1
|
Tiozon RJN, Zhang C, Kim SR, Liu Q, Fernie AR, Sreenivasulu N. Unlocking the potential of wild rice to bring missing nutrition to elite grains. PLANT COMMUNICATIONS 2025:101344. [PMID: 40269502 DOI: 10.1016/j.xplc.2025.101344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/15/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
The domestication and artificial selection of rice involved profound genetic changes that rendered wild rice more suitable for cultivation and consumption. As a result, rice has been extensively used as a caloric source to address hunger without sufficiently considering its total nutritional value. In this review, we highlight how domestication has altered starch quality and other nutritional traits in rice, including flavonoid, protein, and lipid content, as well as digestibility and texture. Precise genetic alterations through transgenic technologies hold significant promise for the reintroduction of key nutrient biosynthesis genes that have been lost in cultivated rice. Although there is currently little concrete evidence that genome editing has improved wild rice, the de novo domestication of wild rice enables the retention of its multi-nutritional properties while enhancing its agronomic performance and grain quality. We propose that the use of accelerated breeding techniques to introgress beneficial nutritional alleles from wild rice into elite pools could advance efforts to use wild rice to improve human health.
Collapse
Affiliation(s)
- Rhowell Jr N Tiozon
- Consumer-driven Grain Quality and Nutrition, Rice Breeding and Innovation Department, International Rice Research Institute, Los Baños 4030, Philippines; Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Changquan Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Sung-Ryul Kim
- Consumer-driven Grain Quality and Nutrition, Rice Breeding and Innovation Department, International Rice Research Institute, Los Baños 4030, Philippines
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Nese Sreenivasulu
- Consumer-driven Grain Quality and Nutrition, Rice Breeding and Innovation Department, International Rice Research Institute, Los Baños 4030, Philippines.
| |
Collapse
|
2
|
Xu G, Zhang X, Chen W, Zhang R, Li Z, Wen W, Warburton ML, Li J, Li H, Yang X. Population genomics of Zea species identifies selection signatures during maize domestication and adaptation. BMC PLANT BIOLOGY 2022; 22:72. [PMID: 35180846 PMCID: PMC8855575 DOI: 10.1186/s12870-022-03427-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/05/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND Maize (Zea mays L. ssp. mays) was domesticated from teosinte (Zea mays ssp. parviglumis) about 9000 years ago in southwestern Mexico and adapted to a range of environments worldwide. Researchers have depicted the maize domestication and adaptation processes over the past two decades, but efforts have been limited either in sample size or genetic diversity. To better understand these processes, we conducted a genome-wide survey of 982 maize inbred lines and 190 teosinte accessions using over 40,000 single-nucleotide polymorphism markers. RESULTS Population structure, principal component analysis, and phylogenetic trees all confirmed the evolutionary relationship between maize and teosinte, and determined the evolutionary lineage of all species within teosinte. Shared haplotype analysis showed similar levels of ancestral alleles from Zea mays ssp. parviglumis and Zea mays ssp. mexicana in maize. Scans for selection signatures identified 394 domestication sweeps by comparing wild and cultivated maize and 360 adaptation sweeps by comparing tropical and temperate maize. Permutation tests revealed that the public association signals for flowering time were highly enriched in the domestication and adaptation sweeps. Genome-wide association study identified 125 loci significantly associated with flowering-time traits, ten of which identified candidate genes that have undergone selection during maize adaptation. CONCLUSIONS In this study, we characterized the history of maize domestication and adaptation at the population genomic level and identified hundreds of domestication and adaptation sweeps. This study extends the molecular mechanism of maize domestication and adaptation, and provides resources for basic research and genetic improvement in maize.
