1
|
Dong W, Shang J, Guo X, Wang H, Zhu J, Liang P, Shi X. Transcription factor CREB/ATF regulates overexpression of CYP6CY14 conferring resistance to cycloxaprid in Aphis gossypii. Int J Biol Macromol 2025; 303:140634. [PMID: 39904427 DOI: 10.1016/j.ijbiomac.2025.140634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/19/2024] [Accepted: 02/01/2025] [Indexed: 02/06/2025]
Abstract
Aphis gossypii Glover as a destructive agricultural pest has evolved resistance to various insecticides. Cycloxaprid is a novel structure neonicotinoid insecticide with excellent toxicity against A. gossypii. However, the resistance mechanism of A. gossypii to cycloxaprid was unclear. In the present study, a cycloxaprid-resistant (Cpd-R) strain (80.1-fold) of A. gossypii was obtained by continuous selection. Bioassay results showed that piperonyl butoxide significantly increased the toxicity of cycloxaprid by 10.5-fold to the Cpd-R strain. The activity of P450s was significantly higher in Cpd-R strain than in susceptible (Cpd-S) strain. The transcriptomic and qRT-PCR results showed that CYP6CY14, CYP380C44 and CYP303A1 were significantly upregulated in Cpd-R strain compared with Cpd-S strain. Furthermore, knockdown of CYP6CY14, CYP380C44 and CYP303A1 via RNA interference (RNAi) significantly increased the sensitivity of Cpd-R strain to cycloxaprid. Based on the higher expression of CYP6CY14 and RNAi results, transgenic Drosophila assay was conducted to further clarify the role of CYP6CY14 in cycloxaprid resistance, and results showed a significant increase in resistance to cycloxaprid in D. melanogaster. Additionally, the results of RNAi, dual-luciferase reporter and yeast one-hybrid (Y1H) indicated that CREB/ATF directly regulates CYP6CY14 expression. These findings provide necessary basis for clarifying the resistance mechanism of cycloxaprid in A. gossypii.
Collapse
Affiliation(s)
- Wenyang Dong
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Jiao Shang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xinyu Guo
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Haishan Wang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Jiahao Zhu
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xueyan Shi
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Miranda‐Blancas R, Rodríguez‐Lima O, García‐Gutiérrez P, Flores‐López R, Jiménez L, Zubillaga RA, Rudiño‐Piñera E, Landa A. Biochemical characterization and gene structure analysis of the 24-kDa glutathione transferase sigma from Taenia solium. FEBS Open Bio 2024; 14:726-739. [PMID: 38514457 PMCID: PMC11073501 DOI: 10.1002/2211-5463.13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/08/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Taenia solium can cause human taeniasis and/or cysticercosis. The latter can in some instances cause human neurocysticercosis which is considered a priority in disease-control strategies and the prevention of mental health problems. Glutathione transferases are crucial for the establishment and long-term survival of T. solium; therefore, we structurally analyzed the 24-kDa glutathione transferase gene (Ts24gst) of T. solium and biochemically characterized its product. The gene promoter showed potential binding sites for transcription factors and xenobiotic regulatory elements. The gene consists of a transcription start site, four exons split by three introns, and a polyadenylation site. The gene architecture is conserved in cestodes. Recombinant Ts24GST (rTs24GST) was active and dimeric. Anti-rTs24GST serum showed slight cross-reactivity with human sigma-class GST. A 3D model of Ts24GST enabled identification of putative residues involved in interactions of the G-site with GSH and of the H-site with CDNB and prostaglandin D2. Furthermore, rTs24GST showed optimal activity at 45 °C and pH 9, as well as high structural stability in a wide range of temperatures and pHs. These results contribute to the better understanding of this parasite and the efforts directed to fight taeniasis/cysticercosis.
