1
|
Ma L, Chen Z, Li X, Liu W, Yu Z, Li C, Gong Y, Xu Q. De Novo Synthesis of Tyramine in Engineered Escherichia coli Using Two-Stage Dissolved Oxygen-Controlled Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4174-4184. [PMID: 39905769 DOI: 10.1021/acs.jafc.4c11385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Metabolic regulation and fermentation strategies limit the synthesis of tyramine. Here, a de novo synthetic tyramine-producing strain, LAN 25, was constructed. First, tyramine-producing strain was obtained by modifying the key metabolic nodes of tyrosine synthesis and overexpressing the tyrosine decarboxylase gene from Lactobacillus brevis. Then, a two-stage dissolved oxygen (DO)-controlled fermentation process was established in a 5 L fed-batch bioreactor. In the first stage, sufficient DO was supplied to accumulate tyrosine precursors, while in the second stage, limited DO was provided to promote tyramine synthesis. Next, ldhA and adhE were deleted to improve the strain's robustness. To enhance the redox flux (ATP/ADP ratio) under limited DO conditions, the anaerobic promoter, Pvgb, was used to control the expression of a ppk-based ATP regeneration system in response to DO changes. Additionally, the tyrosine internal transport system was modified. Finally, a titer of 21.33 g/L of tyramine with a yield of 0.092 g/g glucose was obtained.
Collapse
Affiliation(s)
- Ling Ma
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Zhichao Chen
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Xu Li
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Weiwei Liu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Zichen Yu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Changgeng Li
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Yu Gong
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Qingyang Xu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| |
Collapse
|
2
|
Liu X, An Y, Gao H. Engineering cascade biocatalysis in whole cells for syringic acid bioproduction. Microb Cell Fact 2024; 23:162. [PMID: 38824548 PMCID: PMC11143566 DOI: 10.1186/s12934-024-02441-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Syringic acid (SA) is a high-value natural compound with diverse biological activities and wide applications, commonly found in fruits, vegetables, and herbs. SA is primarily produced through chemical synthesis, nonetheless, these chemical methods have many drawbacks, such as considerable equipment requirements, harsh reaction conditions, expensive catalysts, and numerous by-products. Therefore, in this study, a novel biotransformation route for SA production was designed and developed by using engineered whole cells. RESULTS An O-methyltransferase from Desulfuromonas acetoxidans (DesAOMT), which preferentially catalyzes a methyl transfer reaction on the meta-hydroxyl group of catechol analogues, was identified. The whole cells expressing DesAOMT can transform gallic acid (GA) into SA when S-adenosyl methionine (SAM) is used as a methyl donor. We constructed a multi-enzyme cascade reaction in Escherichia coli, containing an endogenous shikimate kinase (AroL) and a chorismate lyase (UbiC), along with a p-hydroxybenzoate hydroxylase mutant (PobA**) from Pseudomonas fluorescens, and DesAOMT; SA was biosynthesized from shikimic acid (SHA) by using whole cells catalysis. The metabolic system of chassis cells also affected the efficiency of SA biosynthesis, blocking the chorismate metabolism pathway improved SA production. When the supply of the cofactor NADPH was optimized, the titer of SA reached 133 μM (26.2 mg/L). CONCLUSION Overall, we designed a multi-enzyme cascade in E. coli for SA biosynthesis by using resting or growing whole cells. This work identified an O-methyltransferase (DesAOMT), which can catalyze the methylation of GA to produce SA. The multi-enzyme cascade containing four enzymes expressed in an engineered E. coli for synthesizing of SA from SHA. The metabolic system of the strain and biotransformation conditions influenced catalytic efficiency. This study provides a new green route for SA biosynthesis.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Science, Beijing Institute of Technology, No 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Yi An
- School of Life Science, Beijing Institute of Technology, No 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Haijun Gao
- School of Life Science, Beijing Institute of Technology, No 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
3
|
Karlo J, Gupta A, Singh SP. In situ monitoring of the shikimate pathway: a combinatorial approach of Raman reverse stable isotope probing and hyperspectral imaging. Analyst 2024; 149:2833-2841. [PMID: 38587502 DOI: 10.1039/d4an00203b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Sensing and visualization of metabolites and metabolic pathways in situ are significant requirements for tracking their spatiotemporal dynamics in a non-destructive manner. The shikimate pathway is an important cellular mechanism that leads to the de novo synthesis of many compounds containing aromatic rings of high importance such as phenylalanine, tyrosine, and tryptophan. In this work, we present a cost-effective and extraction-free method based on the principles of stable isotope-coupled Raman spectroscopy and hyperspectral Raman imaging to monitor and visualize the activity of the shikimate pathway. We also demonstrated the applicability of this approach for nascent aromatic amino acid localization and tracking turnover dynamics in both prokaryotic and eukaryotic model systems. This method can emerge as a promising tool for both qualitative and semi-quantitative in situ metabolomics, contributing to a better understanding of aromatic ring-containing metabolite dynamics across various organisms.