Collapse
Affiliation(s)
- Gen Xu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, China Agricultural University, Beijing, 100193, China
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Xuan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, China Agricultural University, Beijing, 100193, China
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Wenkang Chen
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, China Agricultural University, Beijing, 100193, China
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Renyu Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, China Agricultural University, Beijing, 100193, China
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhi Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, China Agricultural University, Beijing, 100193, China
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiwei Wen
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Marilyn L Warburton
- United States of Department of Agriculture, Agricultural Research Service, Corn Host Plant Resistance Research Unit, Box 9555, Mississippi, MS, 39762, USA
| | - Jiansheng Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, China Agricultural University, Beijing, 100193, China
| | - Huihui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiaohong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, China Agricultural University, Beijing, 100193, China.
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Chen Q, Yang CJ, York AM, Xue W, Daskalska LL, DeValk CA, Krueger KW, Lawton SB, Spiegelberg BG, Schnell JM, Neumeyer MA, Perry JS, Peterson AC, Kim B, Bergstrom L, Yang L, Barber IC, Tian F, Doebley JF. TeoNAM: A Nested Association Mapping Population for Domestication and Agronomic Trait Analysis in Maize. Genetics 2019; 213:1065-1078. [PMID: 31481533 PMCID: PMC6827374 DOI: 10.1534/genetics.119.302594] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/30/2019] [Indexed: 12/21/2022] Open
Abstract
Recombinant inbred lines (RILs) are an important resource for mapping genes controlling complex traits in many species. While RIL populations have been developed for maize, a maize RIL population with multiple teosinte inbred lines as parents has been lacking. Here, we report a teosinte nested association mapping (TeoNAM) population, derived from crossing five teosinte inbreds to the maize inbred line W22. The resulting 1257 BC1S4 RILs were genotyped with 51,544 SNPs, providing a high-density genetic map with a length of 1540 cM. On average, each RIL is 15% homozygous teosinte and 8% heterozygous. We performed joint linkage mapping (JLM) and a genome-wide association study (GWAS) for 22 domestication and agronomic traits. A total of 255 QTL from JLM were identified, with many of these mapping near known genes or novel candidate genes. TeoNAM is a useful resource for QTL mapping for the discovery of novel allelic variation from teosinte. TeoNAM provides the first report that PROSTRATE GROWTH1, a rice domestication gene, is also a QTL associated with tillering in teosinte and maize. We detected multiple QTL for flowering time and other traits for which the teosinte allele contributes to a more maize-like phenotype. Such QTL could be valuable in maize improvement.
Collapse
Affiliation(s)
- Qiuyue Chen
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
- National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chin Jian Yang
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Alessandra M York
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Wei Xue
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Lora L Daskalska
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Craig A DeValk
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Kyle W Krueger
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Samuel B Lawton
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | | | - Jack M Schnell
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Michael A Neumeyer
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Joseph S Perry
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Aria C Peterson
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Brandon Kim
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Laura Bergstrom
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Liyan Yang
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
- School of Life Science, Shanxi Normal University, Linfen, Shanxi 041004, China
| | - Isaac C Barber
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Feng Tian
- National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - John F Doebley
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| |
Collapse
|
4
|
Wills DM, Fang Z, York AM, Holland JB, Doebley JF. Defining the Role of the MADS-Box Gene, Zea Agamous-like1, a Target of Selection During Maize Domestication. J Hered 2019; 109:333-338. [PMID: 28992108 DOI: 10.1093/jhered/esx073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 09/02/2017] [Indexed: 11/12/2022] Open
Abstract
Genomic scans for genes that show the signature of past selection have been widely applied to a number of species and have identified a large number of selection candidate genes. In cultivated maize (Zea mays ssp. mays) selection scans have identified several hundred candidate domestication genes by comparing nucleotide diversity and differentiation between maize and its progenitor, teosinte (Z. mays ssp. parviglumis). One of these is a gene called zea agamous-like1 (zagl1), a MADS-box transcription factor, that is known for its function in the control of flowering time. To determine the trait(s) controlled by zagl1 that was (were) the target(s) of selection during maize domestication, we created a set of recombinant chromosome isogenic lines that differ for the maize versus teosinte alleles of zagl1 and which carry cross-overs between zagl1 and its neighbor genes. These lines were grown in a randomized trial and scored for flowering time and domestication related traits. The results indicated that the maize versus teosinte alleles of zagl1 affect flowering time as expected, as well as multiple traits related to ear size with the maize allele conferring larger ears with more kernels. Our results suggest that zagl1 may have been under selection during domestication to increase the size of the maize ear.