Collapse
Affiliation(s)
- Ricardo Miranda‐Blancas
- Departamento de Microbiología y Parasitología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMexico
| | - Oscar Rodríguez‐Lima
- Departamento de Microbiología y Parasitología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMexico
| | | | - Roberto Flores‐López
- Departamento de Microbiología y Parasitología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMexico
- Posgrado en Ciencias Biológicas Unidad de PosgradoUniversidad Nacional Autónoma de MéxicoMexico
| | - Lucía Jiménez
- Departamento de Microbiología y Parasitología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMexico
| | - Rafael A. Zubillaga
- Departamento de QuímicaUniversidad Autónoma Metropolitana‐IztapalapaMexico CityMexico
| | - Enrique Rudiño‐Piñera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Abraham Landa
- Departamento de Microbiología y Parasitología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMexico
| |
Collapse
|
3
|
Zhu H, Ahmad S, Duan Z, Shi J, Tang X, Dong Q, Xi C, Ge L, Wu T, Tan Y. The Jinggangmycin-induced Mthl2 gene regulates the development and stress resistance in Nilaparvata lugens Stål (Hemiptera: Delphacidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105630. [PMID: 37945234 DOI: 10.1016/j.pestbp.2023.105630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 11/12/2023]
Abstract
Methuselah (Mth) belongs to the GPCR family B, which regulates various biological processes and stress responses. The previous transcriptome data showed jinggangmycin (JGM)-induced Mthl2 expression. However, its detailed functional role remained unclear in brown planthopper, Nilaparvata lugens Stål. In adult N. lugens, the Mthl2 gene showed dominant expressions, notably in ovaries and fat body tissues. The 3rd instar nymphs treated with JGM increased starvation, oxidative stress, and high temperature (34 °C) tolerance of the adults. On the contrary, under dsMthl2 treatment, completely opposite phenotypes were observed. The lipid synthesis genes (DGAT1and PNPLA3) of both females and males treated with JGM in the nymphal stage were observed with high expressions, while the lipolysis of the Lipase 3 gene was observed with low expressions. The JGM increased triglyceride (TG) content, fat body droplet size, and the number of fat body droplets. The same treatment also increased the Glutathione S-transferase (GST), catalase (CAT), and superoxide dismutase (SOD) activities. An increase in the heat shock protein (HSP70 and HSP90) expression levels was also observed under JGM treatment but not dsMthl2. The current study demonstrated the influential role of the Mthl genes, particularly the Mthl2 gene, in modulating the growth and development and stress-responsiveness in N. lugens. Thus, providing a platform for future applied research programs controlling N. lugens population in rice fields.
Collapse
Affiliation(s)
- Haowen Zhu
- College of Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Sheraz Ahmad
- College of Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Zhirou Duan
- College of Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Junting Shi
- College of Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Xingyu Tang
- College of Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Qiaoqiao Dong
- College of Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Chuanyuan Xi
- College of Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Linquan Ge
- College of Plant Protection, Yangzhou University, 225009 Yangzhou, PR China.
| | - Tao Wu
- College of Horticulture and Landscape Architecture, Yangzhou University, 225009 Yangzhou, PR China.
| | - Yongan Tan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
| |
Collapse
|
4
|
Li W, Zou J, Yang X, Yang M, Jiang P, Wang X, Huang C, He Y. Identification of metabolizing enzyme genes associated with xenobiotics and odorants in the predatory stink bug Arma custos based on transcriptome analysis. Heliyon 2023; 9:e18657. [PMID: 37576196 PMCID: PMC10412767 DOI: 10.1016/j.heliyon.2023.e18657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023] Open
Abstract
The predatory stink bug, Arma custos, is a highly effective beneficial predator of crop pests. The lack of gene information related to xenobiotic detoxification and odorant degrading enzymes in the predator stink bugs to date has limited our ability for more in-depth studies of biological control. Hence, we conducted de novo assembly of the A. custos transcriptome from guts, antennae, and other tiussue samples of 5th instar larvae using Illumina sequencing technology. A total of 91, 50 and 23 genes of cytochrome P450 monooxygenases (CYPs), carboxyl/choline esterases (CCEs) and glutathione S-transferases (GSTs) genes were identified, respectively. Gene expansions of CYP3 and CYP4 clans and the hormone and pheromone processing CCE class were found in A. custos. Analysis of tissue-specific expression patterns showed that 37 CYPs, 14 CCEs and 8 GSTs were enriched in guts, and 6 CYPs, 5 CCEs and 2 GSTs were up-regulated in antennae, suggesting their potential roles on xenobiotics detoxification and ordorant degradation. Gene information data presented here could be useful for a deeper understanding of the ecology, physiology and behavior of this beneficial species and could be helpful to improve their bio-control efficiency.
