.); (F.Z.); (T.T.); (Y.Y.)
| |
Collapse
|
7
|
Li WZ, Kang WJ, Zhou JJ, Shang SQ, Shi SL. The antennal transcriptome analysis and characterizations of odorant-binding proteins in Megachile saussurei (Hymenoptera, Megachilidae). BMC Genomics 2023; 24:781. [PMID: 38102559 PMCID: PMC10724985 DOI: 10.1186/s12864-023-09871-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Odorant-binding proteins (OBPs) are essential in insect's daily behaviors mediated by olfactory perception. Megachile saussurei Radoszkowski (Hymenoptera, Megachilidae) is a principal insect pollinating alfalfa (Medicago sativa) in Northwestern China. The olfactory function have been less conducted, which provides a lot of possibilities for our research. RESULTS Our results showed that 20 OBPs were identified in total. Multiple sequence alignment analysis indicated MsauOBPs were highly conserved with a 6-cysteine motif pattern and all belonged to the classic subfamily, coding 113-196 amino acids and sharing 41.32%-99.12% amino acid identity with known OBPs of other bees. Phylogenetic analysis indicated there were certain homologies existed among MsauOBPs and most sequences were clustered with that of Osmia cornuta (Hymenoptera, Megachilidae). Expression analysis showed the identified OBPs were mostly enriched in antennae instead of other four body parts, especially the MsauOBP2, MsauOBP3, MsauOBP4, MsauOBP8, MsauOBP11 and MsauOBP17, in which the MsauOBP2, MsauOBP4 and MsauOBP8 presented obvious tissue-biased expression pattern. Molecular docking results indicated MsauOBP4 might be the most significant protein in recognizing alfalfa flower volatile 3-Octanone, while MsauOBP13 might be the most crucial protein identifying (Z)-3-hexenyl acetate. It was also found the lysine was a momentous hydrophilic amino acid in docking simulations. CONCLUSION In this study, we identified and analyzed 20 OBPs of M. saussurei. The certain homology existed among these OBPs, while some degree of divergence could also be noticed, indicating the complex functions that different MsauOBPs performed. Besides, the M. saussurei and Osmia cornuta were very likely to share similar physiological functions as most of their OBPs were clustered together. MsauOBP4 might be the key protein in recognizing 3-Octanone, while MsauOBP13 might be the key protein in binding (Z)-3-hexenyl acetate. These two proteins might contribute to the alfalfa-locating during the pollination process. The relevant results may help determine the highly specific and effective attractants for M. saussurei in alfalfa pollination and reveal the molecular mechanism of odor-evoked pollinating behavior between these two species.
Collapse
Affiliation(s)
- Wei-Zhen Li
- Key Laboratory of Grassland Ecosystem of Ministry of Education, and Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wen-Juan Kang
- Key Laboratory of Grassland Ecosystem of Ministry of Education, and Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jing-Jiang Zhou
- College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Su-Qin Shang
- College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Shang-Li Shi
- Key Laboratory of Grassland Ecosystem of Ministry of Education, and Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
8
|
Han KR, Wang WW, Yang WQ, Li X, Liu TX, Zhang SZ. Characterization of CrufCSP1 and Its Potential Involvement in Host Location by Cotesia ruficrus (Hymenoptera: Braconidae), an Indigenous Parasitoid of Spodoptera frugiperda (Lepidoptera: Noctuidae) in China. INSECTS 2023; 14:920. [PMID: 38132594 PMCID: PMC10744196 DOI: 10.3390/insects14120920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Chemosensory proteins (CSPs) are a class of soluble proteins that facilitate the recognition of chemical signals in insects. While CSP genes have been identified in many insect species, studies investigating their function remain limited. Cotesia ruficrus (Hymenoptera: Braconidae) holds promise as an indigenous biological control agent for managing the invasive pest Spodoptera frugiperda (Lepidoptera: Noctuidae) in China. This study aimed to shed light on the gene expression, ligand binding, and molecular docking of CrufCSP1 in C. ruficrus. A RT-qPCR analysis revealed that the expression of CrufCSP1 was higher in the wings, with male adults exhibiting significantly higher relative expression levels than other developmental stages. A fluorescence competitive binding analysis further demonstrated that CrufCSP1 has a high binding ability with several host-related volatiles, with trans-2-hexenal, octanal, and benzaldehyde showing the strongest affinity to CrufCSP1. A molecular docking analysis indicated that specific amino acid residues (Phe24, Asp25, Thr53, and Lys81) of CrufCSP1 can bind to these specific ligands. Together, these findings suggest that CrufCSP1 may play a crucial role in the process of C. ruficrus locating hosts. This knowledge can contribute to the development of more efficient and eco-friendly strategies for protecting crops and managing pests.
