1
|
Konno H, Miyamae J, Kataoka H, Akai M, Miida H, Tsuchiya Y. Dog leukocyte antigen genotyping across class I and class II genes in beagle dogs as laboratory animals. Immunogenetics 2024; 76:261-270. [PMID: 38922357 DOI: 10.1007/s00251-024-01344-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Dog leukocyte antigen (DLA) polymorphisms have been found to be associated with inter-individual variations in the risk, susceptibility, and severity of immune-related phenomena. While DLA class II genes have been extensively studied, less research has been performed on the polymorphisms of DLA class I genes, especially in beagle dogs commonly used as laboratory animals for safety evaluations in drug development. We genotyped four DLA class I genes and four DLA class II genes by locus-specific Sanger sequencing using 93 laboratory beagle dogs derived from two different strains: TOYO and Marshall. The results showed that, for DLA class I genes, 11, 4, 1, and 2 alleles, including a novel allele, were detected in DLA-88, DLA-12/88L, DLA-64, and DLA-79, while, for DLA class II genes, 1, 10, 6, and 7 alleles were detected in DLA-DRA, DLA-DRB1, DLA-DQA1, and DLA-DQB1, respectively. It was estimated that there were 14 DLA haplotypes, six of which had a frequency of ≥ 5%. Furthermore, when comparing the DLA diversity between TOYO and Marshall strains, the most common alleles and haplotypes differed between them. This is the first study to genotype all DLA loci and determine DLA haplotypes including all DLA class I and class II genes in dogs. Integrating information on the DLA diversity of laboratory beagle dogs should reinforce their benefit as an animal model for understanding various diseases associated with a specific DLA type.
Collapse
Affiliation(s)
- Hiroya Konno
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, 134-8630, Japan.
| | - Jiro Miyamae
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Japan
| | - Hiroko Kataoka
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, 134-8630, Japan
| | - Makoto Akai
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, 134-8630, Japan
| | - Hiroaki Miida
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, 134-8630, Japan
| | - Yoshimi Tsuchiya
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, 134-8630, Japan
| |
Collapse
|
2
|
Arbanasić H, Medrano-González L, Hrenar T, Mikelić A, Gomerčić T, Svetličić I, Pavlinec Ž, Đuras M, Galov A. Recent selection created distinctive variability patterns on MHC class II loci in three dolphin species from the Mediterranean Sea. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 150:105079. [PMID: 37832898 DOI: 10.1016/j.dci.2023.105079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The major histocompatibility complex (MHC) includes highly polymorphic genes involved in antigen presentation, which is crucial for adaptive immune response. They represent fitness related genetic markers particularly informative for populations exposed to environmental challenges. Here we analyse the diversity and evolutionary traits of MHC class II DQA and DQB genes in the dolphins Stenella coeruleoalba and Grampus griseus from the Mediterranean Sea. We found substantial nucleotide and functional diversity, as well as strong evidence of balancing selection indicated by allele and supertype frequencies, Tajima's D statistics and dN/dS tests. The Risso's dolphin, considered the least abundant in the region, showed the effect of divergent allele advantage at the nucleotide and functional-peptide levels. An outstanding polymorphism was found in the striped dolphin, particularly intriguing in the DQA gene where the Ewens-Watterson test detected a selection sweep that occurred in recent history. We hypothesize that morbillivirus, which has recurrently invaded Mediterranean populations over the last decades, exerted the detected selective pressure.
Collapse
Affiliation(s)
- Haidi Arbanasić
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia.
| | - Luis Medrano-González
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| | - Tomica Hrenar
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia.
| | - Ana Mikelić
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia.
| | - Tomislav Gomerčić
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000, Zagreb, Croatia.
| | - Ida Svetličić
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia.
| | - Željko Pavlinec
- Croatian Academy of Sciences and Arts, Trg Nikole Šubića Zrinskog 11, 10000, Zagreb, Croatia.
| | - Martina Đuras
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000, Zagreb, Croatia.
| | - Ana Galov
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia.
| |
Collapse
|
3
|
Miyamae J, Okano M, Katakura F, Kulski JK, Moritomo T, Shiina T. Large-Scale Polymorphism Analysis of Dog Leukocyte Antigen Class I and Class II Genes ( DLA-88, DLA-12/88L and DLA-DRB1) and Comparison of the Haplotype Diversity between Breeds in Japan. Cells 2023; 12:809. [PMID: 36899945 PMCID: PMC10001263 DOI: 10.3390/cells12050809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Polymorphisms of canine leukocyte antigen (DLA) class I (DLA-88 and DLA-12/88L) and class II (DLA-DRB1) genes are important for disease susceptibility studies, but information on the genetic diversity among dog breeds is still lacking. To better elucidate the polymorphism and genetic diversity between breeds, we genotyped DLA-88, DLA-12/88L, and DLA-DRB1 loci using 829 dogs of 59 breeds in Japan. Genotyping by Sanger sequencing identified 89, 43, and 61 alleles in DLA-88, DLA-12/88L, and DLA-DRB1 loci, respectively, and a total of 131 DLA-88-DLA-12/88L-DLA-DRB1 haplotypes (88-12/88L-DRB1) were detected more than once. Of the 829 dogs, 198 were homozygotes for one of the 52 different 88-12/88L-DRB1 haplotypes (homozygosity rate: 23.8%). Statistical modeling suggests that 90% of the DLA homozygotes or heterozygotes with one or other of the 52 different 88-12/88L-DRB1 haplotypes within somatic stem cell lines would benefit graft outcome after 88-12/88L-DRB1-matched transplantation. As previously reported for DLA class II haplotypes, the diversity of 88-12/88L-DRB1 haplotypes varied remarkably between breeds but was relatively conserved within most breeds. Therefore, the genetic characteristics of high DLA homozygosity rate and poor DLA diversity within a breed are useful for transplantation therapy, but they may affect biological fitness as homozygosity progresses.