Collapse
Affiliation(s)
- Wenhong Li
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Jingmiao Zou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiang Yang
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, 563000, China
| | - Mingwei Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Po Jiang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinyi Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunyang Huang
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, 563000, China
| | - Yueping He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
5
|
Kaleem Ullah RM, Gao F, Sikandar A, Wu H. Insights into the Effects of Insecticides on Aphids (Hemiptera: Aphididae): Resistance Mechanisms and Molecular Basis. Int J Mol Sci 2023; 24:ijms24076750. [PMID: 37047722 PMCID: PMC10094857 DOI: 10.3390/ijms24076750] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
With the passage of time and indiscreet usage of insecticides on crops, aphids are becoming resistant to their effect. The different classes of insecticides, including organophosphates, carbamates, pyrethroids and neonicotinoids, have varied effects on insects. Furthermore, the molecular effects of these insecticides in aphids, including effects on the enzymatic machinery and gene mutation, are resulting in aphid resistance to the insecticides. In this review, we will discuss how aphids are affected by the overuse of pesticides, how resistance appears, and which mechanisms participate in the resistance mechanisms in various aphid species as significant crop pests. Gene expression studies were analyzed using the RNA-Seq technique. The stress-responsive genes were analyzed, and their expression in response to insecticide administration was determined. Putative insecticide resistance-related genes, cytochrome P450, glutathione S-transferase, carboxylesterase CarEs, ABC transporters, cuticle protein genes, and trypsin-related genes were studied. The review concluded that if insecticide-susceptible aphids interact with ample dosages of insecticides with sublethal effects, this will result in the upregulation of genes whose primary role is to detoxify insecticides. In the past decade, certain advancements have been observed regarding insecticide resistance on a molecular basis. Even so, not much is known about how aphids detoxify the insecticides at molecular level. Thus, to attain equilibrium, it is important to observe the manipulation of pest and insect species with the aim of restoring susceptibility to insecticides. For this purpose, this review has included critical insights into insecticide resistance in aphids.
Collapse
Affiliation(s)
- Rana Muhammad Kaleem Ullah
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Fukun Gao
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Aatika Sikandar
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Haiyan Wu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
6
|
Fan Q, Liu J, Li Y, Zhang Y. Glutathione S-Transferase May Contribute to the Detoxification of (S)-(-)-Palasonin in Plutella xylostella (L.) via Direct Metabolism. INSECTS 2022; 13:989. [PMID: 36354813 PMCID: PMC9692725 DOI: 10.3390/insects13110989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The control of P. xylostella primarily involves chemical insecticides, but overuse has brought about many negative effects. Our previous study reported that (S)-(-)-palasonin (PLN) is a plant-derived active substance with significant insecticidal activity against P. xylostella. However, we noticed a possible cross-resistance between (S)-(-)-palasonin and other insecticides which may be related to metabolic detoxification. In order to further explore the detoxification effect of detoxification enzymes on (S)-(-)-palasonin in P. xylostella, the effects of (S)-(-)-palasonin on enzyme activity and transcription level were determined, and the detoxification and metabolism of GSTs on (S)-(-)-palasonin were studied by in vitro inhibition and metabolism experiments. During this study, GST enzyme activity was significantly increased in P. xylostella after (S)-(-)-palasonin treatment. The expression levels of 19 GSTs genes were significantly increased whereas the expression levels of 1 gene decreased. Furthermore, (S)-(-)-palasonin is shown to be stabilized with GSTs and metabolized GSTs (GSTd1, GSTd2, GSTs1 and GSTs2) in vitro, with the highest metabolic rate of 80.59% for GSTs1. This study advances the beneficial utilization of (S)-(-)-palasonin as a botanical pesticide to control P. xylostella in the field.