Collapse
Affiliation(s)
- Kai-Ru Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (K.-R.H.); (W.-W.W.); (W.-Q.Y.); (X.L.)
| | - Wen-Wen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (K.-R.H.); (W.-W.W.); (W.-Q.Y.); (X.L.)
| | - Wen-Qin Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (K.-R.H.); (W.-W.W.); (W.-Q.Y.); (X.L.)
| | - Xian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (K.-R.H.); (W.-W.W.); (W.-Q.Y.); (X.L.)
| | - Tong-Xian Liu
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, China;
| | - Shi-Ze Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (K.-R.H.); (W.-W.W.); (W.-Q.Y.); (X.L.)
| |
Collapse
|
9
|
Zhang L, Zhao M, Aikeremu F, Huang H, You M, Zhao Q. Involvement of three chemosensory proteins in perception of host plant volatiles in the tea green leafhopper, Empoasca onukii. Front Physiol 2023; 13:1068543. [PMID: 36685201 PMCID: PMC9845707 DOI: 10.3389/fphys.2022.1068543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Chemosensory proteins (CSPs) can bind and transport odorant molecules, which are believed to be involved in insect chemoreception. Here, we investigated three CSPs in perception of volatiles in Empoasca onukii. Expression profiles showed that although EonuCSP4, EonuCSP 6-1 and EonuCSP6-2 were ubiquitously expressed in heads, legs, thoraxes and abdomen, they were all highly expressed in the antennae of E. onukii. Further, fluorescence competitive binding assays revealed that EonuCSP4 and 6-1 had binding affinities for three plant volatiles, suggesting their possible involvement in the chemosensory process. Among them, EonuCSP6-1 showed relatively high binding affinities for benzaldehyde. Behavioral assays revealed that the adults of E. onukii showed a significant preference for two compounds including benzaldehyde. The predicted three-dimensional (3D) structures of these 3 CSP have the typical six α-helices, which form the hydrophobic ligand-binding pocket. We therefore suggest that Eoun6-1 might be involved in the chemoreception of the host-related volatiles for E. onukii. Our data may provide a chance of finding a suitable antagonist of alternative control strategies which block the perception of chemosensory signals in pest, preventing the food- orientation behaviors.
Collapse
Affiliation(s)
- Liwen Zhang
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
| | - Mingxian Zhao
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
| | - Feiruoran Aikeremu
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China,International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huoshui Huang
- Comprehensive Technology Service Center of Quanzhou Customs, Quanzhou, China
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China,International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China,*Correspondence: Minsheng You, ; Qian Zhao,
| | - Qian Zhao
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China,International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China,*Correspondence: Minsheng You, ; Qian Zhao,
| |
Collapse
|
10
|
Hong B, Chang Q, Zhai Y, Ren B, Zhang F. Functional Characterization of Odorant Binding Protein PyasOBP2 From the Jujube Bud Weevil, Pachyrhinus yasumatsui (Coleoptera: Curculionidae). Front Physiol 2022; 13:900752. [PMID: 35574498 PMCID: PMC9091336 DOI: 10.3389/fphys.2022.900752] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Odorant binding proteins (OBPs) play an important role in insect olfaction. The jujube bud weevil Pachyrhinus yasumatsui (Coleoptera: Curculionidae) is a major pest of Zizyphus jujuba in northern China. In the present study, based on the antennal transcriptome, an OBP gene of P. yasumatsui (PyasOBP2) was cloned by reverse transcription PCR (RT-PCR). Expression profile analyses by quantitative real-time PCR (qRT-PCR) revealed that PyasOBP2 was highly expressed in the antennae of both male and female P. yasumatsui adults, while its expression was negligible in other tissues. PyasOBP2 was prokaryotically expressed, and purified by Ni-NTA resin. The fluorescence competitive binding assays with 38 plant volatiles from Z. jujuba showed that PyasOBP2 could bind with a broad range of plant volatiles, and had strongest binding capacities to host-plant volatiles like ethyl butyrate (Ki = 3.02 μM), 2-methyl-1-phenylpropene (Ki = 4.61 μM) and dipentene (Ki = 5.99 μM). The three dimensional structure of PyasOBP2 was predicted by homology modeling, and the crystal structure of AgamOBP1 (PDB ID: 2erb) was used as a template. The molecular docking results indicated that the amino acid residue Phe114 of PyasOBP2 could form hydrogen bonds or hydrophobic interactions with some specific ligands, so this residue might play a key role in perception of host plant volatiles. Our results provide a basis for further investigation of potential functions of PyasOBP2, and development of efficient monitoring and integrated pest management strategies of P. yasumatsui.
