1
|
Haddad R, Fayette J, Teixeira M, Prabhash K, Mesia R, Kawecki A, Dechaphunkul A, Dinis J, Guo Y, Masuda M, Hsieh CY, Ghi MG, Vaz de Melo Sette C, Harrington K, Tahara M, Saba NF, Lau A, Jiang T, Yan Y, Ballinger M, Kaul M, Matheny C, Cuchelkar V, Wong DJ. Atezolizumab in High-Risk Locally Advanced Squamous Cell Carcinoma of the Head and Neck: A Randomized Clinical Trial. JAMA 2025; 333:1599-1607. [PMID: 40079944 PMCID: PMC11907359 DOI: 10.1001/jama.2025.1483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/30/2025] [Indexed: 03/15/2025]
Abstract
Importance Treating locally advanced squamous cell carcinoma of the head and neck (LA SCCHN) involves any combination of surgery, radiation, and chemotherapy, followed by routine monitoring for local recurrence or distant metastases. Given the poor patient outcomes, a significant unmet clinical need for improved treatment options remains. Objective To evaluate efficacy and safety of maintenance atezolizumab in patients with LA SCCHN at high risk of disease progression after multimodal definitive treatment. Design, Setting, and Participants IMvoke010 was a phase 3, global, double-blind, randomized clinical trial. Patients were recruited at 128 sites in 23 countries between April 3, 2018, and February 14, 2020 (clinical cutoff date: September 27, 2023). Eligible patients had LA SCCHN (stage IVa/IVb involving the oral cavity, larynx, hypopharynx, or human papillomavirus-negative oropharynx, or stage III human papillomavirus-positive oropharynx [AJCC Cancer Staging Manual, eighth edition]) without disease progression after multimodal definitive treatment. Intervention Patients were randomized (1:1) to receive atezolizumab 1200 mg or placebo every 3 weeks for 1 year or until disease recurrence, disease progression, unacceptable toxicity, or consent withdrawal. Main Outcomes and Measures The primary end point was investigator-assessed event-free survival. Other end points included overall survival and safety. Results Overall, 406 patients were randomized to receive atezolizumab (n = 203) or placebo (n = 203); baseline demographics were balanced between both treatment groups (<65 years, 142 [70.0%] vs 155 [76.4%]; male, 168 [82.8%] vs 174 [85.7%]; Asian, 68 [35.6%] vs 61 [31.0%]; Black, 1 [0.5%] vs 1 [0.5%]; and White, 121 [63.4%] vs 135 [68.5%], respectively). At clinical cutoff (median follow-up, 46.5 months), median investigator-assessed event-free survival was 59.5 months (95% CI, 46.8 to not estimable) with atezolizumab vs 52.7 months (95% CI, 41.4 to not estimable) with placebo (hazard ratio, 0.94; 95% CI, 0.70-1.26; P = .68). There was no difference in overall survival between atezolizumab and placebo (24-month overall survival, 82.0% vs 79.2%, respectively). No new or unexpected safety signals were identified. Conclusions and Relevance In this study, atezolizumab did not improve clinical outcomes in patients with LA SCCHN at high risk of disease progression after multimodal definitive treatment. These data contribute to evidence on the limited activity of checkpoint inhibitors in the global population of this disease setting. Overall, the role of immunotherapy for patients with LA SCCHN remains to be determined. Trial Registration ClinicalTrials.gov Identifier: NCT03452137.