Collapse
Affiliation(s)
- Jiro Miyamae
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari 794-8555, Japan
| | - Masaharu Okano
- Department of Legal Medicine, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Fumihiko Katakura
- Department of Veterinary Medicine, College of Bioresource Science, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - Jerzy K. Kulski
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1143, Japan
| | - Tadaaki Moritomo
- Department of Veterinary Medicine, College of Bioresource Science, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1143, Japan
| |
Collapse
|
4
|
Dearborn DC, Warren S, Hailer F. Meta-analysis of major histocompatibility complex (MHC) class IIA reveals polymorphism and positive selection in many vertebrate species. Mol Ecol 2022; 31:6390-6406. [PMID: 36208104 PMCID: PMC9729452 DOI: 10.1111/mec.16726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 01/13/2023]
Abstract
Pathogen-mediated selection and sexual selection are important drivers of evolution. Both processes are known to target genes of the major histocompatibility complex (MHC), a gene family encoding cell-surface proteins that display pathogen peptides to the immune system. The MHC is also a model for understanding processes such as gene duplication and trans-species allele sharing. The class II MHC protein is a heterodimer whose peptide-binding groove is encoded by an MHC-IIA gene and an MHC-IIB gene. However, our literature review found that class II MHC papers on infectious disease or sexual selection included IIA data only 18% and 9% of the time, respectively. To assess whether greater emphasis on MHC-IIA is warranted, we analysed MHC-IIA sequence data from 50 species of vertebrates (fish, amphibians, birds, mammals) to test for polymorphism and positive selection. We found that the number of MHC-IIA alleles within a species was often high, and covaried with sample size and number of MHC-IIA genes assayed. While MHC-IIA variability tended to be lower than that of MHC-IIB, the difference was only ~25%, with ~3 fewer IIA alleles than IIB. Furthermore, the unexpectedly high MHC-IIA variability showed clear signatures of positive selection in most species, and positive selection on MHC-IIA was stronger in fish than in other surveyed vertebrate groups. Our findings underscore that MHC-IIA can be an important target of selection. Future studies should therefore expand the characterization of MHC-IIA at both allelic and genomic scales, and incorporate MHC-IIA into models of fitness consequences of MHC variation.
Collapse
Affiliation(s)
- Donald C Dearborn
- Biology Department, Bates College, 44 Campus Ave, Lewiston, Maine, USA,Roux Institute, Northeastern University, Fore St, Portland, Maine, USA,Co-corresponding authors: and
| | - Sophie Warren
- Biology Department, Bates College, 44 Campus Ave, Lewiston, Maine, USA,Present address: Department of Health Policy, London School of Economics and Political Science, Houghton Street, London WC2A 2AE, UK
| | - Frank Hailer
- Organisms and Environment, School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK,Co-corresponding authors: and
| |
Collapse
|
5
|
Kloch A, Biedrzycka A, Szewczyk M, Nowak S, Niedźwiedzka N, Kłodawska M, Hájková A, Hulva P, Jędrzejewska B, Mysłajek R. High genetic diversity of immunity genes in an expanding population of a highly mobile carnivore, the grey wolf
Canis
lupus
, in Central Europe. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Agnieszka Kloch
- Department of Ecology, Institute of Functional Biology and Ecology, Faculty of Biology, Biological and Chemical Research Centre University of Warsaw Warszawa Poland
| | | | - Maciej Szewczyk
- Department of Vertebrate Ecology and Zoology Faculty of Biology University of Gdańsk Gdańsk Poland
| | - Sabina Nowak
- Association for Nature “Wolf” Twardorzeczka Poland
| | | | - Monika Kłodawska
- Department of Zoology Faculty of Science Charles University Prague Czech Republic
| | - Andrea Hájková
- State Nature Conservancy of the Slovak Republic Spišská Nová Ves Slovakia
| | - Pavel Hulva
- Department of Zoology Faculty of Science Charles University Prague Czech Republic
- Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czech Republic
| | | | - Robert Mysłajek
- Department of Ecology, Institute of Functional Biology and Ecology, Faculty of Biology, Biological and Chemical Research Centre University of Warsaw Warszawa Poland
| |
Collapse
|
6
|
Kang M, Ahn B, Youk S, Cho HS, Choi M, Hong K, Do JT, Song H, Jiang H, Kennedy LJ, Park C. High Allelic Diversity of Dog Leukocyte Antigen Class II in East Asian Dogs: Identification of New Alleles and Haplotypes. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09560-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Riddell P, Paris MCJ, Joonè CJ, Pageat P, Paris DBBP. Appeasing Pheromones for the Management of Stress and Aggression during Conservation of Wild Canids: Could the Solution Be Right under Our Nose? Animals (Basel) 2021; 11:ani11061574. [PMID: 34072227 PMCID: PMC8230031 DOI: 10.3390/ani11061574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Many canid species are declining globally. It is important to conserve these species that often serve as important predators within ecosystems. Continued human expansion and the resulting habitat fragmentation necessitate conservation interventions, such as translocation, artificial pack formation, and captive breeding programs. However, chronic stress often occurs during these actions, and can result in aggression, and the physiological suppression of immunity and reproduction. Limited options are currently available for stress and aggression management in wild canids. Pheromones provide a promising natural alternative for stress management; an appeasing pheromone has been identified for multiple domestic species and may reduce stress and aggression behaviours. Many pheromones are species-specific, and the appeasing pheromone has been found to have slight compositional changes across species. In this review, the benefits of a dog appeasing pheromone and the need to investigate species-specific derivatives to produce more pronounced and beneficial behavioural and physiological modulation in target species as a conservation tool are examined. Abstract Thirty-six species of canid exist globally, two are classified as critically endangered, three as endangered, and five as near threatened. Human expansion and the coinciding habitat fragmentation necessitate conservation interventions to mitigate concurrent population deterioration. The current conservation management of wild canids includes animal translocation and artificial pack formation. These actions often cause chronic stress, leading to increased aggression and the suppression of the immune and reproductive systems. Castration and pharmaceutical treatments are currently used to reduce stress and aggression in domestic and captive canids. The undesirable side effects make such treatments inadvisable during conservation management of wild canids. Pheromones are naturally occurring chemical messages that modulate behaviour between conspecifics; as such, they offer a natural alternative for behaviour modification. Animals are able to distinguish between pheromones of closely related species through small compositional differences but are more likely to have greater responses to pheromones from individuals of the same species. Appeasing pheromones have been found to reduce stress- and aggression-related behaviours in domestic species, including dogs. Preliminary evidence suggests that dog appeasing pheromones (DAP) may be effective in wild canids. However, the identification and testing of species-specific derivatives could produce more pronounced and beneficial behavioural and physiological changes in target species. In turn, this could provide a valuable tool to improve the conservation management of many endangered wild canids.
