1
|
Li ET, Ji JY, Kong WJ, Shen DX, Li C, An CJ. A C-type lectin with dual carbohydrate recognition domains functions in innate immune response in Asian corn borer, Ostrinia furnacalis. INSECT SCIENCE 2025; 32:172-192. [PMID: 38772748 DOI: 10.1111/1744-7917.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/23/2024]
Abstract
C-type lectins (CTLs) act as pattern recognition receptors (PRRs) to initiate the innate immune response in insects. A CTL with dual carbohydrate recognition domains (CRDs) (named immulectin-4 [IML-4]) was selected from the Ostrinia furnacalis transcriptome dataset for functional studies. We cloned the full-length complementary DNA of O. furnacalis IML-4 (OfIML-4). It encodes a 328-residue protein with a Glu-Pro-Asn (EPN) and Gln-Pro-Asp (QPD) motifs in 2 CRDs, respectively. OfIML-4 messenger RNA levels increased significantly upon the bacterial and fungal infection. Recombinant OfIML-4 (rIML-4) and its individual CRDs (rCRD1 and rCRD2) exhibited the binding ability to various microorganisms including Escherichia coli, Micrococcus luteus, Pichia pastoris, and Beauveria bassiana, and the cell wall components including lipopolysaccharide from E. coli, peptidoglycan from M. luteus or Bacillus subtilis, and curdlan from Alcaligenes faecalis. The binding further induced the agglutination of E. coli, M. luteus, and B. bassiana in the presence of calcium, the phagocytosis of Staphylococcus aureus by the hemocytes, in vitro encapsulation and melanization of nickel-nitrilotriacetic acid beads, and a significant increase in phenoloxidase activity of plasma. In addition, rIML-4 significantly enhanced the phagocytosis, nodulation, and resistance of O. furnacalis to B. bassiana. Taken together, our results suggest that OfIML-4 potentially works as a PRR to recognize the invading microorganisms, and functions in the innate immune response in O. furnacalis.
Collapse
Affiliation(s)
- Er-Tao Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jia-Yue Ji
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Pomology Institute, Shanxi Agricultural University, Jinzhong, Shanxi Province, China
| | - Wei-Jie Kong
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Dong-Xu Shen
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Cai Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Chun-Ju An
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Gao S, Xu H, Li H, Feng X, Zhou J, Guo R, Liang Z, Ding J, Li X, Huang Y, Liu W, Liang S. Identification and functional analysis of C-type lectin from mosquito Aedes albopictus in response to dengue virus infection. Parasit Vectors 2024; 17:375. [PMID: 39232769 PMCID: PMC11373435 DOI: 10.1186/s13071-024-06453-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND C-type lectins (CTLs) are a large family of proteins with sugar-binding activity. CTLs contain an evolutionarily conserved C-type lectin domain (CTLD) that binds microbial carbohydrates in a calcium-dependent manner, thereby playing a key role in both microbial pathogenesis and innate immune responses. Aedes albopictus is an important vector for transmitting dengue virus (DENV) worldwide. Currently, the molecular characteristics and functions of CTLs in Ae. albopictus are largely unknown. METHODS Transcripts encoding CTL proteins in the Ae. albopictus genome assembly were analyzed via sequence blast. Phylogenetic analysis and molecular characterization were performed to identify the functional domains of the CTLs. Quantitative analysis was performed to determine the gene expression features of CTLs during mosquito development and in different tissues of female adults after blood feeding. In addition, the functional role of CTLs in response to DENV infection was investigated in Ae. albopictus mosquito cells. RESULTS We identified 39 transcripts encoding CTL proteins in the Ae. albopictus transcriptome. Aedes albopictus CTLs are classified into three groups based on the number of CTLDs and the domain architecture. These included 29 CTL-Ss (single-CTLDs), 1 immulectins (dual-CTLD) and 9 CTL-Xs (CTLDs with other domains). Phylogenetic analysis and structural modeling indicated that CTLs in Ae. albopictus are highly conserved with the homologous CTLs in Aedes aegypti. The expression profile assay revealed differential expression patterns of CTLs in both developmental stages and in adult female tissues. Knockdown and overexpression of three CTLs (CTL-S12, S17 and S19) confirmed that they can promote dengue virus infection in Ae. albopictus cells. CONCLUSIONS The CTL genes in Ae. albopictus mosquito and other mosquito species are evolutionarily conserved and exhibit different developmental and tissue expression features. The functional assay indicated that three CTLs in Ae. albopictus mosquitoes are involved in promoting dengue virus infection. Our study revealed that CTLs play important roles in both the physiological processes and viral infection in mosquito vectors.