Collapse
Affiliation(s)
| | - Jérôme Fayette
- Centre Leon Berard, Département d’Hématologie et d’Oncologie, Lyon, France
| | - Maria Teixeira
- IPO de Coimbra, Servico de Oncologia Medica, Coimbra, Portugal
| | - Kumar Prabhash
- Tata Memorial Hospital, Department of Medical Oncology, Mumbai, India
| | - Ricard Mesia
- Catalan Institute of Oncology, B-ARGO Group, IGTP, Badalona, Catalonia, Spain
| | | | - Arunee Dechaphunkul
- Unit of Medical Oncology, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - José Dinis
- IPO do Porto, Servico de Oncologia Medica, Porto, Portugal
| | - Ye Guo
- Shanghai East Hospital, Tongji University, Shanghai, China
| | - Muneyuki Masuda
- National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Ching-Yun Hsieh
- China Medical University Hospital, Oncology and Hematology Office Critical Care Center, Taichung, Taiwan
| | | | | | - Kevin Harrington
- The Royal Marsden Hospital/The Institute of Cancer Research, London, United Kingdom
| | - Makoto Tahara
- National Cancer Center Hospital East, Kashiwa, Japan
| | - Nabil F. Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Agnes Lau
- Genentech, Inc, South San Francisco, California
| | - Tao Jiang
- Genentech, Inc, South San Francisco, California
| | - Yibing Yan
- Genentech, Inc, South San Francisco, California
| | | | - Monika Kaul
- Genentech, Inc, South San Francisco, California
| | | | | | - Deborah J. Wong
- Division of Hematology-Oncology, University of California Los Angeles (UCLA)
| |
Collapse
|
2
|
Engelen Y, Demuynck R, Ramon J, Breckpot K, De Smedt S, Lajoinie GPR, Braeckmans K, Krysko DV, Lentacker I. Immunogenic cell death as interplay between physical anticancer modalities and immunotherapy. J Control Release 2025:113721. [PMID: 40368187 DOI: 10.1016/j.jconrel.2025.113721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
Current cancer treatment strategies in practice nowadays often face limitations in effectiveness due to factors such as resistance, recurrence, or suboptimal outcomes. Traditional approaches like chemotherapy often come with severe systemic side effects due to their non-specific action, prompting the development of more targeted therapies. Among these, physical ablation techniques such as radiotherapy (RT) and focused ultrasound (FUS) have gained attention for their ability to precisely target malignant tissues, reduce physical and mental stress for the patients, and minimize recovery time. These therapies also aim to stimulate the immune system through a process referred to as immunogenic cell death (ICD), enhancing the body's ability to fight cancer, explaining abscopal effects. RT has been the most established of the abovementioned techniques for decades, and will not be included in the review. While initially focused on complete tumor ablation, these techniques are now shifting towards milder, more controlled applications that induce ICD without extensive tissue damage. This review explores how physical ablation therapies can harness ICD to boost anticancer immunity, emphasizing their potential to complement immunotherapies and improve outcomes for cancer patients.
Collapse
Affiliation(s)
- Y Engelen
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
| | - R Demuynck
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - J Ramon
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Biophotonics Research Group, Ghent University, 9000 Ghent, Belgium
| | - K Breckpot
- Laboratory for Molecular and Cellular Therapy, Translational Oncology Research Center, Department of Biomedical Sciences, Faculty of Pharmacy and Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - S De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - G P R Lajoinie
- Physics of Fluids Group, Technical Medical (TechMed) Center, and Max Planck Center for Complex Fluid Dynamics, University of Twente, Enschede, the Netherlands
| | - K Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Biophotonics Research Group, Ghent University, 9000 Ghent, Belgium
| | - D V Krysko
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - I Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
3
|
Fang K, Yuan S, Zhang X, Zhang J, Sun SL, Li X. Regulation of immunogenic cell death and potential applications in cancer therapy. Front Immunol 2025; 16:1571212. [PMID: 40207233 PMCID: PMC11979251 DOI: 10.3389/fimmu.2025.1571212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
Immunogenic cell death (ICD), a type of regulatory cell death, plays an important role in activating the adaptive immune response. Activation of the tumor-specific immune response is accompanied by the cell surface exposure of calreticulin and heat-shock proteins, the secretion of adenosine triphosphate, and the release of high mobility group box-1. In this review, we summarize and classify the latest types of ICD inducers and their molecular mechanisms, and discuss the effects and potential applications of inducing ICD by chemotherapy drugs, targeted drugs, and oncolytic viruses in clinical research. We also explore the potential role of epigenetic modifiers in the induction of ICD, and clarify the synergistic anti-tumor effects of nano-pulse stimulation, radiosensitizers for radiotherapy, photosensitizers for photodynamic therapy, photothermal therapy, and other physical stimulation, combined with radiotherapy and chemotherapy induced-ICD, in multimodal immunotherapy. In addition, we elucidate the molecular mechanism of ICD in detail, including the calcium imbalance, mitochondrial stress, and the interactions in the tumor microenvironment. Ultimately, this review aims to offer deeper insight into the factors and mechanisms of ICD induction and provide a theoretical basis for the future development of ICD-based immunotherapy.