Collapse
Affiliation(s)
- Pia Riddell
- Gamete and Embryology (GAME) Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, James Cook Drive, Townsville, QLD 4811, Australia;
- Institute for Breeding Rare and Endangered African Mammals (IBREAM), 9 Ainslie Place, Edinburgh EH3 6AT SCT, UK;
- Centre for Tropical Environmental and Sustainability Science, James Cook University, James Cook Drive, Townsville, QLD 4811, Australia
| | - Monique C. J. Paris
- Institute for Breeding Rare and Endangered African Mammals (IBREAM), 9 Ainslie Place, Edinburgh EH3 6AT SCT, UK;
- Mammal Research Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Carolynne J. Joonè
- Discipline of Veterinary Science, College of Public Health, Medical and Veterinary Sciences, James Cook University, Solander Drive, Townsville, QLD 4811, Australia;
| | - Patrick Pageat
- Institut de Recherche en Sémiochemie et Ethologie Appliquée, 84400 Apt, France;
| | - Damien B. B. P. Paris
- Gamete and Embryology (GAME) Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, James Cook Drive, Townsville, QLD 4811, Australia;
- Institute for Breeding Rare and Endangered African Mammals (IBREAM), 9 Ainslie Place, Edinburgh EH3 6AT SCT, UK;
- Centre for Tropical Environmental and Sustainability Science, James Cook University, James Cook Drive, Townsville, QLD 4811, Australia
- Correspondence: ; Tel.: +61-7-4781-6006
| |
Collapse
|
8
|
Rocha RG, Magalhães V, López-Bao JV, van der Loo W, Llaneza L, Alvares F, Esteves PJ, Godinho R. Alternated selection mechanisms maintain adaptive diversity in different demographic scenarios of a large carnivore. BMC Evol Biol 2019; 19:90. [PMID: 30975084 PMCID: PMC6460805 DOI: 10.1186/s12862-019-1420-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/04/2019] [Indexed: 01/26/2023] Open
Abstract
Background Different population trajectories are expected to impact the signature of neutral and adaptive processes at multiple levels, challenging the assessment of the relative roles of different microevolutionary forces. Here, we integrate adaptive and neutral variability patterns to disentangle how adaptive diversity is driven under different demographic scenarios within the Iberian wolf (Canis lupus) range. We studied the persistent, the expanding and a small, isolated group within the Iberian wolf population, using 3 MHC class II genes (DRB1, DQA1, and DQB1), which diversity was compared with 39 microsatellite loci. Results Both the persistent and the expanding groups show evidence of balancing selection, revealed by a significant departure from neutrality at MHC loci, significant higher observed and expected heterozygosity and lower differentiation at MHC than at neutral loci, and signs of positive selection. However, despite exhibiting a significantly higher genetic diversity than the isolated group, the persistent group did not show significant excess of MHC heterozygotes. The expanding group, while showing a similar level of genetic diversity than the persistent group, displays by contrast a significant excess of MHC heterozygotes, which is compatible with the heterozygote advantage mechanism. Results are not clear regarding the role of drift and selection in the isolated group due to the small size of this population. Although diversity indices of MHC loci correspond to neutral expectations in the isolated group, accelerated MHC divergence, revealed by a higher differentiation at MHC than neutral loci, may indicate diversifying selection. Conclusion Different selective pressures were observed in the three different demographic scenarios, which are possibly driven by different selection mechanisms to maintain adaptive diversity. Electronic supplementary material The online version of this article (10.1186/s12862-019-1420-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rita G Rocha
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Vanessa Magalhães
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
| | - José V López-Bao
- Research Unit of Biodiversity (UO/CSIC/PA), University of Oviedo, 33600, Mieres, Spain
| | - Wessel van der Loo
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Luis Llaneza
- A.RE.NA, S.L. Asesores en Recursos Naturales S.L., 27003, Lugo, Spain
| | - Francisco Alvares
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Pedro J Esteves
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
| | - Raquel Godinho
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal. .,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.
| |
Collapse
|
9
|
Genetic diversity and population structure of African village dogs based on microsatellite and immunity-related molecular markers. PLoS One 2018; 13:e0199506. [PMID: 29940023 PMCID: PMC6016929 DOI: 10.1371/journal.pone.0199506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 06/10/2018] [Indexed: 11/19/2022] Open
Abstract
The village and street dogs represent a unique model of canine populations. In the absence of selective breeding and veterinary care, they are subject mostly to natural selection. Their analyses contribute to understanding general mechanisms governing the genetic diversity, evolution and adaptation. In this study, we analyzed the genetic diversity and population structure of African village dogs living in villages in three different geographical areas in Northern Kenya. Data obtained for neutral microsatellite molecular markers were compared with those computed for potentially non-neutral markers of candidate immunity-related genes. The neutral genetic diversity was similar to other comparable village dog populations studied so far. The overall genetic diversity in microsatellites was higher than the diversity of European pure breeds, but it was similar to the range of diversity observed in a group composed of many European breeds, indicating that the African population has maintained a large proportion of the genetic diversity of the canine species as a whole. Microsatellite marker diversity indicated that the entire population is subdivided into three genetically distinct, although closely related subpopulations. This genetical partitioning corresponded to their geographical separation and the observed gene flow well correlated with the communication patterns among the three localities. In contrast to neutral microsatellites, the genetic diversity in immunity-related candidate SNP markers was similar across all three subpopulations and to the European group. It seems that the genetic structure of this particular population of Kenyan village dogs is mostly determined by geographical and anthropogenic factors influencing the gene flow between various subpopulations rather than by biological factors, such as genetic contribution of original migrating populations and/or the pathogen-mediated selection. On the other hand, the study of oldest surviving dogs suggested a biological mechanism, i.e. a possible advantage of the overal heterozygosity marked by the the microsatellite loci analyzed.