Collapse
Affiliation(s)
- Jiro Karlo
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, 580011, India.
| | - Aryan Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, 580011, India.
| | - Surya Pratap Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, 580011, India.
| |
Collapse
|
4
|
Ding Q, Ye C. Microbial engineering for shikimate biosynthesis. Enzyme Microb Technol 2023; 170:110306. [PMID: 37598506 DOI: 10.1016/j.enzmictec.2023.110306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
Shikimate, a precursor to the antiviral drug oseltamivir (Tamiflu®), can influence aromatic metabolites and finds extensive use in antimicrobial, antitumor, and cardiovascular applications. Consequently, various strategies have been developed for chemical synthesis and plant extraction to enhance shikimate biosynthesis, potentially impacting environmental conditions, economic sustainability, and separation and purification processes. Microbial engineering has been developed as an environmentally friendly approach for shikimate biosynthesis. In this review, we provide a comprehensive summary of microbial strategies for shikimate biosynthesis. These strategies primarily include chassis construction, biochemical optimization, pathway remodelling, and global regulation. Furthermore, we discuss future perspectives on shikimate biosynthesis and emphasize the importance of utilizing advanced metabolic engineering tools to regulate microbial networks for constructing robust microbial cell factories.
Collapse
Affiliation(s)
- Qiang Ding
- School of Life Sciences, Anhui University, Hefei 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
5
|
Bo T, Wu C, Wang Z, Jiang H, Wang F, Chen N, Li Y. Multiple Metabolic Engineering Strategies to Improve Shikimate Titer in Escherichia coli. Metabolites 2023; 13:747. [PMID: 37367905 DOI: 10.3390/metabo13060747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Shikimate is a valuable chiral precursor for synthesizing oseltamivir (Tamiflu®) and other chemicals. High production of shikimate via microbial fermentation has attracted increasing attention to overcome the unstable and expensive supply of shikimate extracted from plant resources. The current cost of microbial production of shikimate via engineered strains is still unsatisfactory, and thus more metabolic strategies need to be investigated to further increase the production efficiency. In this study, we first constructed a shikimate E. coli producer through the application of the non-phosphoenolpyruvate: carbohydrate phosphotransferase system (non-PTS) glucose uptake pathway, the attenuation of the shikimate degradation metabolism, and the introduction of a mutant of feedback-resistant 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase. Inspired by the natural presence of bifunctional 3-dehydroquinate dehydratase (DHD)-shikimate dehydrogenase (SDH) enzyme in plants, we then designed an artificial fusion protein of DHD-SDH to decrease the accumulation of the byproduct 3-dehydroshikimate (DHS). Subsequently, a repressed shikimate kinase (SK) mutant was selected to promote shikimate accumulation without the supplementation of expensive aromatic substances. Furthermore, EsaR-based quorum sensing (QS) circuits were employed to regulate the metabolic flux distribution between cell growth and product synthesis. The final engineered strain dSA10 produced 60.31 g/L shikimate with a yield of 0.30 g/g glucose in a 5 L bioreactor.