Collapse
Affiliation(s)
- Kun Fang
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
- Liaoning Key Laboratory of Gastrointestinal Cancer Translational Research, Shenyang, Liaoning, China
| | - Shuai Yuan
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
- Liaoning Key Laboratory of Gastrointestinal Cancer Translational Research, Shenyang, Liaoning, China
| | - Xue Zhang
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
- Liaoning Key Laboratory of Gastrointestinal Cancer Translational Research, Shenyang, Liaoning, China
| | - Jingdong Zhang
- Liaoning Key Laboratory of Gastrointestinal Cancer Translational Research, Shenyang, Liaoning, China
- Department of Medical Oncology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
| | - Shu-lan Sun
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
- Liaoning Key Laboratory of Gastrointestinal Cancer Translational Research, Shenyang, Liaoning, China
| | - Xiaoxi Li
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
- Liaoning Key Laboratory of Gastrointestinal Cancer Translational Research, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Zeng X, Jin X, Leng J, Zhang S, Wang Y, Chen J, Zhang S, Teng L, Hu Z, Zhou S, Zeng Z, Long J. High-dose radiation induces dendritic cells maturation by promoting immunogenic cell death in nasopharyngeal carcinoma. Front Immunol 2025; 16:1554018. [PMID: 40040692 PMCID: PMC11876370 DOI: 10.3389/fimmu.2025.1554018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 01/31/2025] [Indexed: 03/06/2025] Open
Abstract
Aim and background Due to the radiosensitivity and deep anatomical location of nasopharyngeal carcinoma (NPC), radiotherapy serves as the cornerstone of standardized treatment for this malignancy. Beyond its cytotoxic effects, radiotherapy can serve as an immunological adjuvant by inducing immunogenic cell death (ICD). Dendritic cells (DCs), as potent antigen-presenting cells, play a critical role in tumor immunotherapy, but their exact role in the ICD process of NPC remains unclear. The effects of high-dose radiation (≥2 Gy) on DCs and the type of immune response it elicits in NPC have not been fully elucidated. Methods An in vitro study was conducted to assess whether ICD of NPC 5-8F cells induced by high-dose radiation could regulate the immune response of DCs. Specifically, the maturation and antigen-presenting capacity of DCs were evaluated following co-culture with NPC cells exposed to high-dose radiation. Results High-dose radiation was found to induce ICD in NPC 5-8F cells, as evidenced by increased pro-inflammatory factor levels and reduced anti-inflammatory factor levels in the cell culture supernatant. Co-culture with NPC cells exposed to high-dose radiation for 15 minutes significantly enhanced the expression of surface molecules on DCs, promoting their immune sensitization. Conclusion High-dose radiation-induced apoptosis of NPC 5-8F cells is a form of ICD, which plays an important role in regulating DC immune function. These findings provide insight into the immunomodulatory effects of radiotherapy in NPC and its potential to enhance tumor immunotherapy through DC activation.