Collapse
Affiliation(s)
- Bo Hong
- Bio-Agriculture Institute of Shaanxi, Xi'an, China
| | - Qing Chang
- Bio-Agriculture Institute of Shaanxi, Xi'an, China
| | - Yingyan Zhai
- Bio-Agriculture Institute of Shaanxi, Xi'an, China
| | - Bowen Ren
- Shaanxi Academy of Forestry, Xi'an, China
| | - Feng Zhang
- Bio-Agriculture Institute of Shaanxi, Xi'an, China
| |
Collapse
|
11
|
Identification and Expression Profile of Chemosensory Receptor Genes in Aromia bungii (Faldermann) Antennal Transcriptome. INSECTS 2022; 13:insects13010096. [PMID: 35055940 PMCID: PMC8781584 DOI: 10.3390/insects13010096] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 01/05/2023]
Abstract
The red-necked longicorn beetle, Aromia bungii (Faldermann) (Coleoptera: Cerambycidae), is a major destructive, wood-boring pest, which is widespread throughout the world. The sex pheromone of A. bungii was reported earlier; however, the chemosensory mechanism of the beetle remains almost unknown. In this study, 45 AbunORs, 6 AbunGRs and 2 AbunIRs were identified among 42,197 unigenes derived from the antennal transcriptome bioinformatic analysis of A. bungii adults. The sequence of putative Orco (AbunOR25) found in this study is highly conserved with the known Orcos from other Coleoptera species, and these Orco genes might be potentially used as target genes for the future development of novel and effective control strategies. Tissue expression analysis showed that 29 AbunOR genes were highly expressed in antennae, especially in the antennae of females, which was consistent with the idea that females might express more pheromone receptors for sensing pheromones, especially the sex pheromones produced by males. AbunOR5, 29, 31 and 37 were clustered with the pheromone receptors of the cerambycid Megacyllene caryae, suggesting that they might be putative pheromone receptors of A. bungii. All six AbunGRs were highly expressed in the mouthparts, indicating that these GRs may be involved in the taste perception process. Both AbunIRs were shown to be female-mouthparts-biased, suggesting that they might also be related to the tasting processes. Our study provides some basic information towards a deeper understanding of the chemosensing mechanism of A. bungii at a molecular level.
Collapse
|
12
|
Li D, Li C, Liu D. Analyses of structural dynamics revealed flexible binding mechanism for the Agrilus mali odorant binding protein 8 towards plant volatiles. PEST MANAGEMENT SCIENCE 2021; 77:1642-1653. [PMID: 33202109 DOI: 10.1002/ps.6184] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Volatiles from host plants are an important source of insect pest attractants and repellents. Insect odorant binding proteins (OBPs) have been widely characterized, but the molecular binding dynamics and underlying mechanisms are still not well understood. Thus, we characterized binding characteristics of AmalOBP8 from the apple buprestid beetle (Agrilus mali Matsumura), an unprecedented serious threat to rare apple germplasm resources and local ecosystems. RESULTS Fluorescence studies demonstrated that the quenching mechanism was clearly static. AmalOBP8 was found to bind with both volatiles at single independent sites. Negative thermodynamic parameters suggested that binding interactions between AmalOBP8 and both volatiles could occur spontaneously. Hydrogen bonding was the key force in AmalOBP8's binding to geranyl formate, for which the amino acid residue Trp106 played a critical role in the binding pocket. Multiple Leu residues in AmalOBP8 created a strong hydrophobic environment, and formed the binding pocket for (Z)-3-hexenyl hexanoate. Compared to classic OBPs, in addition to lack of one disulfide bridge, AmalOBP8 had a small α-helix (α7) at the C-terminus, resulting in greater flexibility and adaptability for this protein to bind with different compound molecules. CONCLUSION Key residues of AmalOBP8 in binding interactions with plant volatiles were clarified. AmalOPB8 had a large ligand binding spectrum and great flexibility in binding with plant volatiles, providing good molecular targets for screening insect attractants and repellents. Our results can promote understanding of insects' perception of various odorants, and establish a foundation for discovery of new pest control agents. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dexian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University), Yangling, China
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Chunbo Li
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University), Yangling, China
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Deguang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University), Yangling, China
- College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
13
|
Rondoni G, Roman A, Meslin C, Montagné N, Conti E, Jacquin-Joly E. Antennal Transcriptome Analysis and Identification of Candidate Chemosensory Genes of the Harlequin Ladybird Beetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). INSECTS 2021; 12:insects12030209. [PMID: 33801288 PMCID: PMC8002065 DOI: 10.3390/insects12030209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Simple Summary The predatory harlequin ladybird Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) has been widely released for classical and augmentative biological control programs of insect herbivores and is now distributed worldwide. Because of its invasive behavior and the threat it can pose to local biodiversity, this ladybird has been adopted as a model species for invasive biocontrol predators. A huge amount of existing literature is available on this species. However, little is known about the mechanisms underlying H. axyridis smell and taste, even though these senses are important in this ladybird for courtship, mating, and for locating suitable habitats for feeding and oviposition. Here we describe the first chemosensory gene repertoire that is expressed in the antennae of male and female H. axyridis. Our findings would likely represent the basis for future functional studies aiming at increasing the efficacy of H. axyridis in biological control or at reducing its populations in those areas where the ladybird has become a matter of concern due to its invasiveness. Abstract In predatory ladybirds (Coleoptera: Coccinellidae), antennae are important for chemosensory reception used during food and mate location, and for finding a suitable oviposition habitat. Based on NextSeq 550 Illumina sequencing, we assembled the antennal transcriptome of mated Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) males and females and described the first chemosensory gene repertoire expressed in this species. We annotated candidate chemosensory sequences encoding 26 odorant receptors (including the coreceptor, Orco), 17 gustatory receptors, 27 ionotropic receptors, 31 odorant-binding proteins, 12 chemosensory proteins, and 4 sensory neuron membrane proteins. Maximum-likelihood phylogenetic analyses allowed to assign candidate H. axyridis chemosensory genes to previously described groups in each of these families. Differential expression analysis between males and females revealed low variability between sexes, possibly reflecting the known absence of relevant sexual dimorphism in the structure of the antennae and in the distribution and abundance of the sensilla. However, we revealed significant differences in expression of three chemosensory genes, namely two male-biased odorant-binding proteins and one male-biased odorant receptor, suggesting their possible involvement in pheromone detection. Our data pave the way for improving the understanding of the molecular basis of chemosensory reception in Coccinellidae.