Collapse
Affiliation(s)
- Sheng Gao
- Department of Medical Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Haodong Xu
- Department of Medical Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Hongbo Li
- Department of Medical Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiao Feng
- Department of Medical Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jitao Zhou
- Department of Medical Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Renxian Guo
- Department of Medical Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zihan Liang
- Department of Medical Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jinying Ding
- Department of Medical Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xin Li
- Department of Medical Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yijia Huang
- Department of Medical Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Wenquan Liu
- Department of Medical Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Shaohui Liang
- Department of Medical Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
3
|
Chang YC, Liu WL, Fang PH, Li JC, Liu KL, Huang JL, Chen HW, Kao CF, Chen CH. Effect of C-type lectin 16 on dengue virus infection in Aedes aegypti salivary glands. PNAS NEXUS 2024; 3:pgae188. [PMID: 38813522 PMCID: PMC11134184 DOI: 10.1093/pnasnexus/pgae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/29/2024] [Indexed: 05/31/2024]
Abstract
C-type lectins (CTLs) are a family of carbohydrate-binding proteins and an important component of mosquito saliva. Although CTLs play key roles in immune activation and viral pathogenesis, little is known about their role in regulating dengue virus (DENV) infection and transmission. In this study, we established a homozygous CTL16 knockout Aedes aegypti mutant line using CRISPR/Cas9 to study the interaction between CTL16 and viruses in mosquito vectors. Furthermore, mouse experiments were conducted to confirm the transmission of DENV by CTL16-/- A. aegypti mutants. We found that CTL16 was mainly expressed in the medial lobe of the salivary glands (SGs) in female A. aegypti. CTL16 knockout increased DENV replication and accumulation in the SGs of female A. aegypti, suggesting that CTL16 plays an important role in DENV transmission. We also found a reduced expression of immunodeficiency and Janus kinase/signal transducer and activator of transcription pathway components correlated with increased DENV viral titer, infection rate, and transmission efficiency in the CTL16 mutant strain. The findings of this study provide insights not only for guiding future investigations on the influence of CTLs on immune responses in mosquitoes but also for developing novel mutants that can be used as vector control tools.
Collapse
Affiliation(s)
- Ya-Chen Chang
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli 35053, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Wei-Liang Liu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Pai-Hsiang Fang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Jian-Chiuan Li
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Kun-Lin Liu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Jau-Ling Huang
- Department of Bioscience Technology, Chang Jung Christian University, Tainan 711301, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chih-Fei Kao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Chun-Hong Chen
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli 35053, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| |
Collapse
|
4
|
Ratcliffe NA, Mello CB, Castro HC, Dyson P, Figueiredo M. Immune Reactions of Vector Insects to Parasites and Pathogens. Microorganisms 2024; 12:568. [PMID: 38543619 PMCID: PMC10974449 DOI: 10.3390/microorganisms12030568] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 11/12/2024] Open
Abstract
This overview initially describes insect immune reactions and then brings together present knowledge of the interactions of vector insects with their invading parasites and pathogens. It is a way of introducing this Special Issue with subsequent papers presenting the latest details of these interactions in each particular group of vectors. Hopefully, this paper will fill a void in the literature since brief descriptions of vector immunity have now been brought together in one publication and could form a starting point for those interested and new to this important area. Descriptions are given on the immune reactions of mosquitoes, blackflies, sandflies, tsetse flies, lice, fleas and triatomine bugs. Cellular and humoral defences are described separately but emphasis is made on the co-operation of these processes in the completed immune response. The paper also emphasises the need for great care in extracting haemocytes for subsequent study as appreciation of their fragile nature is often overlooked with the non-sterile media, smearing techniques and excessive centrifugation sometimes used. The potential vital role of eicosanoids in the instigation of many of the immune reactions described is also discussed. Finally, the priming of the immune system, mainly in mosquitoes, is considered and one possible mechanism is presented.
Collapse
Affiliation(s)
- Norman Arthur Ratcliffe
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA28PP, UK
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Cicero Brasileiro Mello
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Helena Carla Castro
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Paul Dyson
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA28PP, UK; (P.D.); (M.F.)
| | - Marcela Figueiredo
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA28PP, UK; (P.D.); (M.F.)
| |
Collapse
|
5
|
Wang L, Zheng M, Liu J, Jin Z, Wang C, Gao M, Zhang H, Zhang X, Xia X. LDLa containing C-type lectin mediates phagocytosis of V.anguillarum and regulates immune effector genes in shrimp. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109361. [PMID: 38185393 DOI: 10.1016/j.fsi.2024.109361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
C-type lectins (CTLs) function as pattern recognition receptors (PRRs) by recognizing invading microorganisms, thereby triggering downstream immune events against infected pathogens. In this study, a novel CTL containing a low-density lipoprotein receptor class A (LDLa) domain was obtained from Litopenaeus vannamei, designed as LvLDLalec. Stimulation by the bacterial pathogen Vibrio anguillarum (V. anguillarum) resulted in remarkable up-regulation of LvLDLalec, as well as release of LvLDLalec into hemolymph. The rLvLDLalec protein possessed broad-spectrum bacterial binding and agglutinating activities, as well as hemocyte attachment ability. Importantly, LvLDLalec facilitated the bacterial clearance in shrimp hemolymph and protected shrimp from bacterial infection. Further studies revealed that LvLDLalec promoted hemocytes phagocytosis against V. anguillarum and lysosomes were involved in the process. Meanwhile, LvLDLalec participated in humoral immunity through activating and inducing nuclear translocation of Dorsal to regulate phagocytosis-related genes and antimicrobial peptides (AMPs) genes, thereby accelerated the removal of invading pathogens in vivo and improved the survival rate of L. vannamei. These results unveil that LvLDLalec serves as a PRR participate in cellular and humoral immunity exerting opsonin activity to play vital roles in the immune regulatory system of L. vannamei.
Collapse
Affiliation(s)
- Liuen Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Meimei Zheng
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Jisheng Liu
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Zeyu Jin
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Cui Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Miaomiao Gao
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Hongwei Zhang
- Department of Nature Resources, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Xiaowen Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China; The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang, 453007, Henan, China.
| | - Xiaohua Xia
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|