Collapse
Affiliation(s)
| | | | - Yifan Li
- Correspondence: (Y.L.); (Y.Z.); Tel.: +86-029-87092190 (Y.Z.)
| | - Yalin Zhang
- Correspondence: (Y.L.); (Y.Z.); Tel.: +86-029-87092190 (Y.Z.)
| |
Collapse
|
7
|
Li W, Wang X, Jiang P, Yang M, Li Z, Huang C, He Y. A full-length transcriptome and gene expression analysis of three detoxification gene families in a predatory stink bug, Picromerus lewisi. Front Physiol 2022; 13:1016582. [PMID: 36299261 PMCID: PMC9589283 DOI: 10.3389/fphys.2022.1016582] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/16/2022] [Indexed: 12/02/2022] Open
Abstract
The predatory stink bug P. Lewisi shows potential for Integrated Pest Management programs for controlling Lepidoptera pest insects in crops and forests. The importance of this insect for biological control has stimulated several studies into its biology and ecology. However, P. lewisi has little genetic information available. In the present study, PacBio single-molecule real-time (SMRT) sequencing and Illumina RNA-seq sequencing technologies were used to reveal the full-length transcriptome profiling and tissue-specific expression patterns of P. lewisi. A total of 12,997 high-quality transcripts with an average length of 2,292 bp were obtained from different stages of P. lewisi using SMRT sequencing. Among these, 12,101 were successfully annotated in seven public databases. A total of 67 genes of cytochrome P450 monooxygenases, 43 carboxylesterase genes, and 18 glutathione S-transferase genes were identified, most of which were obtained with full-length ORFs. Then, tissue-specific expression patterns of 5th instar nymphs were analyzed using Illumina sequencing. Several candidate genes related to detoxification of insecticides and other xenobiotics as well as the degradation of odors, were identified in the guts and antennae of P. lewisi. The current study offered in-depth knowledge to understand the biology and ecology of this beneficial predator and related species.
Collapse
Affiliation(s)
- Wenhong Li
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Xinyi Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Po Jiang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingwei Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhimo Li
- Guizhou Provincial Tobacco Company, Zunyi Branch, Zunyi, China
| | - Chunyang Huang
- Guizhou Provincial Tobacco Company, Zunyi Branch, Zunyi, China
- *Correspondence: Chunyang Huang, ; Yueping He,
| | - Yueping He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Chunyang Huang, ; Yueping He,
| |
Collapse
|
8
|
Leybourne DJ, Valentine TA, Binnie K, Taylor A, Karley AJ, Bos JIB. Drought stress increases the expression of barley defence genes with negative consequences for infesting cereal aphids. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2238-2250. [PMID: 35090009 DOI: 10.1093/jxb/erac010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Crops are exposed to myriad abiotic and biotic stressors with negative consequences. Two stressors that are expected to increase under climate change are drought and infestation with herbivorous insects, including important aphid species. Expanding our understanding of the impact drought has on the plant-aphid relationship will become increasingly important under future climate scenarios. Here we use a previously characterized plant-aphid system comprising a susceptible variety of barley, a wild relative of barley with partial aphid resistance, and the bird cherry-oat aphid to examine the drought-plant-aphid relationship. We show that drought has a negative effect on plant physiology and aphid fitness, and provide evidence to suggest that plant resistance influences aphid responses to drought stress. Furthermore, we show that the expression of thionin genes, plant defensive compounds that contribute to aphid resistance, increase in susceptible plants exposed to drought stress but remain at constant levels in the partially resistant plant, suggesting that they play an important role in determining the success of aphid populations. This study highlights the role of plant defensive processes in mediating the interactions between the environment, plants, and herbivorous insects.