Collapse
Affiliation(s)
- Gabriele Rondoni
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 16123 Perugia, Italy; (A.R.); (E.C.)
- Correspondence:
| | - Alessandro Roman
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 16123 Perugia, Italy; (A.R.); (E.C.)
| | - Camille Meslin
- Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, 75013 Versailles, France; (C.M.); (N.M.); (E.J.-J.)
| | - Nicolas Montagné
- Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, 75013 Versailles, France; (C.M.); (N.M.); (E.J.-J.)
| | - Eric Conti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 16123 Perugia, Italy; (A.R.); (E.C.)
| | - Emmanuelle Jacquin-Joly
- Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, 75013 Versailles, France; (C.M.); (N.M.); (E.J.-J.)
| |
Collapse
|
14
|
Li C, Sun K, Li D, Liu D. Functional Characterization of Chemosensory Protein AmalCSP5 From Apple Buprestid Beetle, Agrilus mali (Coleoptera: Buprestidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:348-359. [PMID: 33236112 DOI: 10.1093/jee/toaa265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Indexed: 06/11/2023]
Abstract
In the sensitive and complex chemo-sensation system of insects, chemosensory proteins (CSPs) can facilitate the transfer of chemical information and play important roles for variable behaviors of insects. We cloned the chemosensory protein AmalCSP5 from antennae of the apple buprestid beetle (Agrilus mali Matsumura), a serious invasive pest of wild apple trees. Expression profiling showed that AmalCSP5 was expressed in various tissues, suggesting its significance in multiple physiological activities and behaviors of A. mali. AmalCSP5 was preferentially expressed in female antennae and male abdomens. AmalCSP5 was able to bind a variety of test volatiles, especially alcohols and esters. AmalCSP5 exhibited good binding affinity for all five test secondary compounds (i.e., procyanidin, phlorizin, kaemferol, chlorogenic acid, and rutin), suggesting its preferential binding abilities to nonvolatile host plant secondary metabolites and critical roles in gustatory perception of nonvolatiles. Tyr27 and Ser69 of AmalCSP5 could form hydrogen bonds with hexyl benzoate and hexyl hexanoate, respectively. Procyanidin, the best ligand among all test compounds, could form hydrogen bonds with three amino acid residues (i.e., Arg7, Leu8, and Lys41) of AmalCSP5. Thus, high ligand binding affinity for AmalCSP5 seemed to be dependent mainly on the formation of hydrogen bonds. The putative key amino acid residues of AmalCSP5 can be used as molecular targets for designing and screening new attractants and repellents for A. mali. Our results provide insights into binding interactions of AmalCSP5 with volatile and nonvolatile ligands, and a firm basis for developing eco-friendly management strategies of A. mali.
Collapse
Affiliation(s)
- Chunbo Li
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University), Yangling, Shaanxi Province, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Keke Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University), Yangling, Shaanxi Province, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Dexian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University), Yangling, Shaanxi Province, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Deguang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University), Yangling, Shaanxi Province, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| |
Collapse
|
15
|
Hua J, Pan C, Huang Y, Li Y, Li H, Wu C, Chen T, Ma D, Li Z. Functional characteristic analysis of three odorant-binding proteins from the sweet potato weevil (Cylas formicarius) in the perception of sex pheromones and host plant volatiles. PEST MANAGEMENT SCIENCE 2021; 77:300-312. [PMID: 32696609 DOI: 10.1002/ps.6019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The sweet potato weevil, Cylas formicarius, is the most serious pest of sweet potato worldwide. The molecular mechanism of sex pheromone recognition in C. formicarius has not been reported. Odorant-binding proteins (OBPs) play a critical role in selectively binding and transporting pheromones or other odors to the surface of olfactory receptor neurons through the aqueous sensillar lymph, therefore the function of sweet potato OBPs is worth studying. RESULTS Herein, the CforOBP1-3 genes encoding three classical OBPs were cloned in C. formicarius by reverse transcription-polymerase chain reaction. Phylogenetic analysis showed that CforOBP1-3 were homologous genes, but the relationship between CforOBP2 and CforOBP3 was closest among the three genes. In addition, real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assays demonstrated that the expression of CforOBP1 was higher in the antennae and legs of female and male insects, while CforOBP2 and CforOBP3 were mainly expressed in the antennae of male insects. The fluorescent competitive binding assay results indicated that CforOBP1-3 had strong binding affinities to sex pheromones and other tested ligands. Finally, the mRNA expression of CforOBP1-3 was successfully inhibited by RNA interference, and in vivo behavioral experiments showed that CforOBP1-3-deficient C. formicarius was partly anosmic and lost some of its ability to locate sex pheromones and host plant volatiles. CONCLUSION These results suggested that CforOBP1 was shown to be involved in the process of weevils feeding and finding sweet potato, and CforOBP2-3 were mainly involved in the mating behavior of adult male weevils.