Collapse
Affiliation(s)
- David M Wills
- Laboratory of Genetics, The University of Wisconsin-Madison, Madison, WI.,USDA-ARS Plant Genetics Research Unit, Columbia, MO
| | - Zhou Fang
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC.,Bayer Corporation, Morrisville, NC
| | - Alessandra M York
- Laboratory of Genetics, The University of Wisconsin-Madison, Madison, WI
| | - James B Holland
- USDA-ARS Plant Science Research Unit, Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC
| | - John F Doebley
- Laboratory of Genetics, The University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
5
|
Xu G, Wang X, Huang C, Xu D, Li D, Tian J, Chen Q, Wang C, Liang Y, Wu Y, Yang X, Tian F. Complex genetic architecture underlies maize tassel domestication. THE NEW PHYTOLOGIST 2017; 214:852-864. [PMID: 28067953 PMCID: PMC5363343 DOI: 10.1111/nph.14400] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/16/2016] [Indexed: 05/02/2023]
Abstract
Maize (Zea mays) tassels underwent profound morphological changes during maize domestication and improvement. Although a number of genes affecting maize inflorescence development have been identified, the genetic basis of the morphological changes in maize tassels since domestication is not well understood. Here, using a large population of 866 maize-teosinte BC2 S3 recombinant inbred lines genotyped using 19 838 single nucleotide polymorphism (SNP) markers, we performed high-resolution quantitative trait locus (QTL) mapping for five tassel morphological traits. We showed that the five tassel traits were associated with different genetic architecture features. Known genes for maize inflorescence development identified by mutagenesis were significantly enriched in the tassel trait QTLs, and many of these genes, including ramosa1 (ra1), barren inflorescence2 (bif2), unbranched2 (ub2), zea floricaula leafy2 (zfl2) and barren stalk fastigiate1 (baf1), showed evidence of selection. An in-depth nucleotide diversity analysis at the bif2 locus identified strong selection signatures in the 5'-regulatory region. We also found that several known flowering time genes co-localized with tassel trait QTLs. A further association analysis indicated that the maize photoperiod gene ZmCCT was significantly associated with tassel size variation. Using near-isogenic lines, we narrowed down a major-effect QTL for tassel length, qTL9-1, to a 513-kb physical region. These results provide important insights into the genetic architecture that controls maize tassel evolution.
Collapse
Affiliation(s)
- Guanghui Xu
- National Maize Improvement CenterChina Agricultural UniversityBeijing100193China
| | - Xufeng Wang
- National Maize Improvement CenterChina Agricultural UniversityBeijing100193China
| | - Cheng Huang
- National Maize Improvement CenterChina Agricultural UniversityBeijing100193China
| | - Dingyi Xu
- National Maize Improvement CenterChina Agricultural UniversityBeijing100193China
| | - Dan Li
- National Maize Improvement CenterChina Agricultural UniversityBeijing100193China
| | - Jinge Tian
- National Maize Improvement CenterChina Agricultural UniversityBeijing100193China
| | - Qiuyue Chen
- National Maize Improvement CenterChina Agricultural UniversityBeijing100193China
| | - Chenglong Wang
- National Maize Improvement CenterChina Agricultural UniversityBeijing100193China
| | - Yameng Liang
- National Maize Improvement CenterChina Agricultural UniversityBeijing100193China
| | - Yaoyao Wu
- National Maize Improvement CenterChina Agricultural UniversityBeijing100193China
| | - Xiaohong Yang
- National Maize Improvement CenterChina Agricultural UniversityBeijing100193China
| | - Feng Tian
- National Maize Improvement CenterChina Agricultural UniversityBeijing100193China
| |
Collapse
|
6
|