Collapse
Affiliation(s)
- Taidong Bo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chen Wu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zeting Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hao Jiang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Feiao Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ning Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanjun Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
6
|
Kim HJ, Seo SY, Park HS, Ko JY, Choi SS, Lee SJ, Kim ES. Engineered Escherichia coli cell factory for anthranilate over-production. Front Microbiol 2023; 14:1081221. [PMID: 37007513 PMCID: PMC10050376 DOI: 10.3389/fmicb.2023.1081221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
Anthranilate is a key platform chemical in high demand for synthesizing food ingredients, dyes, perfumes, crop protection compounds, pharmaceuticals, and plastics. Microbial-based anthranilate production strategies have been developed to overcome the unstable and expensive supply of anthranilate via chemical synthesis from non-renewable resources. Despite the reports of anthranilate biosynthesis in several engineered cells, the anthranilate production yield is still unsatisfactory. This study designed an Escherichia coli cell factory and optimized the fed-batch culture process to achieve a high titer of anthranilate production. Using the previously constructed shikimate-overproducing E. coli strain, two genes (aroK and aroL) were complemented, and the trpD responsible for transferring the phosphoribosyl group to anthranilate was disrupted to facilitate anthranilate accumulation. The genes with negative effects on anthranilate biosynthesis, including pheA, tyrA, pabA, ubiC, entC, and trpR, were disrupted. In contrast, several shikimate biosynthetic pathway genes, including aroE and tktA, were overexpressed to maximize glucose uptake and the intermediate flux. The rationally designed anthranilate-overproducing E. coli strain grown in an optimized medium produced approximately 4 g/L of anthranilate in 7-L fed-batch fermentation. Overall, rational cell factory design and culture process optimization for microbial-based anthranilate production will play a key role in complementing traditional chemical-based anthranilate production processes.
Collapse
Affiliation(s)
- Hye-Jin Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | | | - Heung-Soon Park
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Ji-Young Ko
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Si-Sun Choi
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | | | - Eung-Soo Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
- *Correspondence: Eung-Soo Kim,
| |
Collapse
|
7
|
Sheng Q, Yi L, Zhong B, Wu X, Liu L, Zhang B. Shikimic acid biosynthesis in microorganisms: Current status and future direction. Biotechnol Adv 2023; 62:108073. [PMID: 36464143 DOI: 10.1016/j.biotechadv.2022.108073] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/03/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Shikimic acid (SA), a hydroaromatic natural product, is used as a chiral precursor for organic synthesis of oseltamivir (Tamiflu®, an antiviral drug). The process of microbial production of SA has recently undergone vigorous development. Particularly, the sustainable construction of recombinant Corynebacterium glutamicum (141.2 g/L) and Escherichia coli (87 g/L) laid a solid foundation for the microbial fermentation production of SA. However, its industrial application is restricted by limitations such as the lack of fermentation tests for industrial-scale and the requirement of growth-limiting factors, antibiotics, and inducers. Therefore, the development of SA biosensors and dynamic molecular switches, as well as genetic modification strategies and optimization of the fermentation process based on omics technology could improve the performance of SA-producing strains. In this review, recent advances in the development of SA-producing strains, including genetic modification strategies, metabolic pathway construction, and biosensor-assisted evolution, are discussed and critically reviewed. Finally, future challenges and perspectives for further reinforcing the development of robust SA-producing strains are predicted, providing theoretical guidance for the industrial production of SA.
Collapse
Affiliation(s)
- Qi Sheng
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lingxin Yi
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bin Zhong
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoyu Wu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Bin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
8
|
Li Z, Gao C, Ye C, Guo L, Liu J, Chen X, Song W, Wu J, Liu L. Systems engineering of Escherichia coli for high-level shikimate production. Metab Eng 2023; 75:1-11. [PMID: 36328295 DOI: 10.1016/j.ymben.2022.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/03/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
To further increase the production efficiency of microbial shikimate, a valuable compound widely used in the pharmaceutical and chemical industries, ten key target genes contributing to shikimate production were identified by exploiting the enzyme constraint model ec_iML1515, and subsequently used for promoting metabolic flux towards shikimate biosynthesis in the tryptophan-overproducing strain Escherichia coli TRP0. The engineered E. coli SA05 produced 78.4 g/L shikimate via fed-batch fermentation. Deletion of quinate dehydrogenase and introduction of the hydroaromatic equilibration-alleviating shikimate dehydrogenase mutant AroET61W/L241I reduced the contents of byproducts quinate (7.5 g/L) and 3-dehydroshikimic acid (21.4 g/L) by 89.1% and 52.1%, respectively. Furthermore, a high concentration shikimate responsive promoter PrpoS was recruited to dynamically regulate the expression of the tolerance target ProV to enhance shikimate productivity by 23.2% (to 2 g/L/h). Finally, the shikimate titer was increased to 126.4 g/L, with a yield of 0.50 g/g glucose and productivity of 2.63 g/L/h, using a 30-L fermenter and the engineered strain E. coli SA09. This is, to the best of our knowledge, the highest reported shikimate titer and productivity in E. coli.