Collapse
Affiliation(s)
- Xianlin Zeng
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guiyang, China
- Key Laboratory of Infectious Immunity and Antibody Engineering of Guizhou Province, Guiyang, China
| | - Xianhuai Jin
- Department of Oncology, Guiyang Public Health Clinical Center, Guiyang, Guizhou, China
- Department of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ji Leng
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guiyang, China
- Key Laboratory of Infectious Immunity and Antibody Engineering of Guizhou Province, Guiyang, China
| | - Shuai Zhang
- Department of Interventional Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yun Wang
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guiyang, China
- Key Laboratory of Infectious Immunity and Antibody Engineering of Guizhou Province, Guiyang, China
| | - Jin Chen
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guiyang, China
- Key Laboratory of Infectious Immunity and Antibody Engineering of Guizhou Province, Guiyang, China
| | - Shichao Zhang
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guiyang, China
- Key Laboratory of Infectious Immunity and Antibody Engineering of Guizhou Province, Guiyang, China
| | - Lijing Teng
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guiyang, China
- Key Laboratory of Infectious Immunity and Antibody Engineering of Guizhou Province, Guiyang, China
| | - Zuquan Hu
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guiyang, China
- Key Laboratory of Infectious Immunity and Antibody Engineering of Guizhou Province, Guiyang, China
| | - Shi Zhou
- Department of Interventional Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhu Zeng
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guiyang, China
- Key Laboratory of Infectious Immunity and Antibody Engineering of Guizhou Province, Guiyang, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Jinhua Long
- Department of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Department of Oncology, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
5
|
Yusoff NA, Abd Hamid Z, Taib IS, Abdul Razak SR, Budin SB. Exploring Epigenetic Complexity in Regulation of Hematopoietic Stem Cells Niche: A Mechanistic Journey from Normal to Malignant Hematopoiesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 39841383 DOI: 10.1007/5584_2024_846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Epigenetic regulation in hematopoietic stem cells (HSCs) research has emerged as a transformative molecular approach that enhances understanding of hematopoiesis and hematological disorders. This chapter investigates the intricate epigenetic mechanisms that control HSCs function, including deoxyribonucleic acid (DNA) methylation, histone modifications, and chromatin remodeling. It also explores the role of non-coding ribonucleic acid (RNAs) as epigenetic regulators, highlighting how changes in gene expression can occur without alterations to the DNA sequence. Epigenetic mechanisms play a pivotal in regulating HSC self-renewal and differentiation, processes essential for maintaining a balanced hematopoietic system in which lineage-specific hematopoietic stem and progenitor cells (HSPCs) pool is sustained. Recent advancements in epigenetic mapping and sequencing technologies have illuminated the dynamic epigenetic landscapes that characterize HSCs and their progeny. Numerous studies have revealed that dysregulation of epigenetic pathways is a hallmark of various hematological malignancies, including leukemias, lymphomas, and myelodysplastic syndromes. This review highlights key findings that demonstrate the impact of epigenetic abnormalities on the disruption of HSPC niches and the progression of oncogenesis in hematological malignancies. Furthermore, this chapter explores the therapeutic potential of targeting epigenetic modifications that are critical in formation and progression of hematologic malignancies. It also discusses the latest developments in epigenetic therapies, including the use of DNA methyltransferase inhibitors, histone deacetylase inhibitors, and emerging drugs targeting other epigenetic regulators. These therapies represent a promising strategy for resetting aberrant epigenetic states, potentially restoring normal hematopoiesis. Conclusively, this chapter offers a thorough overview of the current landscape and future directions of epigenetic research related to the maintenance of the HSPC niches. The insights presented here aim to contribute significantly to the field, offering a reference point for molecular approaches that enhance our understanding of hematopoiesis and its associated hematological malignancies.