Tao Y, Mace ES, Tai S, Cruickshank A, Campbell BC, Zhao X, Van Oosterom EJ, Godwin ID, Botella JR, Jordan DR. Whole-Genome Analysis of Candidate genes Associated with Seed Size and Weight in Sorghum bicolor Reveals Signatures of Artificial Selection and Insights into Parallel Domestication in Cereal Crops. FRONTIERS IN PLANT SCIENCE 2017. [PMID: 28769949 DOI: 10.3389/fp/s.2017.01237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Seed size and seed weight are major quality attributes and important determinants of yield that have been strongly selected for during crop domestication. Limited information is available about the genetic control and genes associated with seed size and weight in sorghum. This study identified sorghum orthologs of genes with proven effects on seed size and weight in other plant species and searched for evidence of selection during domestication by utilizing resequencing data from a diversity panel. In total, 114 seed size candidate genes were identified in sorghum, 63 of which exhibited signals of purifying selection during domestication. A significant number of these genes also had domestication signatures in maize and rice, consistent with the parallel domestication of seed size in cereals. Seed size candidate genes that exhibited differentially high expression levels in seed were also found more likely to be under selection during domestication, supporting the hypothesis that modification to seed size during domestication preferentially targeted genes for intrinsic seed size rather than genes associated with physiological factors involved in the carbohydrate supply and transport. Our results provide improved understanding of the complex genetic control of seed size and weight and the impact of domestication on these genes.
Collapse
Affiliation(s)
- Yongfu Tao
- Queensland Alliance for Agriculture and Food Innovation, University of QueenslandWarwick, QLD, Australia
| | - Emma S Mace
- Queensland Alliance for Agriculture and Food Innovation, University of QueenslandWarwick, QLD, Australia
- Department of Agriculture and Fisheries, Hermitage Research FacilityWarwick, QLD, Australia
| | | | - Alan Cruickshank
- Department of Agriculture and Fisheries, Hermitage Research FacilityWarwick, QLD, Australia
| | - Bradley C Campbell
- School of Agriculture and Food Sciences, University of QueenslandBrisbane, QLD, Australia
| | - Xianrong Zhao
- Queensland Alliance for Agriculture and Food Innovation, University of QueenslandWarwick, QLD, Australia
| | - Erik J Van Oosterom
- Queensland Alliance for Agriculture and Food Innovation, University of QueenslandBrisbane, QLD, Australia
| | - Ian D Godwin
- School of Agriculture and Food Sciences, University of QueenslandBrisbane, QLD, Australia
| | - Jose R Botella
- School of Agriculture and Food Sciences, University of QueenslandBrisbane, QLD, Australia
| | - David R Jordan
- Queensland Alliance for Agriculture and Food Innovation, University of QueenslandWarwick, QLD, Australia
| |
Collapse
|
7
|
Tao Y, Mace ES, Tai S, Cruickshank A, Campbell BC, Zhao X, Van Oosterom EJ, Godwin ID, Botella JR, Jordan DR. Whole-Genome Analysis of Candidate genes Associated with Seed Size and Weight in Sorghum bicolor Reveals Signatures of Artificial Selection and Insights into Parallel Domestication in Cereal Crops. FRONTIERS IN PLANT SCIENCE 2017; 8:1237. [PMID: 28769949 PMCID: PMC5513986 DOI: 10.3389/fpls.2017.01237] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/30/2017] [Indexed: 05/22/2023]
Abstract
Seed size and seed weight are major quality attributes and important determinants of yield that have been strongly selected for during crop domestication. Limited information is available about the genetic control and genes associated with seed size and weight in sorghum. This study identified sorghum orthologs of genes with proven effects on seed size and weight in other plant species and searched for evidence of selection during domestication by utilizing resequencing data from a diversity panel. In total, 114 seed size candidate genes were identified in sorghum, 63 of which exhibited signals of purifying selection during domestication. A significant number of these genes also had domestication signatures in maize and rice, consistent with the parallel domestication of seed size in cereals. Seed size candidate genes that exhibited differentially high expression levels in seed were also found more likely to be under selection during domestication, supporting the hypothesis that modification to seed size during domestication preferentially targeted genes for intrinsic seed size rather than genes associated with physiological factors involved in the carbohydrate supply and transport. Our results provide improved understanding of the complex genetic control of seed size and weight and the impact of domestication on these genes.