Collapse
|
10
|
Substantial functional diversity accompanies limited major histocompatibility complex class II variability in golden jackal (Canis aureus): A comparison between two wild Canis species in Croatia. Mamm Biol 2017. [DOI: 10.1016/j.mambio.2016.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Niskanen AK, Kennedy LJ, Lohi H, Aspi J, Pyhäjärvi T. No evidence of prenatal diversifying selection at locus or supertype levels in the dog MHC class II loci. Canine Genet Epidemiol 2016; 3:9. [PMID: 27891241 PMCID: PMC5116190 DOI: 10.1186/s40575-016-0038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 10/02/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite decades of studying, the mechanisms maintaining high diversity in the genes of the Major Histocompatibility Complex (MHC) are still puzzling scientists. In addition to pathogen recognition and other functions, MHC molecules may act prenatally in mate choice and in maternal-foetal interactions. These interactions are potential selective mechanisms that increase genetic diversity in the MHC. During pregnancy, immune response has a dual role: the foetus represents foreign tissue compared to mother, but histo-incompatibility is required for successful pregnancy. We have studied the prenatal selection in MHC class II loci (DLA-DQA1, DLA-DQB1 and DLA-DRB1) in domestic dogs by comparing the observed and expected offspring genotype proportions in 110 dog families. Several potential selection targets were addressed, including the peptide-binding site, the MHC locus, three-locus haplotype and supertype levels. For the supertype analysis, the first canine supertype classification was created based on in silico analysis of peptide-binding amino-acid polymorphism. RESULTS In most loci and levels, no deviation from the expected genotype frequencies was observed. However, one peptide-binding site in DLA-DRB1 had an excess of heterozygotes among the offspring. In addition, if the father shared a DLA-DRB1 allele with the mother, that allele was inherited by the offspring more frequently than expected, suggesting the selective advantage of a histo-compatible foetus, in contrast to our expectations. CONCLUSIONS We conclude that there is some evidence of post-copulatory selection at nucleotide site level in the MHC loci of pet dogs. But due to no indication of selection at locus, three-locus, or supertype levels, we estimated that the prenatal selection coefficient is less than 0.3 in domestic dogs and very likely other factors are more important in maintaining the genetic diversity in MHC loci.
Collapse
Affiliation(s)
- Alina K Niskanen
- Department of Genetics and Physiology, University of Oulu, PO Box 3000, Oulu, FIN-90014 Finland ; Present address: Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NO -7491, Trondheim, Norway
| | - Lorna J Kennedy
- Centre for Integrated Genomic Medical Research, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT UK
| | - Hannes Lohi
- Department of Veterinary Biosciences, Research Programs Unit, Molecular Neurology, University of Helsinki and Folkhälsan Institute of Genetics, Biomedicum Helsinki, PO Box 63, FIN-00014 Helsinki, Finland
| | - Jouni Aspi
- Department of Genetics and Physiology, University of Oulu, PO Box 3000, Oulu, FIN-90014 Finland
| | - Tanja Pyhäjärvi
- Department of Genetics and Physiology, University of Oulu, PO Box 3000, Oulu, FIN-90014 Finland
| |
Collapse
|
12
|
Cairns KM, Wilton AN. New insights on the history of canids in Oceania based on mitochondrial and nuclear data. Genetica 2016; 144:553-565. [PMID: 27640201 DOI: 10.1007/s10709-016-9924-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/09/2016] [Indexed: 11/24/2022]
Abstract
How and when dingoes arrived in Oceania poses a fascinating question for scientists with interest in the historical movements of humans and dogs. The dingo holds a unique position as top terrestrial predator of Australia and exists in a wild state. In the first geographical survey of genetic diversity in the dingo using whole mitochondrial genomes, we analysed 16,428 bp in 25 individuals from five separate populations. We also investigated 13 nuclear loci to compare with the mitochondrial population history patterns. Phylogenetic analyses based upon mitochondrial DNA and nuclear DNA support the hypothesis that there are at least two distinct populations of dingo, one of which occurs in the northwest and the other in the southeast of the continent. Conservative molecular dating based upon mitochondrial DNA suggest that the lineages split approximately 8300 years before present, likely outside Australia but within Oceania. The close relationship between dingoes and New Guinea Singing Dogs suggests that plausibly dingoes spread into Australia via the land bridge between Papua New Guinea and Australia although seafaring introductions cannot be rejected. The geographical distribution of these divergent lineages suggests there were multiple independent dingo immigrations. Importantly, the observation of multiple dingo populations suggests the need for revision of existing conservation and management programs that treat dingoes as a single homogeneous population.
Collapse
Affiliation(s)
- Kylie M Cairns
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia.
| | - Alan N Wilton
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
13
|
Schweizer RM, Robinson J, Harrigan R, Silva P, Galverni M, Musiani M, Green RE, Novembre J, Wayne RK. Targeted capture and resequencing of 1040 genes reveal environmentally driven functional variation in grey wolves. Mol Ecol 2015; 25:357-79. [DOI: 10.1111/mec.13467] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Rena M. Schweizer
- Department of Ecology and Evolutionary Biology University of California, Los Angeles 610 Charles E Young Dr East Los Angeles CA 90095 USA
| | - Jacqueline Robinson
- Department of Ecology and Evolutionary Biology University of California, Los Angeles 610 Charles E Young Dr East Los Angeles CA 90095 USA
| | - Ryan Harrigan
- Center for Tropical Research Institute of the Environment and Sustainability University of California 619 Charles E. Young Drive East Los Angeles CA 90095 USA
| | - Pedro Silva
- CIBIO/InBio – Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Campus Agrário de Vairão 4485‐661 Vairão Portugal
- Departamento de Biologia Faculdade de Ciências Universidade do Porto Rua do Campo Alegre s/n. 4169‐007 Porto Portugal
| | - Marco Galverni
- Laboratory of Genetics ISPRA (Istituto Superiore per la Protezione e Ricerca Ambientale) Via Cà Fornacetta 9 40064 Ozzano dell'Emilia BO Italy
| | - Marco Musiani
- Faculties of Environmental Design and Veterinary Medicine (Joint Appointment) EVDS University of Calgary 2500 University Dr NW Calgary Alberta Canada T2N 1N4
| | - Richard E. Green
- Department of Biomolecular Engineering University of California Santa Cruz CA 95060 USA
| | - John Novembre
- Department of Human Genetics University of Chicago 920 E. 58th Street Chicago IL 60637 USA
| | - Robert K. Wayne
- Department of Ecology and Evolutionary Biology University of California, Los Angeles 610 Charles E Young Dr East Los Angeles CA 90095 USA
| |
Collapse
|
14
|
Galov A, Fabbri E, Caniglia R, Arbanasić H, Lapalombella S, Florijančić T, Bošković I, Galaverni M, Randi E. First evidence of hybridization between golden jackal (Canis aureus) and domestic dog (Canis familiaris) as revealed by genetic markers. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150450. [PMID: 27019731 PMCID: PMC4807452 DOI: 10.1098/rsos.150450] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/03/2015] [Indexed: 05/22/2023]
Abstract
Interspecific hybridization is relatively frequent in nature and numerous cases of hybridization between wild canids and domestic dogs have been recorded. However, hybrids between golden jackals (Canis aureus) and other canids have not been described before. In this study, we combined the use of biparental (15 autosomal microsatellites and three major histocompatibility complex (MHC) loci) and uniparental (mtDNA control region and a Y-linked Zfy intron) genetic markers to assess the admixed origin of three wild-living canids showing anomalous phenotypic traits. Results indicated that these canids were hybrids between golden jackals and domestic dogs. One of them was a backcross to jackal and another one was a backcross to dog, confirming that golden jackal-domestic dog hybrids are fertile. The uniparental markers showed that the direction of hybridization, namely females of the wild species hybridizing with male domestic dogs, was common to most cases of canid hybridization. A melanistic 3bp-deletion at the K locus (β-defensin CDB103 gene), that was absent in reference golden jackal samples, but was found in a backcross to jackal with anomalous black coat, suggested its introgression from dogs via hybridization. Moreover, we demonstrated that MHC sequences, although rarely used as markers of hybridization, can be also suitable for the identification of hybrids, as long as haplotypes are exclusive for the parental species.