Collapse
Affiliation(s)
- Nur Afizah Yusoff
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Zariyantey Abd Hamid
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Izatus Shima Taib
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Razila Abdul Razak
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
| | - Siti Balkis Budin
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Chung YH, Steinmetz NF. Metastatic Melanoma Treatment and Prophylaxis with S100A9-Targeting Cowpea Mosaic Virus Nanoparticles. Methods Mol Biol 2025; 2902:13-36. [PMID: 40029594 DOI: 10.1007/978-1-0716-4402-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Metastatic cancer continues to be the main cause of cancer-related death, and new therapies must be continuously researched to eradicate these cancers. Immunotherapy aims to stimulate the patient's own immune system to recognize and eliminate tumors and metastatic sites. A particular powerful approach is the use of immunostimulatory agents to reprogram the tumor microenvironment from "cold" to "hot" to prime systemic antitumor immunity. Plant viruses have been investigated for this purpose because their repetitive coat protein structures with encapsidated nucleic acids render them potent immunostimulatory agents. In particular, the cowpea mosaic virus (CPMV) has been found to be a potent anticancer agent when injected intratumorally. However, metastatic cancers cannot be injected in situ, and therefore a systemically administered CPMV prevention and treatment option that is targeted to S100A9 was developed. S100A9 is an immunostimulatory protein that regulates metastatic cancer seeding and growth, thereby making it an attractive target for both prevention and treatment. Protocols for the production and characterization of S100A9-targeted CPMV nanoparticles are described and in vivo experiments that can be carried out to assess the efficacy of the S100A9-targeted CPMV nanoparticles in the prevention and treatment of metastatic melanoma to the lung are detailed. Finally, instructions for flow cytometry analysis of the innate immune cell composition within the lungs following S100A9-targeted CPMV administration are provided.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Nicole F Steinmetz
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA.
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA, USA.
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Hung SK, Lee MS, Chiou WY, Liu DW, Yu CC, Chen LC, Lin RI, Chew CH, Hsu FC, Yang HJ, Chan MWY, Lin HY. Epigenetic modification in radiotherapy and immunotherapy for cancers. Tzu Chi Med J 2024; 36:396-406. [PMID: 39421493 PMCID: PMC11483092 DOI: 10.4103/tcmj.tcmj_3_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/20/2024] [Accepted: 06/18/2024] [Indexed: 10/19/2024] Open
Abstract
Radiotherapy (RT) is one of the primary treatment modalities in managing cancer patients. Recently, combined RT and immunotherapy (IT) (i.e., radio-IT [RIT]) have been aggressively investigated in managing cancer patients. However, several issues in conducting RIT are challenging, such as incorporating advanced irradiation techniques, predictive/prognostic biomarkers, and other treatment modalities. Several clinical efforts and novel biomarkers have been introduced and developed to solve these challenges. For example, stereotactic radiosurgery/stereotactic radiotherapy, stereotactic body radiotherapy/stereotactic ablative body radiotherapy, and FLASH-RT have been applied for delivering precise irradiation to lung and liver tumors in conjunction with IT. Besides, several novel IT agents and incorporations of other therapies, such as targeted and thermal therapies, have been further investigated. The present study reviewed the emerging challenges of RIT in modern oncology. We also evaluated clinical practice, bench research, and multimodality treatments. In addition to several clinically applicable biomarkers, we emphasize the roles of advanced irradiation techniques and epigenetic modification as predictive/prognostic biomarkers and potential therapeutic targets. For example, 6(m) A-based epigenetic agents demonstrate the potential to enhance the treatment effects of RIT. However, further prospective randomized trials should be conducted to confirm their roles.