Collapse
Affiliation(s)
- Yongfu Tao
- Queensland Alliance for Agriculture and Food Innovation, University of QueenslandWarwick, QLD, Australia
- *Correspondence: Yongfu Tao
| | - Emma S. Mace
- Queensland Alliance for Agriculture and Food Innovation, University of QueenslandWarwick, QLD, Australia
- Department of Agriculture and Fisheries, Hermitage Research FacilityWarwick, QLD, Australia
- Emma S. Mace
| | | | - Alan Cruickshank
- Department of Agriculture and Fisheries, Hermitage Research FacilityWarwick, QLD, Australia
| | - Bradley C. Campbell
- School of Agriculture and Food Sciences, University of QueenslandBrisbane, QLD, Australia
| | - Xianrong Zhao
- Queensland Alliance for Agriculture and Food Innovation, University of QueenslandWarwick, QLD, Australia
| | - Erik J. Van Oosterom
- Queensland Alliance for Agriculture and Food Innovation, University of QueenslandBrisbane, QLD, Australia
| | - Ian D. Godwin
- School of Agriculture and Food Sciences, University of QueenslandBrisbane, QLD, Australia
| | - Jose R. Botella
- School of Agriculture and Food Sciences, University of QueenslandBrisbane, QLD, Australia
| | - David R. Jordan
- Queensland Alliance for Agriculture and Food Innovation, University of QueenslandWarwick, QLD, Australia
- David R. Jordan
| |
Collapse
|
8
|
Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis. Proc Natl Acad Sci U S A 2016; 113:10842-7. [PMID: 27621432 DOI: 10.1073/pnas.1613721113] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The maize endosperm-specific transcription factors opaque2 (O2) and prolamine-box binding factor (PBF) regulate storage protein zein genes. We show that they also control starch synthesis. The starch content in the PbfRNAi and o2 mutants was reduced by ∼5% and 11%, respectively, compared with normal genotypes. In the double-mutant PbfRNAi;o2, starch was decreased by 25%. Transcriptome analysis reveals that >1,000 genes were affected in each of the two mutants and in the double mutant; these genes were mainly enriched in sugar and protein metabolism. Pyruvate orthophosphate dikinase 1 and 2 (PPDKs) and starch synthase III (SSIII) are critical components in the starch biosynthetic enzyme complex. The expression of PPDK1, PPDK2, and SSIII and their protein levels are further reduced in the double mutants as compared with the single mutants. When the promoters of these genes were analyzed, we found a prolamine box and an O2 box that can be additively transactivated by PBF and O2. Starch synthase IIa (SSIIa, encoding another starch synthase for amylopectin) and starch branching enzyme 1 (SBEI, encoding one of the two main starch branching enzymes) are not directly regulated by PBF and O2, but their protein levels are significantly decreased in the o2 mutant and are further decreased in the double mutant, indicating that o2 and PbfRNAi may affect the levels of some other transcription factor(s) or mRNA regulatory factor(s) that in turn would affect the transcript and protein levels of SSIIa and SBEI These findings show that three important traits-nutritional quality, calories, and yield-are linked through the same transcription factors.