Collapse
Affiliation(s)
- Jinfeng Hua
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Jiangsu, China
- Sweet Potato Laboratory, Maize Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi, China
| | - Chao Pan
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Jiangsu, China
| | - Yongmei Huang
- Sweet Potato Laboratory, Maize Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi, China
| | - Yanqing Li
- Sweet Potato Laboratory, Maize Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi, China
| | - Huifeng Li
- Sweet Potato Laboratory, Maize Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi, China
| | - Cuirong Wu
- Sweet Potato Laboratory, Maize Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi, China
| | - Tianyuan Chen
- Sweet Potato Laboratory, Maize Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi, China
| | - Daifu Ma
- Xuzhou Academy of Agricultural Sciences/Sweet Potato Research Institute, CAAS, Jiangsu, China
| | - Zongyun Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Jiangsu, China
| |
Collapse
|
16
|
Cheng W, Zhang Y, Yu J, Liu W, Zhu-Salzman K. Functional Analysis of Odorant-Binding Proteins 12 and 17 from Wheat Blossom Midge Sitodiplosis mosellana Géhin (Diptera: Cecidomyiidae). INSECTS 2020; 11:insects11120891. [PMID: 33348639 PMCID: PMC7767053 DOI: 10.3390/insects11120891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 11/04/2022]
Abstract
Simple Summary Sitodiplosis mosellana is one of the most destructive pests of wheat. Adults rely highly on wheat spike volatiles to search and locate oviposition sites. Insect odorant-binding proteins (OBPs) are important in binding and transporting host plant volatiles to the olfactory receptors. Therefore, OBP-based behavioral interference is believed to be a novel and effective pest management strategy. The objectives of this study were to clone two S. mosellana female antenna-enriched OBP genes (SmosOBP12 and SmosOBP17), determine the functions of the encoded SmosOBP proteins in binding wheat volatiles, and investigate behavioral responses of female S. mosellana to odorant molecules. Results indicated that SmosOBP12 had a broader ligand-binding spectrum than SmosOBP17 to wheat volatiles. Female S. mosellana showed intensive response to 3-hexanol, 1-octen-3-ol, D-panthenol, 3-carene, (Z)-3-hexenylacetate, hexyl acetate, methyl salicylate, heptyl acetate, ethyl heptanoate, α-farnesene, and ocimene. Notably, all these compounds except α-farnesene exhibited strong affinity to SmosOBP12. In conclusion, SmosOBP12 may play more crucial roles than SmosOBP17 in perception and transportation of biologically active host volatiles. This information has enhanced our molecular understanding of the S. mosellana olfaction, which could also serve as an important reference for developing attractants or repellents to control this pest. Abstract The wheat blossom midge Sitodiplosis mosellana, one of the most disastrous wheat pests, depends highly on olfactory cues to track suitable plants. To better understand the olfactory recognition mechanisms involved in host selection, in the present study we cloned two S. mosellana adult antenna-specific odorant binding protein (OBP) genes, SmosOBP12 and SmosOBP17, and evaluated bacterially expressed recombinant proteins for their selectivity and sensitivity for host wheat volatiles using the fluorescence-based ligand binding assay. The results showed that both SmosOBPs effectively bound alcohol, ester, ketone, and terpenoid compounds. Particularly, SmosOBP12 had significantly higher affinities (Ki < 10.5 μM) than SmosOBP17 (Ki2 > 0.1 μM) to 3-hexanol, 1-octen-3-ol, D-panthenol, 3-carene, (Z)-3-hexenylacetate, hexyl acetate, methyl salicylate, heptyl acetate, and ethyl heptanoate. Consistently, S. mosellana females were attracted to all these chemicals in a behavioral assay using Y-tube olfactometer. SmosOBP12 also bound aldehyde, but neither bound alkanes. Notably, SmosOBP12 exhibited strong affinity to ocimene (Ki = 8.2 μM) that repelled S. mosellana. SmosOBP17, however, was insensitive to this compound. Taken together, our results indicate that SmosOBP12 may play a greater role than SmosOBP17 in perceiving these biologically active plant volatiles.