Collapse
Affiliation(s)
- Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Moon-Sing Lee
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Dai-Wei Liu
- Department of Radiation Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Chih-Chia Yu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Liang-Cheng Chen
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ru-Inn Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Chia-Hui Chew
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Feng-Chun Hsu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Hsuan-Ju Yang
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Michael W. Y. Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
8
|
Mundhara N, Sadhukhan P. Cracking the Codes behind Cancer Cells' Immune Evasion. Int J Mol Sci 2024; 25:8899. [PMID: 39201585 PMCID: PMC11354234 DOI: 10.3390/ijms25168899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Immune evasion is a key phenomenon in understanding tumor recurrence, metastasis, and other critical steps in tumor progression. The tumor microenvironment (TME) is in constant flux due to the tumor's ability to release signals that affect it, while immune cells within it can impact cancer cell behavior. Cancer cells undergo several changes, which can change the enrichment of different immune cells and modulate the activity of existing immune cells in the tumor microenvironment. Cancer cells can evade immune surveillance by downregulating antigen presentation or expressing immune checkpoint molecules. High levels of tumor-infiltrating lymphocytes (TILs) correlate with better outcomes, and robust immune responses can control tumor growth. On the contrary, increased enrichment of Tregs, myeloid-derived suppressor cells, and M2-like anti-inflammatory macrophages can hinder effective immune surveillance and predict poor prognosis. Overall, understanding these immune evasion mechanisms guides therapeutic strategies. Researchers aim to modulate the TME to enhance immune surveillance and improve patient outcomes. In this review article, we strive to summarize the composition of the tumor immune microenvironment, factors affecting the tumor immune microenvironment (TIME), and different therapeutic modalities targeting the immune cells. This review is a first-hand reference to understand the basics of immune surveillance and immune evasion.
Collapse
Affiliation(s)
| | - Pritam Sadhukhan
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
9
|
Li Y, Li B, Wang Q, Zhang X, Zhang Q, Zhou X, Shi R, Wu Y, Zhai W, Chen Z, Zhou X, Zhao W. Dual targeting of TIGIT and PD-1 with a novel small molecule for cancer immunotherapy. Biochem Pharmacol 2024; 223:116162. [PMID: 38527557 DOI: 10.1016/j.bcp.2024.116162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Immune checkpoint inhibitors have unveiled promising clinical prospects in cancer treatment. Nonetheless, their effectiveness remains restricted, marked by consistently low response rates and affecting only a subset of patients. The co-blockade of TIGIT with PD-1 has exhibited substantial anti-tumor effects. Notably, there is a dearth of reports on small-molecule inhibitors concurrently targeting both TIGIT and PD-1. In this study, we employed Microscale Thermophoresis (MST) to screen our laboratory's existing repository of small molecules. Our findings illuminated Gln(TrT) 's affinity for both TIGIT and PD-1, affirming its potential to effectively inhibit TIGIT/PVR and PD-1/PD-L1 pathways. In vitro co-culture experiments substantiated Gln(TrT)'s proficiency in restoring Jurkat T-cell functionality by blocking both TIGIT/PVR and PD-1/PD-L1 interactions. In the MC38 murine tumor model, Gln(TrT) emerges as a pivotal modulator, promoting the intratumoral infiltration and functional competence of CD8+ T cells. Furthermore, whether used as a monotherapy or in conjunction with radiotherapy, Gln(TrT) substantially impedes MC38 tumor progression, significantly extending the survival of murine subjects.
Collapse
Affiliation(s)
- Yang Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Beibei Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qingchao Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiangrui Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qiongqiong Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ranran Shi
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjie Zhai
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaowen Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
10
|
Garate-Soraluze E, Marco-Sanz J, Serrano-Mendioroz I, Marrodán L, Fernandez-Rubio L, Labiano S, Rodríguez-Ruiz ME. Radiotherapy protocols for mouse cancer model. Methods Cell Biol 2024; 185:99-113. [PMID: 38556454 DOI: 10.1016/bs.mcb.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Radiotherapy is a crucial treatment modality for cancer patients, with approximately 60% of individuals undergoing ionizing radiation as part of their disease management. In recent years, there has been a growing trend toward minimizing irradiation fields through the use of image-guided dosimetry and innovative technologies. These advancements allow for selective irradiation, delivering higher local doses while reducing the number of treatment sessions. Consequently, computer-assisted methods have significantly enhanced the effectiveness of radiotherapy in the curative and palliative treatment of various cancers. Although radiation therapy alone can effectively achieve local control in some cancer types, it may not be sufficient for others. As a result, further preclinical research is necessary to explore novel approaches including new schedules of radiotherapy treatments. Unfortunately, there is a concerning lack of correlation between clinical outcomes and experiments conducted on mouse models. We hypothesize that this disparity arises from the differences in irradiation strategies employed in preclinical studies compared to those used in clinical practice, which ultimately affects the translatability of findings to patients. In this study, we present two comprehensive radiotherapy protocols for the treatment of orthotopic melanoma and glioblastoma tumors. These protocols utilize a small animal radiation research platform, which is an ideal radiation device for delivering localized and precise X-ray doses to the tumor mass. By employing these platforms, we aim to limit the side effects associated with irradiating healthy surrounding tissues. Our detailed protocols offer a valuable framework for conducting preclinical studies that closely mimic clinical radiotherapy techniques, bridging the gap between experimental results and patient outcomes.