Collapse
Affiliation(s)
- Daniel J Leybourne
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee DD2 5DA, UK
- Cell and Molecular Sciences, the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Ecological Sciences, the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Tracy A Valentine
- Ecological Sciences, the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Kirsty Binnie
- Ecological Sciences, the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Anna Taylor
- Ecological Sciences, the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Alison J Karley
- Ecological Sciences, the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Jorunn I B Bos
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee DD2 5DA, UK
- Cell and Molecular Sciences, the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
9
|
Song XW, Zhong QS, Ji YH, Zhang YM, Tang J, Feng F, Bi JX, Xie J, Li B. Characterization of a sigma class GST (GSTS6) required for cellular detoxification and embryogenesis in Tribolium castaneum. INSECT SCIENCE 2022; 29:215-229. [PMID: 34048152 DOI: 10.1111/1744-7917.12930] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
The sigma glutathione S-transferases (GSTSs) are a class of cytosolic glutathione S transferases (GSTs) that play important roles in antioxidant defense in insects, but the mechanisms by which GSTSs contribute to antioxidant activity remain unclear. Here, we isolated a GSTS (GSTS6) from Tribolium castaneum and explored its function. Homology and phylogenetic analysis revealed that TcGSTS6 shared high identity with other evolutionarily conserved GSTSs. The recombinant TcGSTS6 protein had strong activity toward cumene hydroperoxide and 4-hydroxynonenal but low activity toward the universal substrate 1-chloro-2,4-dinitrobenzene. Exposure to various types of oxidative stress, including heat, cold, UV and pathogenic microbes, significantly induced TcGSTs6 expression, which indicates that it is involved in antioxidant defense. Knockdown TcGSTs6 by using RNA interference (RNAi) caused reduced antioxidant capacity, which was accomplished by cooperating with other antioxidant genes. Moreover, treatment with various insecticides such as phoxim, lambda-cyhalothrin, dichlorvos and carbofuran revealed that TcGSTS6 plays an important role in insecticide detoxification. The RNAi results showed that TcGSTS6 is essential for embryogenesis in T. castaneum. Our study elucidates the mechanism by which a GSTS contributes to antioxidant activity and enhances our understanding of the functional diversity of GSTSs in insects.
Collapse
Affiliation(s)
- Xiao-Wen Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Qi-Sheng Zhong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Yan-Hao Ji
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Yue-Mei Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Jing Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Fan Feng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Jing-Xiu Bi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Jia Xie
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| |
Collapse
|
10
|
Liu ZX, Xing XR, Liang XH, Ding JH, Li YJ, Shao Y, Wu FA, Wang J, Sheng S. The role of Glutathione-S-transferases in phoxim and chlorfenapyr tolerance in a major mulberry pest, Glyphodes pyloalis walker (Lepidoptera: Pyralidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:105004. [PMID: 35082028 DOI: 10.1016/j.pestbp.2021.105004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/05/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Glyphodes pyloalis Walker is a destructive pest on mulberry trees and poses a significant threat to the sericultural industry in China. Phoxim and chlorfenapyr are two commonly used insecticides in mulberry fields. Glutathione-S-transferases (GSTs) comprise a multifunctional protein superfamily that plays important roles in the detoxification of insecticides and xenobiotic compounds in insects. However, whether GSTs participate in the tolerance of phoxim and chlorfenapyr in G. pyloalis is still unknown. To better understand the mechanism of insecticide tolerance in G. pyloalis, the enzymatic activity of GSTs was evaluated under phoxim and chlorfenapyr exposure, respectively. GST enzyme activity was significantly increased after 12, 36 and 48 h of phoxim treatment and 12, 24, 36 and 48 h of chlorfenapyr treatment. Subsequently, eighteen GST genes were identified from the larvae transcriptome of G. pyloalis. Among these, ten GpGSTs had GSH-binding sites and fifteen GpGSTs had variable hydrophobic substrate-binding sites. The expression levels of Delta-GpGST and Epsilon-GpGST genes were significantly influenced by phoxim and chlorfenapyr treatment, and by the time post insecticide application. Furthermore, after silencing GpGST-E4, the mortality rate of G. pyloalis larvae was increased when they were exposed to chlorfenapyr, but it did not significantly alter when the larvae were exposed to phoxim. Our results indicated the vital roles of GpGSTs in the tolerance of insecticides and this action depends on the categories of insecticides. The present study provides a theoretical basis for elucidating insecticide susceptibility and promotes functional research on GST genes in G. pyloalis.