Collapse
Affiliation(s)
- Weining Cheng
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.Z.); (J.Y.); (W.L.)
- Correspondence: (W.C.); (K.Z.-S.)
| | - Yudong Zhang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.Z.); (J.Y.); (W.L.)
| | - Jinlin Yu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.Z.); (J.Y.); (W.L.)
| | - Wei Liu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.Z.); (J.Y.); (W.L.)
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- Correspondence: (W.C.); (K.Z.-S.)
| |
Collapse
|
17
|
Zhang F, Merchant A, Zhao Z, Zhang Y, Zhang J, Zhang Q, Wang Q, Zhou X, Li X. Characterization of MaltOBP1, a Minus-C Odorant-Binding Protein, From the Japanese Pine Sawyer Beetle, Monochamus alternatus Hope (Coleoptera: Cerambycidae). Front Physiol 2020; 11:212. [PMID: 32296339 PMCID: PMC7138900 DOI: 10.3389/fphys.2020.00212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/24/2020] [Indexed: 11/13/2022] Open
Abstract
Insect Odorant-Binding Proteins (OBPs) play crucial roles in the discrimination, binding and transportation of odorants. Herein, the full-length cDNA sequence of Minus-C OBP1 (MaltOBP1) from the Japanese pine sawyer beetle, Monochamus alternatus, was cloned by 3′ and 5′ RACE-PCR and analyzed. The results showed that MaltOBP1 contains a 435 bp open reading frame (ORF) that encodes 144 amino acids, including a 21-amino acid signal peptide at the N-terminus. The matured MaltOBP1 protein possesses a predicted molecular weight of about 14 kDa and consists of six α-helices, creating an open binding pocket, and two disulfide bridges. Immunoblotting results showed that MaltOBP1 was most highly expressed in antennae in both sexes, followed by wings and legs. Fluorescence assays demonstrated that MaltOBP1 protein exhibited high binding affinity with (R)-(+)-α-pinene, (−)-β-pinene, trans-caryophyllene, (R)-(+)-limonene and (–)-verbenone, which are the main volatile compounds of the pine tree. Our combined results suggest that MaltOBP1 plays a role in host seeking behavior in M. alternatus.
Collapse
Affiliation(s)
- Fangmei Zhang
- Henan Provincial South Henan Crop Pest Green Prevention and Control Academician Workstation, Xinyang Agriculture and Forestry University, Xinyang, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Austin Merchant
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Zhibin Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yunhui Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Qingwen Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Qinghua Wang
- The Key Laboratory of Forest Protection, State Forestry Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Xiangrui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Entomology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
18
|
Bari G, Scala A, Garzone V, Salvia R, Yalcin C, Vernile P, Aresta AM, Facini O, Baraldi R, Bufo SA, Vogel H, de Lillo E, Rapparini F, Falabella P. Chemical Ecology of Capnodis tenebrionis (L.) (Coleoptera: Buprestidae): Behavioral and Biochemical Strategies for Intraspecific and Host Interactions. Front Physiol 2019; 10:604. [PMID: 31191334 PMCID: PMC6545930 DOI: 10.3389/fphys.2019.00604] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
This study focuses on several aspects of communication strategies adopted by adults of the Mediterranean flat-headed root-borer Capnodis tenebrionis (Coleoptera: Buprestidae). Morphological studies on the structures involved in mate recognition and acceptance revealed the presence of porous areas in the pronota in both sexes. These areas were variable in shape and size, but proportionally larger in males. The presence of chaetic, basiconic, and coeloconic sensilla in the antennae of both males and females was verified. Bioassays revealed stereotyped rituals in males and the involvement of female pronotal secretions in mate recognition and acceptance. During the mating assays, the female's pronotum was covered by a biologically inert polymeric resin (DenFilTM), which prevented males from detecting the secretions and from completing the copulation ritual. The use of the resin allowed for the collection of chemical compounds. GC-MS analysis of the resin suggested it may be used to retain compounds from insect body surfaces and revealed sex-specific chemical profiles in the cuticles. Since adult C. tenebrionis may use volatile organic compounds (VOCs) emitted from leaves or shoots, the VOC emission profiles of apricot trees were characterized. Several volatiles related to plant-insect interactions involving fruit tree species of the Rosaceae family and buprestid beetles were identified. To improve understanding of how VOCs are perceived, candidate soluble olfactory proteins involved in chemoreception (odorant-binding proteins and chemosensory proteins) were identified using tissue and sex-specific RNA-seq data. The implications for chemical identification, physiological and ecological functions in intraspecific communication and insect-host interactions are discussed and potential applications for monitoring presented.