Collapse
Affiliation(s)
- Eneko Garate-Soraluze
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Javier Marco-Sanz
- Program of Solid Tumors, Center for Applied Medical Research (CIMA), Pamplona, Spain; Department of Pediatrics, University of Navarra Clinic, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Irantzu Serrano-Mendioroz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Lucía Marrodán
- Program of Solid Tumors, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Leticia Fernandez-Rubio
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Sara Labiano
- Program of Solid Tumors, Center for Applied Medical Research (CIMA), Pamplona, Spain; Department of Pediatrics, University of Navarra Clinic, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - María E Rodríguez-Ruiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Department of Radiation Oncology, University of Navarra Clinic, Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
11
|
Sudo M, Tsutsui H, Fujimoto J. Carbon Ion Irradiation Activates Anti-Cancer Immunity. Int J Mol Sci 2024; 25:2830. [PMID: 38474078 DOI: 10.3390/ijms25052830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Carbon ion beams have the unique property of higher linear energy transfer, which causes clustered damage of DNA, impacting the cell repair system. This sometimes triggers apoptosis and the release in the cytoplasm of damaged DNA, leading to type I interferon (IFN) secretion via the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes pathway. Dendritic cells phagocytize dead cancer cells and damaged DNA derived from injured cancer cells, which together activate dendritic cells to present cancer-derived antigens to antigen-specific T cells in the lymph nodes. Thus, carbon ion radiation therapy (CIRT) activates anti-cancer immunity. However, cancer is protected by the tumor microenvironment (TME), which consists of pro-cancerous immune cells, such as regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages. The TME is too robust to be destroyed by the CIRT-mediated anti-cancer immunity. Various modalities targeting regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages have been developed. Preclinical studies have shown that CIRT-mediated anti-cancer immunity exerts its effects in the presence of these modalities. In this review article, we provide an overview of CIRT-mediated anti-cancer immunity, with a particular focus on recently identified means of targeting the TME.
Collapse
Affiliation(s)
- Makoto Sudo
- Department of Gastroenterological Surgery, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Hiroko Tsutsui
- Department of Gastroenterological Surgery, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Jiro Fujimoto
- Department of Gastroenterological Surgery, Hyogo Medical University, Nishinomiya 663-8501, Japan
- Osaka Heavy Ion Therapy Center, Osaka 540-0008, Japan
| |
Collapse
|
12
|
Weber M, Ries J, Braun K, Wehrhan F, Distel L, Geppert C, Lutz R, Kesting M, Trumet L. Neoadjuvant Radiochemotherapy Alters the Immune and Metabolic Microenvironment in Oral Cancer-Analyses of CD68, CD163, TGF-β1, GLUT-1 and HIF-1α Expressions. Cells 2024; 13:397. [PMID: 38474362 PMCID: PMC10930773 DOI: 10.3390/cells13050397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The first-line treatment of oral squamous cell carcinoma (OSCC) involves surgical tumor resection, followed by adjuvant radio(chemo)therapy (R(C)T) in advanced cases. Neoadjuvant radio- and/or chemotherapy has failed to show improved survival in OSCC. Recently, neoadjuvant immunotherapy has shown promising therapeutic efficacy in phase 2 trials. In this context, the addition of radio- and chemotherapy is being reconsidered. Therefore, a better understanding of the tumor-biologic effects of neoadjuvant RCT would be beneficial. The current study was conducted on a retrospective cohort of patients who received neoadjuvant