Collapse
|
9
|
Li D, Wang X, Zhang X, Chen Q, Xu G, Xu D, Wang C, Liang Y, Wu L, Huang C, Tian J, Wu Y, Tian F. The genetic architecture of leaf number and its genetic relationship to flowering time in maize. THE NEW PHYTOLOGIST 2016; 210:256-68. [PMID: 26593156 PMCID: PMC5063108 DOI: 10.1111/nph.13765] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/15/2015] [Indexed: 05/03/2023]
Abstract
The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is frequently used as a measure of flowering time, a trait that is key to local environmental adaptation. Here, using a large set of 866 maize-teosinte BC2 S3 recombinant inbred lines genotyped by using 19,838 single nucleotide polymorphism markers, we conducted a comprehensive genetic dissection to assess the genetic architecture of leaf number and its genetic relationship to flowering time. We demonstrated that the two components of total leaf number, the number of leaves above (LA) and below (LB) the primary ear, were under relatively independent genetic control and might be subject to differential directional selection during maize domestication and improvement. Furthermore, we revealed that flowering time and leaf number are commonly regulated at a moderate level. The pleiotropy of the genes ZCN8, dlf1 and ZmCCT on leaf number and flowering time were validated by near-isogenic line analysis. Through fine mapping, qLA1-1, a major-effect locus that specifically affects LA, was delimited to a region with severe recombination suppression derived from teosinte. This study provides important insights into the genetic basis of traits affecting plant architecture and adaptation. The genetic independence of LA from LB enables the optimization of leaf number for ideal plant architecture breeding in maize.
Collapse
Affiliation(s)
- Dan Li
- National Maize Improvement Center of ChinaChina Agricultural UniversityBeijing100193China
| | - Xufeng Wang
- National Maize Improvement Center of ChinaChina Agricultural UniversityBeijing100193China
| | - Xiangbo Zhang
- National Maize Improvement Center of ChinaChina Agricultural UniversityBeijing100193China
| | - Qiuyue Chen
- National Maize Improvement Center of ChinaChina Agricultural UniversityBeijing100193China
| | - Guanghui Xu
- National Maize Improvement Center of ChinaChina Agricultural UniversityBeijing100193China
| | - Dingyi Xu
- National Maize Improvement Center of ChinaChina Agricultural UniversityBeijing100193China
| | - Chenglong Wang
- National Maize Improvement Center of ChinaChina Agricultural UniversityBeijing100193China
| | - Yameng Liang
- National Maize Improvement Center of ChinaChina Agricultural UniversityBeijing100193China
| | - Lishuan Wu
- National Maize Improvement Center of ChinaChina Agricultural UniversityBeijing100193China
| | - Cheng Huang
- National Maize Improvement Center of ChinaChina Agricultural UniversityBeijing100193China
| | - Jinge Tian
- National Maize Improvement Center of ChinaChina Agricultural UniversityBeijing100193China
| | - Yaoyao Wu
- National Maize Improvement Center of ChinaChina Agricultural UniversityBeijing100193China
| | - Feng Tian
- National Maize Improvement Center of ChinaChina Agricultural UniversityBeijing100193China
| |
Collapse
|
10
|
Zhang X, Hirsch CN, Sekhon RS, de Leon N, Kaeppler SM. Evidence for maternal control of seed size in maize from phenotypic and transcriptional analysis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1907-17. [PMID: 26826570 PMCID: PMC4783370 DOI: 10.1093/jxb/erw006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Seed size is an important component of grain yield and a key determinant trait for crop domestication. The Krug Yellow Dent long-term selection experiment for large and small seed provides a valuable resource to dissect genetic and phenotypic changes affecting seed size within a common genetic background. In this study, inbred lines derived from Krug Large Seed (KLS) and Krug Small Seed (KSS) populations and reciprocal F1 crosses were used to investigate developmental and molecular mechanisms governing seed size. Seed morphological characteristics showed striking differences between KLS and KSS inbred lines, and the reciprocal cross experiment revealed a strong maternal influence on both seed weight and seed size. Quantification of endosperm area, starchy endosperm cell size, and kernel dry mass accumulation indicated a positive correlation between seed size, endosperm cell number, and grain filling rate, and patterns of grain filling in reciprocal crosses mirrored that of the maternal parent. Consistent with the maternal contribution to seed weight, transcriptome profiling of reciprocal F1 hybrids showed substantial similarities to the maternal parent. A set of differentially expressed genes between KLS and KSS inbreds were found, which fell into a broad number of functional categories including DNA methylation, nucleosome assembly, and heat stress response. In addition, gene co-expression network analysis of parental inbreds and reciprocal F1 hybrids identified co-expression modules enriched in ovule development and DNA methylation, implicating these two processes in seed size determination. These results expand our understanding of seed size regulation and help to uncover the developmental and molecular basis underlying maternal control of seed size in maize.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Agronomy, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706, USA