Collapse
Affiliation(s)
- Giuseppe Bari
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Andrea Scala
- Department of Science, University of Basilicata, Potenza, Italy
| | - Vita Garzone
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Rosanna Salvia
- Department of Science, University of Basilicata, Potenza, Italy
| | - Cem Yalcin
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
- Syngenta, Izmir, Turkey
| | - Pasqua Vernile
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | | | - Osvaldo Facini
- Department of Biology, Agriculture and Food Sciences, Biometeorology Institute, National Research Council, Bologna, Italy
| | - Rita Baraldi
- Department of Biology, Agriculture and Food Sciences, Biometeorology Institute, National Research Council, Bologna, Italy
| | - Sabino A. Bufo
- Department of Science, University of Basilicata, Potenza, Italy
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Enrico de Lillo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Francesca Rapparini
- Department of Biology, Agriculture and Food Sciences, Biometeorology Institute, National Research Council, Bologna, Italy
| | | |
Collapse
|
19
|
Li GW, Chen XL, Chen LH, Wang WQ, Wu JX. Functional Analysis of the Chemosensory Protein GmolCSP8 From the Oriental Fruit Moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae). Front Physiol 2019; 10:552. [PMID: 31133881 PMCID: PMC6516043 DOI: 10.3389/fphys.2019.00552] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
Chemosensory proteins (CSPs) belong to a family of small water-soluble proteins that can selectively bind and transport odorant molecules for olfactory communication in insects. To date, their definite physiological functions in olfaction remain controversial when compared with odorant binding proteins (OBPs). To investigate the functions of CSPs in the oriental fruit moth Grapholita molesta, we determined the tissue expression patterns and binding properties of the CSP, GmolCSP8. The key binding sites of GmolCSP8 with a representative ligand were evaluated using molecular flexible docking, site-directed mutagenesis and ligand-binding experiments. Multiple sequence alignment and phylogenetic analysis showed that GmolCSP8 possesses a typical conserved four cysteines motif and shares high sequence identity with some CSP members of other Lepidopteran insects. GmolCSP8 was predominantly expressed in the wings and antennae of both male and female adults and may be involve in contact chemoreception. Recombinant GmolCSP8 (rGmolCSP8) exhibited specific-binding affinities to small aliphatic alcohols (C4–12) and had the strongest binding affinity to 1-hexanol. The three-dimensional structure of GmolCSP8 was constructed using the structure of sgCSP4 as a template. Site-directed mutagenesis and ligand-binding experiments confirmed that Thr27 is the key binding site in GmolCSP8 for 1-hexanol binding, because this residue can form hydrogen bond with the oxygen atom of the hydroxyl group in 1-hexanol, and Leu30 may play an important role in binding to 1-hexanol. We found that pH significantly affected the binding affinities of rGmolCSP8 to ligand, revealing that ligand-binding and -release by this protein is related to a pH-dependent conformational transition. Based on these results, we infer that GmolCSP8 may participate in the recognition and transportation of 1-hexanol and other small aliphatic alcohols.
Collapse
Affiliation(s)
- Guang-Wei Li
- Shaanxi Province Key Laboratory of Jujube, Yan'an University, Yan'an, China.,College of Life Sciences, Yan'an University, Yan'an, China
| | - Xiu-Lin Chen
- Shaanxi Province Key Laboratory of Jujube, Yan'an University, Yan'an, China.,College of Life Sciences, Yan'an University, Yan'an, China
| | - Li-Hui Chen
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China
| | - Wen-Qiang Wang
- Shaanxi Province Key Laboratory of Jujube, Yan'an University, Yan'an, China.,College of Life Sciences, Yan'an University, Yan'an, China
| | - Jun-Xiang Wu
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China
| |
Collapse
|
20
|
Huang X, Liu D, Zhang R, Shi X. Transcriptional Responses in Defense-Related Genes of Sitobion avenae (Hemiptera: Aphididae) Feeding on Wheat and Barley. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:382-395. [PMID: 30339225 DOI: 10.1093/jee/toy329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Many aphids can adapt on plants of differential resistance levels, but molecular interactions underlying host plant utilization and shift of aphids are still not well understood. Here, we sequenced the transcriptome and compared global gene expression profiles of Sitobion avenae (Fabricius) feeding on wheat (i.e., the susceptible plant) and barley (i.e., the resistant plant). In total, 65,200 high-quality unigenes were identified from the merged transcriptomes, and 861 of them were differentially expressed. Relative to their expression on barley, all differentially expressed P450 (cytochrome 450 monooxygenase) genes (e.g., SavCYP6A13, SavCYP4C1, and SavCYP4G15) in S. avenae on wheat were upregulated, suggesting the significance of P450s in xenobiotic metabolism for this aphid on wheat. For S. avenae on barley, some genes encoding for ATP-binding cassette (ABC) transporters (e.g., ABCG1, ABCG4, ABCB7, and ABCA5) and UDP-glucuronosyltransferases (UGTs; e.g., UGT2B1 and UGT2C1) showed a dramatic increase in expression, suggesting that ABC transporters and UGTs could be critical for detoxification metabolism in S. avenae on barley. In addition, the expression for nearly all differentially expressed proteases was upregulated for S. avenae on barley, reflecting xenobiotic challenges facing S. avenae on resistant barley. Thus, various detoxification and other defense-related genes (e.g., proteases and oxidases) showed highly inducible transcript regulation, suggesting great adaptive potential for S. avenae on different plants. All the abovementioned genes will be prime candidates for further studies of molecular interactions underlying host plant use and specialization in this aphid. Our results provide insights into aphids' defenses against variable phytochemicals, and the molecular basis underlying aphid-plant interactions as well.