Collapse
Affiliation(s)
- Ana Galov
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb 10000, Croatia
- Author for correspondence: Ana Galov e-mail:
| | - Elena Fabbri
- Laboratorio di Genetica, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano dell’Emilia (BO) 40064, Italy
| | - Romolo Caniglia
- Laboratorio di Genetica, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano dell’Emilia (BO) 40064, Italy
| | - Haidi Arbanasić
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb 10000, Croatia
| | - Silvana Lapalombella
- Department of Biological, Geological and Environmental Sciences University of Bologna, Via Selmi 3, Bologna 40126, Italy
| | - Tihomir Florijančić
- Department for Hunting, Fishery and Beekeeping, Faculty of Agriculture in Osijek, Josip Juraj Strossmayer University of Osijek, Kralja Petra Svačića 1d, Osijek 31000, Croatia
| | - Ivica Bošković
- Department for Hunting, Fishery and Beekeeping, Faculty of Agriculture in Osijek, Josip Juraj Strossmayer University of Osijek, Kralja Petra Svačića 1d, Osijek 31000, Croatia
| | - Marco Galaverni
- Laboratorio di Genetica, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano dell’Emilia (BO) 40064, Italy
| | - Ettore Randi
- Laboratorio di Genetica, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano dell’Emilia (BO) 40064, Italy
- Department 18/Section of Environmental Engineering, Aalborg University, Sohngårdsholmsvej 57, Aalborg 9000, Denmark
| |
Collapse
|
15
|
Galaverni M, Caniglia R, Milanesi P, Lapalombella S, Fabbri E, Randi E. Choosy Wolves? Heterozygote Advantage But No Evidence of MHC-Based Disassortative Mating. J Hered 2015; 107:134-42. [PMID: 26610365 DOI: 10.1093/jhered/esv090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/27/2015] [Indexed: 11/13/2022] Open
Abstract
A variety of nonrandom mate choice strategies, including disassortative mating, are used by vertebrate species to avoid inbreeding, maintain heterozygosity and increase fitness. Disassortative mating may be mediated by the major histocompatibility complex (MHC), an important gene cluster controlling immune responses to pathogens. We investigated the patterns of mate choice in 26 wild-living breeding pairs of gray wolf (Canis lupus) that were identified through noninvasive genetic methods and genotyped at 3 MHC class II and 12 autosomal microsatellite (STR) loci. We tested for deviations from random mating and evaluated the covariance of genetic variables at functional and STR markers with fitness proxies deduced from pedigree reconstructions. Results did not show evidences of MHC-based disassortative mating. Rather we found a higher peptide similarity between mates at MHC loci as compared with random expectations. Fitness values were positively correlated with heterozygosity of the breeders at both MHC and STR loci, whereas they decreased with relatedness at STRs. These findings may indicate fitness advantages for breeders that, while avoiding highly related mates, are more similar at the MHC and have high levels of heterozygosity overall. Such a pattern of MHC-assortative mating may reflect local coadaptation of the breeders, while a reduction in genetic diversity may be balanced by heterozygote advantages.
Collapse
Affiliation(s)
- Marco Galaverni
- From the Laboratorio di genetica, ISPRA, via Cà Fornacetta 9, 40064 Ozzano dell'Emilia (Bologna), Italy (Galaverni, Caniglia, Milanesi, Fabbri, and Randi); Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Via Selmi 3, 40126 Bologna, Italy (Lapalombella); and Department 18/Section of Environmental Engineering, Aalborg University, 9220 Aalborg, Denmark (Randi).
| | - Romolo Caniglia
- From the Laboratorio di genetica, ISPRA, via Cà Fornacetta 9, 40064 Ozzano dell'Emilia (Bologna), Italy (Galaverni, Caniglia, Milanesi, Fabbri, and Randi); Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Via Selmi 3, 40126 Bologna, Italy (Lapalombella); and Department 18/Section of Environmental Engineering, Aalborg University, 9220 Aalborg, Denmark (Randi)
| | - Pietro Milanesi
- From the Laboratorio di genetica, ISPRA, via Cà Fornacetta 9, 40064 Ozzano dell'Emilia (Bologna), Italy (Galaverni, Caniglia, Milanesi, Fabbri, and Randi); Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Via Selmi 3, 40126 Bologna, Italy (Lapalombella); and Department 18/Section of Environmental Engineering, Aalborg University, 9220 Aalborg, Denmark (Randi)
| | - Silvana Lapalombella
- From the Laboratorio di genetica, ISPRA, via Cà Fornacetta 9, 40064 Ozzano dell'Emilia (Bologna), Italy (Galaverni, Caniglia, Milanesi, Fabbri, and Randi); Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Via Selmi 3, 40126 Bologna, Italy (Lapalombella); and Department 18/Section of Environmental Engineering, Aalborg University, 9220 Aalborg, Denmark (Randi)
| | - Elena Fabbri
- From the Laboratorio di genetica, ISPRA, via Cà Fornacetta 9, 40064 Ozzano dell'Emilia (Bologna), Italy (Galaverni, Caniglia, Milanesi, Fabbri, and Randi); Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Via Selmi 3, 40126 Bologna, Italy (Lapalombella); and Department 18/Section of Environmental Engineering, Aalborg University, 9220 Aalborg, Denmark (Randi)
| | - Ettore Randi
- From the Laboratorio di genetica, ISPRA, via Cà Fornacetta 9, 40064 Ozzano dell'Emilia (Bologna), Italy (Galaverni, Caniglia, Milanesi, Fabbri, and Randi); Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Via Selmi 3, 40126 Bologna, Italy (Lapalombella); and Department 18/Section of Environmental Engineering, Aalborg University, 9220 Aalborg, Denmark (Randi)
| |
Collapse
|
16
|
Niskanen AK, Kennedy LJ, Ruokonen M, Kojola I, Lohi H, Isomursu M, Jansson E, Pyhäjärvi T, Aspi J. Balancing selection and heterozygote advantage in major histocompatibility complex loci of the bottlenecked Finnish wolf population. Mol Ecol 2014; 23:875-89. [DOI: 10.1111/mec.12647] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 02/03/2023]
Affiliation(s)
- A. K. Niskanen
- Department of Biology; University of Oulu; PO Box 3000 FI-90014 Oulu Finland
| | - L. J. Kennedy
- Centre for Integrated Genomic Medical Research; University of Manchester; Stopford Building Oxford Road Manchester M13 9PT UK
| | - M. Ruokonen
- Department of Biology; University of Oulu; PO Box 3000 FI-90014 Oulu Finland