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Rajandeep S Sekhon
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Natalia de Leon
- Department of Agronomy, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706, USA DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706, USA
| | - Shawn M Kaeppler
- Department of Agronomy, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706, USA DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
11
|
Liu Z, Cook J, Melia-Hancock S, Guill K, Bottoms C, Garcia A, Ott O, Nelson R, Recker J, Balint-Kurti P, Larsson S, Lepak N, Buckler E, Trimble L, Tracy W, McMullen MD, Flint-Garcia SA. Expanding Maize Genetic Resources with Predomestication Alleles: Maize-Teosinte Introgression Populations. THE PLANT GENOME 2016; 9. [PMID: 27898757 DOI: 10.3835/plantgenome2015.07.0053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Teosinte ( subsp. H. H. Iltis & Doebley) has greater genetic diversity than maize inbreds and landraces ( subsp. ). There are, however, limited genetic resources to efficiently evaluate and tap this diversity. To broaden resources for genetic diversity studies in maize, we developed and evaluated 928 near-isogenic introgression lines (NILs) from 10 teosinte accessions in the B73 background. Joint linkage analysis of the 10 introgression populations identified several large-effect quantitative trait loci (QTL) for days to anthesis (DTA), kernel row number (KRN), and 50-kernel weight (Wt50k). Our results confirm prior reports of kernel domestication loci and identify previously uncharacterized QTL with a range of allelic effects enabling future research into the genetic basis of these traits. Additionally, we used a targeted set of NILs to validate the effects of a KRN QTL located on chromosome 2. These introgression populations offer novel tools for QTL discovery and validation as well as a platform for initiating fine mapping.
Collapse
|
12
|
Huang C, Chen Q, Xu G, Xu D, Tian J, Tian F. Identification and fine mapping of quantitative trait loci for the number of vascular bundle in maize stem. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:81-90. [PMID: 25845500 PMCID: PMC5034846 DOI: 10.1111/jipb.12358] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 04/02/2015] [Indexed: 05/18/2023]
Abstract
Studies that investigated the genetic basis of source and sink related traits have been widely conducted. However, the vascular system that links source and sink received much less attention. When maize was domesticated from its wild ancestor, teosinte, the external morphology has changed dramatically; however, less is known for the internal anatomy changes. In this study, using a large maize-teosinte experimental population, we performed a high-resolution quantitative trait locus (QTL) mapping for the number of vascular bundle in the uppermost internode of maize stem. The results showed that vascular bundle number is dominated by a large number of small-effect QTLs, in which a total of 16 QTLs that jointly accounts for 52.2% of phenotypic variation were detected, with no single QTL explaining more than 6% of variation. Different from QTLs for typical domestication traits, QTLs for vascular bundle number might not be under directional selection following domestication. Using Near Isogenic Lines (NILs) developed from heterogeneous inbred family (HIF), we further validated the effect of one QTL qVb9-2 on chromosome 9 and fine mapped the QTL to a 1.8-Mb physical region. This study provides important insights for the genetic architecture of vascular bundle number in maize stem and sets basis for cloning of qVb9-2.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Plant Genetics and Breeding, National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Qiuyue Chen
- Department of Plant Genetics and Breeding, National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Guanghui Xu
- Department of Plant Genetics and Breeding, National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Dingyi Xu
- Department of Plant Genetics and Breeding, National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Jinge Tian
- Department of Plant Genetics and Breeding, National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Feng Tian
- Department of Plant Genetics and Breeding, National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
13
|
Lemmon ZH, Bukowski R, Sun Q, Doebley JF. The role of cis regulatory evolution in maize domestication. PLoS Genet 2014; 10:e1004745. [PMID: 25375861 PMCID: PMC4222645 DOI: 10.1371/journal.pgen.1004745] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/09/2014] [Indexed: 12/30/2022] Open
Abstract
