1
|
Clark MI, Fitzpatrick SW, Bradburd GS. Pitfalls and windfalls of detecting demographic declines using population genetics in long-lived species. Evol Appl 2024; 17:e13754. [PMID: 39006005 PMCID: PMC11246600 DOI: 10.1111/eva.13754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Detecting recent demographic changes is a crucial component of species conservation and management, as many natural populations face declines due to anthropogenic habitat alteration and climate change. Genetic methods allow researchers to detect changes in effective population size (Ne) from sampling at a single timepoint. However, in species with long lifespans, there is a lag between the start of a decline in a population and the resulting decrease in genetic diversity. This lag slows the rate at which diversity is lost, and therefore makes it difficult to detect recent declines using genetic data. However, the genomes of old individuals can provide a window into the past, and can be compared to those of younger individuals, a contrast that may help reveal recent demographic declines. To test whether comparing the genomes of young and old individuals can help infer recent demographic bottlenecks, we use forward-time, individual-based simulations with varying mean individual lifespans and extents of generational overlap. We find that age information can be used to aid in the detection of demographic declines when the decline has been severe. When average lifespan is long, comparing young and old individuals from a single timepoint has greater power to detect a recent (within the last 50 years) bottleneck event than comparing individuals sampled at different points in time. Our results demonstrate how longevity and generational overlap can be both a hindrance and a boon to detecting recent demographic declines from population genomic data.
Collapse
Affiliation(s)
- Meaghan I. Clark
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
- Ecology, Evolution, and Behavior ProgramMichigan State UniversityEast LansingMichiganUSA
- W.K. Kellogg Biological StationMichigan State UniversityHickory CornersMichiganUSA
| | - Sarah W. Fitzpatrick
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
- Ecology, Evolution, and Behavior ProgramMichigan State UniversityEast LansingMichiganUSA
- W.K. Kellogg Biological StationMichigan State UniversityHickory CornersMichiganUSA
| | - Gideon S. Bradburd
- W.K. Kellogg Biological StationMichigan State UniversityHickory CornersMichiganUSA
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
2
|
Lowe WH, Addis BR, Cochrane MM. Outbreeding reduces survival during metamorphosis in a headwater stream salamander. Mol Ecol 2024; 33:e17375. [PMID: 38699973 DOI: 10.1111/mec.17375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 05/05/2024]
Abstract
Assessing direct fitness effects of individual genetic diversity is challenging due to the intensive and long-term data needed to quantify survival and reproduction in the wild. But resolving these effects is necessary to determine how inbreeding and outbreeding influence eco-evolutionary processes. We used 8 years of capture-recapture data and single nucleotide polymorphism genotypes for 1906 individuals to test for effects of individual heterozygosity on stage-specific survival probabilities in the salamander Gyrinophilus porphyriticus. The life cycle of G. porphyriticus includes an aquatic larval stage followed by metamorphosis into a semi-aquatic adult stage. In our study populations, the larval stage lasts 6-10 years, metamorphosis takes several months, and lifespan can reach 20 years. Previous studies showed that metamorphosis is a sensitive life stage, leading us to predict that fitness effects of individual heterozygosity would occur during metamorphosis. Consistent with this prediction, monthly probability of survival during metamorphosis declined with multi-locus heterozygosity (MLH), from 0.38 at the lowest MLH (0.10) to 0.06 at the highest MLH (0.38), a reduction of 84%. Body condition of larvae also declined significantly with increasing MLH. These relationships were consistent in the three study streams. With evidence of localised inbreeding within streams, these results suggest that outbreeding disrupts adaptations in pre-metamorphic and metamorphic individuals to environmental gradients along streams, adding to evidence that headwater streams are hotspots of microgeographic adaptation. Our results also underscore the importance of incorporating life history in analyses of the fitness effects of individual genetic diversity and suggest that metamorphosis and similar discrete life stage transitions may be critical periods of viability selection.
Collapse
Affiliation(s)
- Winsor H Lowe
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Brett R Addis
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Madaline M Cochrane
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
3
|
Clark MI, Fitzpatrick SW, Bradburd GS. Pitfalls and windfalls of detecting demographic declines using population genetics in long-lived species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.586886. [PMID: 38585961 PMCID: PMC10996660 DOI: 10.1101/2024.03.27.586886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Detecting recent demographic changes is a crucial component of species conservation and management, as many natural populations face declines due to anthropogenic habitat alteration and climate change. Genetic methods allow researchers to detect changes in effective population size (N e ) from sampling at a single timepoint. However, in species with long lifespans, there is a lag between the start of a decline in a population and the resulting decrease in genetic diversity. This lag slows the rate at which diversity is lost, and therefore makes it difficult to detect recent declines using genetic data. However, the genomes of old individuals can provide a window into the past, and can be compared to those of younger individuals, a contrast that may help reveal recent demographic declines. To test whether comparing the genomes of young and old individuals can help infer recent demographic bottlenecks, we use forward-time, individual-based simulations with varying mean individual lifespans and extents of generational overlap. We find that age information can be used to aid in the detection of demographic declines when the decline has been severe. When average lifespan is long, comparing young and old individuals from a single timepoint has greater power to detect a recent (within the last 50 years) bottleneck event than comparing individuals sampled at different points in time. Our results demonstrate how longevity and generational overlap can be both a hindrance and a boon to detecting recent demographic declines from population genomic data.