Collapse
Affiliation(s)
- Xianliang Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Deguang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Rongfang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoqin Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
21
|
Chen XL, Li GW, Xu XL, Wu JX. Molecular and Functional Characterization of Odorant Binding Protein 7 From the Oriental Fruit Moth Grapholita molesta (Busck) (Lepidoptera: Tortricidae). Front Physiol 2018; 9:1762. [PMID: 30618787 PMCID: PMC6295574 DOI: 10.3389/fphys.2018.01762] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/22/2018] [Indexed: 01/14/2023] Open
Abstract
Odorant-binding proteins (OBPs) are widely and abundantly distributed in the insect sensillar lymph and are essential for insect olfactory processes. The OBPs can capture and transfer odor molecules across the sensillum lymph to odorant receptors and trigger the signal transduction pathway. In this study, a putative OBP gene, GmolOBP7, was cloned using specific-primers, based on the annotated unigene which forms the antennal transcriptome of Grapholita molesta. Real-time PCR (qRT-PCR) analysis revealed that GmolOBP7 was highly expressed in the wings of males and the antennae of both male and female adult moths, while low levels were expressed in other tissues. The recombinant GmolOBP7 (rGmolOBP7) was successfully expressed and purified via Ni-ion affinity chromatography. The results of binding assays revealed that rGmolOBP7 exhibited a high binding affinity to the minor sex pheromone 1-dodecanol containing Ki of 7.48 μM and had high binding capacities to the host-plant volatiles, such as pear ester, lauraldehyde and α-ocimene. RNA-interference experiments were performed to further assess the function of GmolOBP7. qRT-PCR showed that the levels of mRNA transcripts significantly declined in 1 and 2 day old male and female moths, treated with GmolOBP7 dsRNA, compared with non-injection controls. The EAG responses of dsRNA-injected males and females to pear ester, as well as the EAG responses of dsRNA-injected males to 1-dodecanol, were significantly reduced compared to the GFP-dsRNA-injected and non-injected controls. We therefore infer that GmolOBP7 has a dual function in the perception and recognition of the host-plant volatiles and sex pheromones.
Collapse
Affiliation(s)
- Xiu-Lin Chen
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China.,Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan' an University, Yan'an, China
| | - Guang-Wei Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan' an University, Yan'an, China
| | - Xiang-Li Xu
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China
| | - Jun-Xiang Wu
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China
| |
Collapse
|
22
|
Li GW, Chen XL, Xu XL, Wu JX. Degradation of sex pheromone and plant volatile components by an antennal glutathione S-transferase in the oriental fruit moth,Grapholita molesta Busck (Lepidoptera: Tortricidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 99:e21512. [PMID: 30387866 DOI: 10.1002/arch.21512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/14/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
Insect antennae have a primary function of perceiving and discerning odorant molecules including sex pheromones and host plant volatiles. The assumption that genes highly expressed in the antennae may have an olfactory-related role associated with signal transduction. Here, one delta subfamily glutathione S-transferase (GST) gene (GmolGSTD1) was obtained from an antennal transcriptome of Grapholita molesta. Quantitative real-time polymerase chain reaction results revealed that GmolGSTD1 was mainly expressed in antennae and the expression levels were significantly higher in female antennae than in male antennae. The recombinant GmolGSTD1 (rGmolGSTD1) showed glutathione-conjugating activity toward 1-chloro-2,4-dinitrobenzene (CDNB) as substrates. The pH range for optimal rGmolGSTD1 enzyme activity was 6.0-6.5, and rGmolGSTD1 enzyme activity had maximal peaks at 35-40°C. Spectrophotometric analysis indicated that insecticides had weak inhibitory effects on the activity of rGmolGSTD1 with the inhibitory rates of 28.82% for chlorpyrifos, 22.27% for lambda-cyhalothrin, 18.07% for bifenthrin, 20.42% for acetamiprid, 17.57% for thiamethoxam, 25.67% for metaflumizone, 27.43% for abamectin, and 7.24% for chlorbenzuron. rGmolGSTD1 exhibited high degradation activity to the sex pheromone component (Z)-8-dodecenyl alcohol and the host plant volatile butyl hexanoate with the degradation efficiency of 75.01% and 48.54%, respectively. We speculate that GmolGSTD1 works in inactivating odorant molecules and maintaining sensitivity to olfactory communication of G. molesta.
Collapse
Affiliation(s)
- Guang-Wei Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, China
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China
| | - Xiu-Lin Chen
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, China
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China
| | - Xiang-Li Xu
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China
- Key Laboratory of Applied Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jun-Xiang Wu
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China
- Key Laboratory of Applied Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|