Collapse
Affiliation(s)
- Zhi-Xiang Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Xiao-Rong Xing
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Xin-Hao Liang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Jian-Hao Ding
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Yi-Jiangcheng Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Ying Shao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Fu-An Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, China
| | - Sheng Sheng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, China.
| |
Collapse
|
11
|
Li M, Li X, Wang C, Li Q, Zhu S, Zhang Y, Li X, Yang F, Zhu X. Selection and Validation of Reference Genes For qRT-PCR Analysis of Rhopalosiphum padi (Hemiptera: Aphididae). Front Physiol 2021; 12:663338. [PMID: 33935809 PMCID: PMC8079785 DOI: 10.3389/fphys.2021.663338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 11/23/2022] Open
Abstract
Rhopalosiphum padi (L.) (Hemiptera: Aphididae) is an important cosmopolitan pest in cereal crops. Reference genes can significantly affect qRT-PCR results. Therefore, selecting appropriate reference genes is a key prerequisite for qRT-PCR analyses. This study was conducted to identify suitable qRT-PCR reference genes in R. padi. We systematically analyzed the expression profiles of 11 commonly used reference genes. The ΔCt method, the BestKeeper, NormFinder, geNorm algorithms, and the RefFinder online tool were used to evaluate the suitability of these genes under diverse experimental conditions. The data indicated that the most appropriate sets of reference genes were β-actin and GAPDH (for developmental stages), AK and TATA (for populations), RPS18 and RPL13 (for tissues), TATA and GAPDH (for wing dimorphism), EF-1α and RPS6 (for antibiotic treatments), GAPDH and β-actin (for insecticide treatments), GAPDH, TATA, RPS18 (for starvation-induced stress), TATA, RPS6, and AK (for temperatures), and TATA and GAPDH (for all conditions). Our study findings, which revealed the reference genes suitable for various experimental conditions, will facilitate the standardization of qRT-PCR programs, while also improving the accuracy of qRT-PCR analyses, with implications for future research on R. padi gene functions.
Collapse
Affiliation(s)
- Mengyi Li
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China.,Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, China
| | - Xinan Li
- School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, China
| | - Chao Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, China
| | - Qiuchi Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, China
| | - Saige Zhu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, China
| | - Yunhui Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, China
| | - Xiangrui Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, China
| | - Fengshan Yang
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Xun Zhu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, China
| |
Collapse
|
12
|
Li Y, Sun H, Tian Z, Su X, Li Y, Ye X, Zhou Y, Zheng S, Liu J, Zhang Y. The determination of Plutella xylostella (L.) GSTs (PxGSTs) involved in the detoxification metabolism of Tolfenpyrad. PEST MANAGEMENT SCIENCE 2020; 76:4036-4045. [PMID: 32515133 DOI: 10.1002/ps.5958] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Insect glutathione S-transferases (GSTs) play a crucial role in insecticide detoxification. However, there remains a distinct lack of information regarding the role of GSTs in the detoxification of Tolfenpyrad (TFP) in insects. RESULTS Real-time quantitative PCR showed significant upregulation of PxGSTs after exposure to TFP for 6 h. An in vitro inhibition assay showed that TFP could inhibit PxGSTδ, PxGSTε and PxGSTσ, and the most pronounced inhibitory effect was on PxGSTσ. Metabolism assays displayed that PxGSTσ was superior to other test PxGSTs in metabolizing TFP. The molecular docking of TFP and PxGSTσ revealed that the H-bond provided by the sidechains of Tyr107 and Tyr162 were key to the detoxification of TFP by PxGSTσ. Further tests using mutant PxGSTσ proteins at the sites of Tyr107 (PxGSTσY107A) and Tyr162 (PxGSTσY162A) corroborated that the individual replacement of Tyr107 and Tyr162 could greatly weaken the binding and metabolic abilities to TFP. CONCLUSION Metabolic interactions between the Plutella xylostella (L.) GSTs (PxGSTs) and TFP were deciphered. This study illustrates the molecular metabolism mechanism of PxGSTσ towards TFP and provides theoretical underpinnings for the design and optimization of novel TFP-like insecticides. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yifan Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Hong Sun
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhen Tian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xinxin Su