Gene expression differences between divergent lineages caused by modification of cis regulatory elements are thought to be important in evolution. We assayed genome-wide cis and trans regulatory differences between maize and its wild progenitor, teosinte, using deep RNA sequencing in F1 hybrid and parent inbred lines for three tissue types (ear, leaf and stem). Pervasive regulatory variation was observed with approximately 70% of ∼17,000 genes showing evidence of regulatory divergence between maize and teosinte. However, many fewer genes (1,079 genes) show consistent cis differences with all sampled maize and teosinte lines. For ∼70% of these 1,079 genes, the cis differences are specific to a single tissue. The number of genes with cis regulatory differences is greatest for ear tissue, which underwent a drastic transformation in form during domestication. As expected from the domestication bottleneck, maize possesses less cis regulatory variation than teosinte with this deficit greatest for genes showing maize-teosinte cis regulatory divergence, suggesting selection on cis regulatory differences during domestication. Consistent with selection on cis regulatory elements, genes with cis effects correlated strongly with genes under positive selection during maize domestication and improvement, while genes with trans regulatory effects did not. We observed a directional bias such that genes with cis differences showed higher expression of the maize allele more often than the teosinte allele, suggesting domestication favored up-regulation of gene expression. Finally, this work documents the cis and trans regulatory changes between maize and teosinte in over 17,000 genes for three tissues.
Collapse
Affiliation(s)
- Zachary H. Lemmon
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Robert Bukowski
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, United States of America
| | - Qi Sun
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, United States of America
| | - John F. Doebley
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
14
|
Lanubile A, Ferrarini A, Maschietto V, Delledonne M, Marocco A, Bellin D. Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. BMC Genomics 2014; 15:710. [PMID: 25155950 PMCID: PMC4153945 DOI: 10.1186/1471-2164-15-710] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/04/2014] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Fusarium verticillioides causes ear rot in maize (Zea mays L.) and accumulation of mycotoxins, that affect human and animal health. Currently, chemical and agronomic measures to control Fusarium ear rot are not very effective and selection of more resistant genotypes is a desirable strategy to reduce contaminations. A deeper knowledge of molecular events and genetic basis underlying Fusarium ear rot is necessary to speed up progress in breeding for resistance. RESULTS A next-generation RNA-sequencing approach was used for the first time to study transcriptional changes associated with F. verticillioides inoculation in resistant CO441 and susceptible CO354 maize genotypes at 72 hours post inoculation. More than 100 million sequence reads were generated for inoculated and uninoculated control plants and analyzed to measure gene expression levels. Comparison of expression levels between inoculated vs. uninoculated and resistant vs. susceptible transcriptomes revealed a total number of 6,951 differentially expressed genes. Differences in basal gene expression were observed in the uninoculated samples. CO441 genotype showed a higher level of expression of genes distributed over all functional classes, in particular those related to secondary metabolism category. After F. verticillioides inoculation, a similar response was observed in both genotypes, although the magnitude of induction was much greater in the resistant genotype. This response included higher activation of genes involved in pathogen perception, signaling and defense, including WRKY transcription factors and jasmonate/ethylene mediated defense responses. Interestingly, strong differences in expression between the two genotypes were observed in secondary metabolism category: pathways related to shikimate, lignin, flavonoid and terpenoid biosynthesis were strongly represented and induced in the CO441 genotype, indicating that selection to enhance these traits is an additional strategy for improving resistance against F. verticillioides infection. CONCLUSIONS The work demonstrates that the global transcriptional analysis provided an exhaustive view of genes involved in pathogen recognition and signaling, and controlling activities of different TFs, phytohormones and secondary metabolites, that contribute to host resistance against F. verticillioides. This work provides an important source of markers for development of disease resistance maize genotypes and may have relevance to study other pathosystems involving mycotoxin-producing fungi.
Collapse
Affiliation(s)
| | | | | | | | - Adriano Marocco
- Istituto di Agronomia, Genetica e Coltivazioni erbacee, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | | |
Collapse
|