| | - I. Kojola
- Finnish Game and Fisheries Research Institute; Paavo Havaksen tie 3 PO Box 413 FI-90014 Oulu Finland
| | - H. Lohi
- Department of Veterinary Biosciences; Research Programs Unit; Molecular Neurology; Folkhälsan Institute of Genetics; Biomedicum Helsinki; University of Helsinki; PO Box 63 FI-00014 Helsinki Finland
| | - M. Isomursu
- Fish and Wildlife Health Research Unit; Finnish Food Safety Authority Evira; PO Box 517 FI-90101 Oulu Finland
| | - E. Jansson
- Department of Biology; University of Oulu; PO Box 3000 FI-90014 Oulu Finland
| | - T. Pyhäjärvi
- Department of Biology; University of Oulu; PO Box 3000 FI-90014 Oulu Finland
| | - J. Aspi
- Department of Biology; University of Oulu; PO Box 3000 FI-90014 Oulu Finland
| |
Collapse
|
17
|
Galaverni M, Caniglia R, Fabbri E, Lapalombella S, Randi E. MHC variability in an isolated wolf population in Italy. J Hered 2013; 104:601-12. [PMID: 23885092 DOI: 10.1093/jhered/est045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Small, isolated populations may experience increased extinction risk due to reduced genetic variability at important functional genes, thus decreasing the population's adaptive potential. The major histocompatibility complex (MHC), a key immunological gene cluster, usually shows high variability maintained by positive or balancing selection in response to challenges by pathogens. Here we investigated for the first time, the variability of 3 MHC class II genes (DRB1, DQA1, and DQB1) in 94 samples collected from Italian wolves. The Italian wolf population has been long isolated south of the Alps and is presently recovering from a recent bottleneck that decreased the population to less than 100 individuals. Despite the bottleneck, Italian wolves show remarkable MHC variability with 6-9 alleles per locus, including 2 recently described alleles at DRB1. MHC sequences show signatures of historical selective pressures (high d N/d S ratio, ω > 1.74) but no evidence of ongoing selection. Variation at the MHC genes and 12 background microsatellite loci were not apparently affected by the recent bottleneck. Although MHC alleles of domestic dog origin were detected in 8 genetically admixed individuals, these alleles were rare or absent in nonadmixed wolves. Thus, despite known hybridization events between domestic dogs and Italian wolves, the Italian wolf population does not appear affected by deep introgression of domestic dog MHC alleles.
Collapse
Affiliation(s)
- Marco Galaverni
- Laboratorio di Genetica, Istituto Superiore per la Protezione e la Ricerca Ambientale, Ozzano dell’Emilia, Bologna, Italy.
| | | | | | | | | |
Collapse
|
18
|
Marsden CD, Verberkmoes H, Thomas R, Wayne RK, Mable BK. Pedigrees, MHC and microsatellites: an integrated approach for genetic management of captive African wild dogs (Lycaon pictus). CONSERV GENET 2013. [DOI: 10.1007/s10592-012-0440-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Arbanasić H, Huber Đ, Kusak J, Gomerčić T, Hrenović J, Galov A. Extensive polymorphism and evidence of selection pressure on major histocompatibility complex DLA-DRB1, DQA1 and DQB1 class II genes in Croatian grey wolves. ACTA ACUST UNITED AC 2012; 81:19-27. [PMID: 23134500 DOI: 10.1111/tan.12029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 10/04/2012] [Accepted: 10/15/2012] [Indexed: 11/29/2022]
Abstract
The genes of the major histocompatibility complex (MHC) are a key component of the mammalian immune system and have become important molecular markers for measuring fitness-related genetic variation in wildlife populations. Because of human persecution and habitat fragmentation, the grey wolf has become extinct from a large part of Western and Central Europe, and remaining populations have become isolated. In Croatia, the grey wolf population, part of the Dinaric-Balkan population, shrank nearly to extinction during the 20th century, and is now legally protected. Using the cloning-sequencing method, we investigated the genetic diversity and evolutionary history of exon 2 of MHC class II DLA-DRB1, DQA1 and DQB1 genes in 77 individuals. We identified 13 DRB1, 7 DQA1 and 11 DQB1 highly divergent alleles, and 13 DLA-DRB1/DQA1/DQB1 haplotypes. Selection analysis comparing the relative rates of non-synonymous to synonymous mutations (d(N)/d(S)) showed evidence of positive selection pressure acting on all three loci. Trans-species polymorphism was found, suggesting the existence of balancing selection. Evolutionary codon models detected considerable difference between alpha and beta chain gene selection patterns: DRB1 and DQB1 appeared to be under stronger selection pressure, while DQA1 showed signs of moderate selection. Our results suggest that, despite the recent contraction of the Croatian wolf population, genetic variability in selectively maintained immune genes has been preserved.
Collapse
Affiliation(s)
- H Arbanasić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
20
|
MHC variability supports dog domestication from a large number of wolves: high diversity in Asia. Heredity (Edinb) 2012; 110:80-5. [PMID: 23073392 DOI: 10.1038/hdy.2012.67] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The process of dog domestication is still somewhat unresolved. Earlier studies indicate that domestic dogs from all over the world have a common origin in Asia. So far, major histocompatibility complex (MHC) diversity has not been studied in detail in Asian dogs, although high levels of genetic diversity are expected at the domestication locality. We sequenced the second exon of the canine MHC gene DLA-DRB1 from 128 Asian dogs and compared our data with a previously published large data set of MHC alleles, mostly from European dogs. Our results show that Asian dogs have a higher MHC diversity than European dogs. We also estimated that there is only a small probability that new alleles have arisen by mutation since domestication. Based on the assumption that all of the currently known 102 DLA-DRB1 alleles come from the founding wolf population, we simulated the number of founding wolf individuals. Our simulations indicate an effective population size of at least 500 founding wolves, suggesting that the founding wolf population was large or that backcrossing has taken place.