Collapse
|
4
|
Payne N, Erwin JA, Morrison JL, Dwyer JF, Culver M. Genomic insights into isolation of the threatened Florida crested caracara (Caracara plancus). J Hered 2024; 115:45-56. [PMID: 37837958 DOI: 10.1093/jhered/esad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/18/2023] [Accepted: 09/24/2023] [Indexed: 10/16/2023] Open
Abstract
We conducted a population genomic study of the crested caracara (Caracara plancus) using samples (n = 290) collected from individuals in Florida, Texas, and Arizona, United States. Crested caracaras are non-migratory raptors ranging from the southern tip of South America to the southern United States, including a federally protected relict population in Florida long thought to have been isolated since the last ice age. Our objectives were to evaluate genetic diversity and population structure of Florida's apparently isolated population and to evaluate taxonomic relationships of crested caracaras at the northern edge of their range. Using DNA purified from blood samples, we conducted double-digest restriction site associated DNA sequencing and sequenced the mitochondrial ND2 gene. Analyses of population structure using over 9,000 SNPs suggest that two major clusters are best supported, one cluster including only Florida individuals and the other cluster including Arizona and Texas individuals. Both SNPs and mitochondrial haplotypes reveal the Florida population to be highly differentiated genetically from Arizona and Texas populations, whereas, Arizona and Texas populations are moderately differentiated from each other. The Florida population's mitochondrial haplotypes form a separate monophyletic group, while Arizona and Texas populations share mitochondrial haplotypes. Results of this study provide substantial genetic evidence that Florida's crested caracaras have experienced long-term isolation from caracaras in Arizona and Texas and thus, represent a distinct evolutionary lineage possibly warranting distinction as an Evolutionarily Significant Unit (ESU) or subspecies. This study will inform conservation strategies focused on long-term survival of Florida's distinct, panmictic population.
Collapse
Affiliation(s)
- Natalie Payne
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85719, United States
| | - John A Erwin
- Florida International University College of Law, Miami, FL 33199, United States
| | - Joan L Morrison
- Department of Biology, Trinity College, 300 Summit Street, Hartford, CT 06106, United States
| | - James F Dwyer
- EDM International, Inc., Fort Collins, CO 80525, United States
| | - Melanie Culver
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85719, United States
- U.S. Geological Survey, Arizona Cooperative Fish and Wildlife Research Unit, University of Arizona, Tucson, AZ 85721, United States
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721, United States
| |
Collapse
|
5
|
Flores-Santin J, Burggren WW. Beyond the Chicken: Alternative Avian Models for Developmental Physiological Research. Front Physiol 2021; 12:712633. [PMID: 34744759 PMCID: PMC8566884 DOI: 10.3389/fphys.2021.712633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/13/2021] [Indexed: 12/23/2022] Open
Abstract
Biomedical research focusing on physiological, morphological, behavioral, and other aspects of development has long depended upon the chicken (Gallus gallus domesticus) as a key animal model that is presumed to be typical of birds and generally applicable to mammals. Yet, the modern chicken in its many forms is the result of artificial selection more intense than almost any other domesticated animal. A consequence of great variation in genotype and phenotype is that some breeds have inherent aberrant physiological and morphological traits that may show up relatively early in development (e.g., hypertension, hyperglycemia, and limb defects in the broiler chickens). While such traits can be useful as models of specific diseases, this high degree of specialization can color general experimental results and affect their translational value. Against this background, in this review we first consider the characteristics that make an animal model attractive for developmental research (e.g., accessibility, ease of rearing, size, fecundity, development rates, genetic variation, etc.). We then explore opportunities presented by the embryo to adult continuum of alternative bird models, including quail, ratites, songbirds, birds of prey, and corvids. We conclude by indicating that expanding developmental studies beyond the chicken model to include additional avian groups will both validate the chicken model as well as potentially identify even more suitable avian models for answering questions applicable to both basic biology and the human condition.