Collapse
Affiliation(s)
- Zhendong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
9
|
Cofactor Self-Sufficient Whole-Cell Biocatalysts for the Relay-Race Synthesis of Shikimic Acid. FERMENTATION 2022. [DOI: 10.3390/fermentation8050229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Shikimic acid (SA) is a key intermediate in the aromatic amino-acid biosynthetic pathway, as well as an important precursor for synthesizing many valuable antiviral drugs. The asymmetric reduction of 3-dehydroshikimic acid (DHS) to SA is catalyzed by shikimate dehydrogenase (AroE) using NADPH as the cofactor; however, the intracellular NADPH supply limits the biosynthetic capability of SA. Glucose dehydrogenase (GDH) is an efficient enzyme which is typically used for NAD(P)H regeneration in biocatalytic processes. In this study, a series of NADPH self-sufficient whole-cell biocatalysts were constructed, and the biocatalyst co-expressing Bmgdh–aroE showed the highest conversion rate for the reduction of DHS to SA. Then, the preparation of whole-cell biocatalysts by fed-batch fermentation without supplementing antibiotics was developed on the basis of the growth-coupled l-serine auxotroph. After optimizing the whole-cell biocatalytic conditions, a titer of 81.6 g/L SA was obtained from the supernatant of fermentative broth in 98.4% yield (mol/mol) from DHS with a productivity of 40.8 g/L/h, and cofactor NADP+ or NADPH was not exogenously supplemented during the whole biocatalytic process. The efficient relay-race synthesis of SA from glucose by coupling microbial fermentation with a biocatalytic process was finally achieved. This work provides an effective strategy for the biosynthesis of fine chemicals that are difficult to obtain through de novo biosynthesis from renewable feedstocks, as well as for biocatalytic studies that strictly rely on NAD(P)H regeneration.
Collapse
|
10
|
Komera I, Gao C, Guo L, Hu G, Chen X, Liu L. Bifunctional optogenetic switch for improving shikimic acid production in E. coli. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:13. [PMID: 35418155 PMCID: PMC8822657 DOI: 10.1186/s13068-022-02111-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/28/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND Biomass formation and product synthesis decoupling have been proven to be promising to increase the titer of desired value add products. Optogenetics provides a potential strategy to develop light-induced circuits that conditionally control metabolic flux redistribution for enhanced microbial production. However, the limited number of light-sensitive proteins available to date hinders the progress of light-controlled tools. RESULTS To address these issues, two optogenetic systems (TPRS and TPAS) were constructed by reprogramming the widely used repressor TetR and protease TEVp to expand the current optogenetic toolkit. By merging the two systems, a bifunctional optogenetic switch was constructed to enable orthogonally regulated gene transcription and protein accumulation. Application of this bifunctional switch to decouple biomass formation and shikimic acid biosynthesis allowed 35 g/L of shikimic acid production in a minimal medium from glucose, representing the highest titer reported to date by E. coli without the addition of any chemical inducers and expensive aromatic amino acids. This titer was further boosted to 76 g/L when using rich medium fermentation. CONCLUSION The cost effective and light-controlled switch reported here provides important insights into environmentally friendly tools for metabolic pathway regulation and should be applicable to the production of other value-add chemicals.
Collapse
Affiliation(s)
- Irene Komera
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Guipeng Hu
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China. .,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|