Collapse
|
21
|
Abstract
Cancer is generally defined as uncontrollable growth of cells caused by genetic aberrations and/or environmental factors. Yet contagious cancers also occur. The recent emergence of a contagious cancer in Tasmanian devils has reignited interest in transmissible cancers. Two naturally occurring transmissible cancers are known: devil facial tumour disease and canine transmissible venereal tumour. Both cancers evolved once and have then been transmitted from one individual to another as clonal cell lines. The dog cancer is ancient; having evolved more than 6,000 years ago, while the devil disease was first seen in 1996. In this review I will compare and contrast the two diseases focusing on the life histories of the clonal cell lines, their evolutionary trajectories and the mechanisms by which they have achieved immune tolerance. A greater understanding of these contagious cancers will provide unique insights into the role of the immune system in shaping tumour evolution and may uncover novel approaches for treating human cancer.
Collapse
Affiliation(s)
- Katherine Belov
- Faculty of Veterinary Science, University of Sydney, Sydney, Australia.
| |
Collapse
|
22
|
Ujvari B, Belov K. Major Histocompatibility Complex (MHC) markers in conservation biology. Int J Mol Sci 2011; 12:5168-86. [PMID: 21954351 PMCID: PMC3179158 DOI: 10.3390/ijms12085168] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/27/2011] [Accepted: 08/05/2011] [Indexed: 12/28/2022] Open
Abstract
Human impacts through habitat destruction, introduction of invasive species and climate change are increasing the number of species threatened with extinction. Decreases in population size simultaneously lead to reductions in genetic diversity, ultimately reducing the ability of populations to adapt to a changing environment. In this way, loss of genetic polymorphism is linked with extinction risk. Recent advances in sequencing technologies mean that obtaining measures of genetic diversity at functionally important genes is within reach for conservation programs. A key region of the genome that should be targeted for population genetic studies is the Major Histocompatibility Complex (MHC). MHC genes, found in all jawed vertebrates, are the most polymorphic genes in vertebrate genomes. They play key roles in immune function via immune-recognition and -surveillance and host-parasite interaction. Therefore, measuring levels of polymorphism at these genes can provide indirect measures of the immunological fitness of populations. The MHC has also been linked with mate-choice and pregnancy outcomes and has application for improving mating success in captive breeding programs. The recent discovery that genetic diversity at MHC genes may protect against the spread of contagious cancers provides an added impetus for managing and protecting MHC diversity in wild populations. Here we review the field and focus on the successful applications of MHC-typing for conservation management. We emphasize the importance of using MHC markers when planning and executing wildlife rescue and conservation programs but stress that this should not be done to the detriment of genome-wide diversity.
Collapse
Affiliation(s)
- Beata Ujvari
- Faculty of Veterinary Science, University of Sydney, RMC Gunn Bldg, Sydney, NSW 2006, Australia; E-Mail:
| | - Katherine Belov
- Faculty of Veterinary Science, University of Sydney, RMC Gunn Bldg, Sydney, NSW 2006, Australia; E-Mail:
| |
Collapse
|
23
|
Kennedy LJ, Randall DA, Knobel D, Brown JJ, Fooks AR, Argaw K, Shiferaw F, Ollier WER, Sillero-Zubiri C, Macdonald DW, Laurenson MK. Major histocompatibility complex diversity in the endangered Ethiopian wolf (Canis simensis). ACTA ACUST UNITED AC 2011; 77:118-25. [PMID: 21214524 DOI: 10.1111/j.1399-0039.2010.01591.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The major histocompatibility complex (MHC) influences immune response to infection and vaccination. In most species, MHC genes are highly polymorphic, but few wild canid populations have been investigated. In Ethiopian wolves, we identified four DLA (dog leucocyte antigen)-DRB1, two DLA-DQA1 and five DQB1 alleles. Ethiopian wolves, the world's rarest canids with fewer than 500 animals worldwide, are further endangered and threatened by rabies. Major rabies outbreaks in the Bale Mountains of southern Ethiopia (where over half of the Ethiopian wolf population is located) have killed over 75% of wolves in the affected sub-populations. In 2004, following a rabies outbreak, 77 wolves were vaccinated, and 19 were subsequently recaptured to monitor the effectiveness of the intervention. Pre- and post-vaccination rabies antibody titres were available for 18 animals, and all of the animals sero-converted after vaccination. We compared the haplotype frequencies of this group of 18 with the post-vaccination antibody titre, and showed that one haplotype was associated with a lower response (uncorrected P < 0.03). In general, Ethiopian wolves probably have an adequate amount of MHC variation to ensure the survival of the species. However, we sampled only the largest Ethiopian wolf population in Bale, and did not take the smaller populations further north into consideration.
Collapse
Affiliation(s)
- L J Kennedy
- Centre for Integrated Genomic Medical Research, University of Manchester, Manchester, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Castro-Prieto A, Wachter B, Sommer S. Cheetah paradigm revisited: MHC diversity in the world's largest free-ranging population. Mol Biol Evol 2011; 28:1455-68. [PMID: 21183613 PMCID: PMC7187558 DOI: 10.1093/molbev/msq330] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
For more than two decades, the cheetah (Acinonyx jubatus) has been considered a paradigm of disease vulnerability associated with low genetic diversity, particularly at the immune genes of the major histocompatibility complex (MHC). Cheetahs have been used as a classic example in numerous conservation genetics textbooks as well as in many related scientific publications. However, earlier studies used methods with low resolution to quantify MHC diversity and/or small sample sizes. Furthermore, high disease susceptibility was reported only for captive cheetahs, whereas free-ranging cheetahs show no signs of infectious diseases and a good general health status. We examined whether the diversity at MHC class I and class II-DRB loci in 149 Namibian cheetahs was higher than previously reported using single-strand conformation polymorphism analysis, cloning, and sequencing. MHC genes were examined at the genomic and transcriptomic levels. We detected ten MHC class I and four class II-DRB alleles, of which nine MHC class I and all class II-DRB alleles were expressed. Phylogenetic analyses and individual genotypes suggested that the alleles belong to four MHC class I and three class II-DRB putative loci. Evidence of positive selection was detected in both MHC loci. Our study indicated that the low number of MHC class I alleles previously observed in cheetahs was due to a smaller sample size examined. On the other hand, the low number of MHC class II-DRB alleles previously observed in cheetahs was further confirmed. Compared with other mammalian species including felids, cheetahs showed low levels of MHC diversity, but this does not seem to influence the immunocompetence of free-ranging cheetahs in Namibia and contradicts the previous conclusion that the cheetah is a paradigm species of disease vulnerability.