Collapse
Affiliation(s)
- Josele Flores-Santin
- Facultad de Ciencias, Biologia, Universidad Autónoma del Estado de Mexico, Toluca, Mexico
| | - Warren W. Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas Denton, Denton, TX, United States
| |
Collapse
|
6
|
Samaha G, Wade CM, Mazrier H, Grueber CE, Haase B. Exploiting genomic synteny in Felidae: cross-species genome alignments and SNV discovery can aid conservation management. BMC Genomics 2021; 22:601. [PMID: 34362297 PMCID: PMC8348863 DOI: 10.1186/s12864-021-07899-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 07/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background While recent advances in genomics has enabled vast improvements in the quantification of genome-wide diversity and the identification of adaptive and deleterious alleles in model species, wildlife and non-model species have largely not reaped the same benefits. This has been attributed to the resources and infrastructure required to develop essential genomic datasets such as reference genomes. In the absence of a high-quality reference genome, cross-species alignments can provide reliable, cost-effective methods for single nucleotide variant (SNV) discovery. Here, we demonstrated the utility of cross-species genome alignment methods in gaining insights into population structure and functional genomic features in cheetah (Acinonyx jubatas), snow leopard (Panthera uncia) and Sumatran tiger (Panthera tigris sumatrae), relative to the domestic cat (Felis catus). Results Alignment of big cats to the domestic cat reference assembly yielded nearly complete sequence coverage of the reference genome. From this, 38,839,061 variants in cheetah, 15,504,143 in snow leopard and 13,414,953 in Sumatran tiger were discovered and annotated. This method was able to delineate population structure but limited in its ability to adequately detect rare variants. Enrichment analysis of fixed and species-specific SNVs revealed insights into adaptive traits, evolutionary history and the pathogenesis of heritable diseases. Conclusions The high degree of synteny among felid genomes enabled the successful application of the domestic cat reference in high-quality SNV detection. The datasets presented here provide a useful resource for future studies into population dynamics, evolutionary history and genetic and disease management of big cats. This cross-species method of variant discovery provides genomic context for identifying annotated gene regions essential to understanding adaptive and deleterious variants that can improve conservation outcomes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07899-2.
Collapse
Affiliation(s)
- Georgina Samaha
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.
| | - Claire M Wade
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Hamutal Mazrier
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Catherine E Grueber
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Bianca Haase
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
DeWoody JA, Harder AM, Mathur S, Willoughby JR. The long-standing significance of genetic diversity in conservation. Mol Ecol 2021; 30:4147-4154. [PMID: 34191374 DOI: 10.1111/mec.16051] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
Since allozymes were first used to assess genetic diversity in the 1960s and 1970s, biologists have attempted to characterize gene pools and conserve the diversity observed in domestic crops, livestock, zoos and (more recently) natural populations. Recently, some authors have claimed that the importance of genetic diversity in conservation biology has been greatly overstated. Here, we argue that a voluminous literature indicates otherwise. We address four main points made by detractors of genetic diversity's role in conservation by using published literature to firmly establish that genetic diversity is intimately tied to evolutionary fitness, and that the associated demographic consequences are of paramount importance to many conservation efforts. We think that responsible management in the Anthropocene should, whenever possible, include the conservation of ecosystems, communities, populations and individuals, and their underlying genetic diversity.
Collapse
Affiliation(s)
- J Andrew DeWoody
- Department of Forestry and Natural Resources, Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Avril M Harder
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama, USA
| | - Samarth Mathur
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, USA
| | - Janna R Willoughby
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
8
|
Botero-Delgadillo E, Quirici V, Vásquez RA, Kempenaers B. Heterozygosity-Fitness Correlations in a Continental Island Population of Thorn-Tailed Rayadito. J Hered 2020; 111:628-639. [PMID: 33277658 DOI: 10.1093/jhered/esaa056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/04/2020] [Indexed: 11/15/2022] Open
Abstract
Heterozygosity-fitness correlations (HFCs) have been used to monitor the effects of inbreeding in threatened populations. HFCs can also be useful to investigate the potential effects of inbreeding in isolated relict populations of long-term persistence and to better understand the role of inbreeding and outbreeding as drivers of changes in genetic diversity. We studied a continental island population of thorn-tailed rayadito (Aphrastura spinicauda) inhabiting the relict forest of Fray Jorge National Park, north-central Chile. This population has experienced a long-term, gradual process of isolation since the end of the Tertiary. Using 10 years of field data in combination with molecular techniques, we tested for HFCs to assess the importance of inbreeding depression. If inbreeding depression is important, we predict a positive relationship between individual heterozygosity and fitness-related traits. We genotyped 183 individuals at 12 polymorphic microsatellite loci and used 7 measures of reproductive success and estimates of apparent survival to calculate HFCs. We found weak to moderate statistical support (P-values between 0.05 and 0.01) for a linear effect of female multi-locus heterozygosity (MLH) on clutch size and nonlinear effects on laying date and fledging success. While more heterozygous females laid smaller clutches, nonlinear effects indicated that females with intermediate values of MLH started laying earlier and had higher fledging success. We found no evidence for effects of MLH on annual fecundity or on apparent survival. Our results along with the long-term demographic stability of the study population contradict the hypothesis that inbreeding depression occurs in this population.
Collapse
Affiliation(s)
- Esteban Botero-Delgadillo
- Department of Behavioural Ecology and Evolutionary Genetics, Max Plank Institute for Ornithology, Seewiesen, Germany
| | - Verónica Quirici
- Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile.,Centro de investigación para la sustentabilidad, Universidad Andrés Bello, Santiago, Chile
| | - Rodrigo A Vásquez
- Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Plank Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|