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yue Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xuan Ye
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yifei Zhou
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Shengli Zheng
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Jiyuan Liu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
13
|
Hu C, Wei ZH, Li PR, Harwood JD, Li XY, Yang XQ. Identification and Functional Characterization of a Sigma Glutathione S-Transferase CpGSTs2 Involved in λ-Cyhalothrin Resistance in the Codling Moth Cydia pomonella. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12585-12594. [PMID: 33107730 DOI: 10.1021/acs.jafc.0c05233] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The codling moth, Cydia pomonella (L.), is a quarantine pest of global significance impacting pome fruits and walnuts. It has evolved resistance to many commonly used insecticides including λ-cyhalothrin. Glutathione S-transferases (GSTs) are multifunctional enzymes playing a crucial role in the detoxification of insecticides in insects. However, the role of specific GST gene in λ-cyhalothrin resistance in C. pomonella is unclear. In this study, we identified three sigma-class genes (CpGSTs1, CpGSTs2, and CpGSTs3). These genes were ubiquitously expressed at all developmental stages, and of these, the expression level of CpGSTs2 in the larval stage was significantly higher than in the egg, pupal, and adult stages. Moreover, CpGSTs2 was predominantly expressed in the fat body while lower levels in the cuticle. In addition to exposure of larvae to LD10 of λ-cyhalothrin elevating the expression level of CpGSTs2, mRNA levels of CpGSTs2 in a field population (ZW_R) from northeast China, which has developed moderate level resistance to λ-cyhalothrin, was significantly higher than that of susceptible strains. In vitro inhibition assays demonstrated that λ-cyhalothrin inhibited the conjugating activities of recombinant CpGSTs2, and metabolic assays indicated that λ-cyhalothrin could be depleted by recombinant CpGSTs2. These results bring evidence for the involvement of CpGSTs2 in C. pomonella in resistance to λ-cyhalothrin.
Collapse
Affiliation(s)
- Chao Hu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Zi-Han Wei
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Pei-Rong Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - James D Harwood
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Xiang-Yang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xue-Qing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| |
Collapse
|
14
|
Song X, Pei L, Zhang Y, Chen X, Zhong Q, Ji Y, Tang J, Feng F, Li B. Functional diversification of three delta-class glutathione S-transferases involved in development and detoxification in Tribolium castaneum. INSECT MOLECULAR BIOLOGY 2020; 29:320-336. [PMID: 31999035 DOI: 10.1111/imb.12637] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Glutathione S-transferases (GSTs) are members of a multifunctional enzyme superfamily. Forty-one GSTs have been identified in Tribolium castaneum; however, none of the 41 GSTs has been functionally characterized. Here, three delta-class GSTs, TcGSTd1, TcGSTd2 and TcGSTd3, of T. castaneum were successfully cloned and expressed in Escherichia coli. All of the studied GSTs catalysed the conjugation of reduced glutathione with 1-chloro-2,4-dinitrobenzene. Insecticide treatment showed that the expression levels of TcGSTd3 and TcGSTd2 were significantly increased after exposure to phoxim and lambda-cyhalothrin, whereas TcGSTd1 was slightly upregulated only in response to phoxim. A disc diffusion assay showed that overexpression of TcGSTD3, but not TcGSTD1 or TcGSTD2, in E. coli increased resistance to paraquat-induced oxidative stress. RNA interference knockdown of TcGSTd1 caused metamorphosis deficiencies and reduced fecundity by regulating insulin/target-of-rapamycin signalling pathway-mediated ecdysteroid biosynthesis, and knockdown of TcGSTd3 led to reduced fertility and a decreased hatch rate of the offspring, probably caused by the reduced antioxidative activity in the reproductive organs. These results indicate that TcGSTd3 and TcGSTd2 may play vital roles in cellular detoxification, whereas TcGSTd1 may play essential roles in normal development of T. castaneum. These delta-class GSTs in T. castaneum have obtained different functions during the evolution.
Collapse
Affiliation(s)
- X Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - L Pei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Y Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - X Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Q Zhong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Y Ji
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - J Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | | | - B Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|