Collapse
Affiliation(s)
| | - Bettina Wachter
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Simone Sommer
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| |
Collapse
|
25
|
Ke X, Kennedy LJ, Short AD, Seppälä EH, Barnes A, Clements DN, Wood SH, Carter SD, Happ GM, Lohi H, Ollier WER. Assessment of the functionality of genome-wide canine SNP arrays and implications for canine disease association studies. Anim Genet 2010; 42:181-90. [DOI: 10.1111/j.1365-2052.2010.02132.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
26
|
Kennedy LJ, Modrell A, Groves P, Wei Z, Single RM, Happ GM. Genetic diversity of the major histocompatibility complex class II in Alaskan caribou herds. Int J Immunogenet 2010; 38:109-19. [PMID: 21054806 DOI: 10.1111/j.1744-313x.2010.00973.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have sampled five different herds of caribou in Alaska to ascertain their major histocompatibility complex (MHC) class II diversity, and to assess whether the herds were significantly different in their MHC class II allele profiles. We complemented the MHC results with data from nine neutral microsatellite markers. The results indicate that while the microsatellites are diverse, there are no significant differences between the herds. However, for the MHC, we have shown that there is diversity at three of the four loci studied, the different herds have significantly different MHC class II allele profiles. It is also clear that although some of the herds have overlapping ranges, they are still different for their MHC class II alleles.
Collapse
Affiliation(s)
- L J Kennedy
- Centre for Integrated Genomic Medical Research, University of Manchester, Manchester, UK.
| | | | | | | | | | | |
Collapse
|
27
|
Belov K. The role of the Major Histocompatibility Complex in the spread of contagious cancers. Mamm Genome 2010; 22:83-90. [DOI: 10.1007/s00335-010-9294-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 10/05/2010] [Indexed: 02/08/2023]
|
28
|
D'Alessandro DA, Kajstura J, Hosoda T, Gatti A, Bello R, Mosna F, Bardelli S, Zheng H, D'Amario D, Padin-Iruegas ME, Carvalho AB, Rota M, Zembala MO, Stern D, Rimoldi O, Urbanek K, Michler RE, Leri A, Anversa P. Progenitor cells from the explanted heart generate immunocompatible myocardium within the transplanted donor heart. Circ Res 2009; 105:1128-40. [PMID: 19815820 DOI: 10.1161/circresaha.109.207266] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Chronic rejection, accelerated coronary atherosclerosis, myocardial infarction, and ischemic heart failure determine the unfavorable evolution of the transplanted heart in humans. OBJECTIVE Here we tested whether the pathological manifestations of the transplanted heart can be corrected partly by a strategy that implements the use of cardiac progenitor cells from the recipient to repopulate the donor heart with immunocompatible cardiomyocytes and coronary vessels. METHODS AND RESULTS A large number of cardiomyocytes and coronary vessels were created in a rather short period of time from the delivery, engraftment, and differentiation of cardiac progenitor cells from the recipient. A proportion of newly formed cardiomyocytes acquired adult characteristics and was integrated structurally and functionally within the transplant. Similarly, the regenerated arteries, arterioles, and capillaries were operative and contributed to the oxygenation of the chimeric myocardium. Attenuation in the extent of acute damage by repopulating cardiomyocytes and vessels decreased significantly the magnitude of myocardial scarring preserving partly the integrity of the donor heart. CONCLUSIONS Our data suggest that tissue regeneration by differentiation of recipient cardiac progenitor cells restored a significant portion of the rejected donor myocardium. Ultimately, immunosuppressive therapy may be only partially required improving quality of life and lifespan of patients with cardiac transplantation.
Collapse
Affiliation(s)
- David A D'Alessandro
- Department of Cardiothoracic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Polymorphism and selection in the major histocompatibility complex DRA and DQA genes in the family Equidae. Immunogenetics 2009; 61:513-27. [PMID: 19557406 DOI: 10.1007/s00251-009-0380-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 06/05/2009] [Indexed: 12/24/2022]
Abstract
The major histocompatibility complex genes coding for antigen binding and presenting molecules are the most polymorphic genes in the vertebrate genome. We studied the DRA and DQA gene polymorphism of the family Equidae. In addition to 11 previously reported DRA and 24 DQA alleles, six new DRA sequences and 13 new DQA alleles were identified in the genus Equus. Phylogenetic analysis of both DRA and DQA sequences provided evidence for trans-species polymorphism in the family Equidae. The phylogenetic trees differed from species relationships defined by standard taxonomy of Equidae and from trees based on mitochondrial or neutral gene sequence data. Analysis of selection showed differences between the less variable DRA and more variable DQA genes. DRA alleles were more often shared by more species. The DQA sequences analysed showed strong amongst-species positive selection; the selected amino acid positions mostly corresponded to selected positions in rodent and human DQA genes.
Collapse
|
30
|
Marsden CD, Mable BK, Woodroffe R, Rasmussen GSA, Cleaveland S, McNutt JW, Emmanuel M, Thomas R, Kennedy LJ. Highly Endangered African Wild Dogs (Lycaon pictus) Lack Variation at the Major Histocompatibility Complex. J Hered 2009. [DOI: 10.1093/jhered/esp031] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
31
|
Kennedy LJ, Brown JJ, Barnes A, Ollier WER, Knyazev S. Major histocompatibility complex typing of dogs from Russia shows further dog leukocyte antigen diversity. TISSUE ANTIGENS 2007; 71:151-6. [PMID: 18005093 DOI: 10.1111/j.1399-0039.2007.00965.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Blood samples from 85 Russian dogs and wolves were collected as dried blood spots on paper and transported to the UK by mail. We obtained partial or complete three-locus canine major histocompatibility complex [dog leukocyte antigen (DLA)] class II haplotypes on 81 of these samples. Six new alleles were identified: three DLA-DRB1 and three DLA-DQB1. These alleles occurred in haplotypic combinations not previously seen in other European dogs. One haplotype appeared to lack a DQB1 allele. Two of the new haplotypes segregated through a family of dogs that was investigated.
Collapse
Affiliation(s)
- L J Kennedy
- Centre for Integrated Genomic Medical Research, University of Manchester, Manchester, UK.
| | | | | | | | | |
Collapse
|
32
|
|