RCT for the treatment of oral cancer. The aim of the study was to evaluate the influence of neoadjuvant RCT on the immunological tumor microenvironment (TME) and hypoxic and glucose metabolisms. METHODS A cohort of 45 OSSC tissue samples from patients were analyzed before and after RCT (total 50.4 Gy; 1.8 Gy 5× weekly; Cisplatin + 5-Fluorouracil). Immunohistochemistry for CD68, CD163, TGF-β, GLUT-1 and HIF-1α was performed using tissue microarrays and automated cell counting. Differences in expression before and after RCT and associations with histomorphological parameters (T-status, N-status) were assessed using the Mann-Whitney U test. RESULTS Tumor resection specimens after neoadjuvant RCT showed a significant decrease in CD68 infiltration and a significant increase in CD163 cell density. The CD68/CD163 ratio was significantly lower after RCT, indicating a shift toward M2 polarization. The GLUT-1 and HIF-1α expressions were significantly lower after RCT. Larger tumors (T3/T4) showed a lower GLUT-1 expression. Other biomarkers were not associated with the T- and N-status. CONCLUSIONS Neoadjuvant RCT with 50.4 Gy induced a shift toward the M2 polarization of macrophages in the TME. This change in immune composition is not favorable and may be prognostically negative and counteract immunotherapeutic approaches. In addition, the decreased expressions in GLUT-1 and HIF-1α indicate reductions in the glucose metabolism and hypoxic energy metabolism in response to "high dose" neoadjuvant RCT, which may be therapeutically desirable.
Collapse
Affiliation(s)
- Manuel Weber
- Department of Oral and Cranio-Maxillofacial Surgery, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glückstraße 11, 91054 Erlangen, Germany (L.T.)
- Deutsches Zentrum Immuntherapie (DZI), Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jutta Ries
- Department of Oral and Cranio-Maxillofacial Surgery, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glückstraße 11, 91054 Erlangen, Germany (L.T.)
- Deutsches Zentrum Immuntherapie (DZI), Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Kristina Braun
- Department of Oral and Cranio-Maxillofacial Surgery, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glückstraße 11, 91054 Erlangen, Germany (L.T.)
| | - Falk Wehrhan
- Department of Oral and Cranio-Maxillofacial Surgery, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glückstraße 11, 91054 Erlangen, Germany (L.T.)
- Private Office for Maxillofacial Surgery, 09599 Freiberg, Germany
| | - Luitpold Distel
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Carol Geppert
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Rainer Lutz
- Department of Oral and Cranio-Maxillofacial Surgery, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glückstraße 11, 91054 Erlangen, Germany (L.T.)
- Deutsches Zentrum Immuntherapie (DZI), Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Marco Kesting
- Department of Oral and Cranio-Maxillofacial Surgery, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glückstraße 11, 91054 Erlangen, Germany (L.T.)
- Deutsches Zentrum Immuntherapie (DZI), Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Leah Trumet
- Department of Oral and Cranio-Maxillofacial Surgery, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glückstraße 11, 91054 Erlangen, Germany (L.T.)
- Deutsches Zentrum Immuntherapie (DZI), Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Department of Operative Dentistry and Periodontology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
13
|
Shirbhate E, Singh V, Jahoriya V, Mishra A, Veerasamy R, Tiwari AK, Rajak H. Dual inhibitors of HDAC and other epigenetic regulators: A novel strategy for cancer treatment. Eur J Med Chem 2024; 263:115938. [PMID: 37989059 DOI: 10.1016/j.ejmech.2023.115938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/25/2023] [Accepted: 11/05/2023] [Indexed: 11/23/2023]
Abstract
A significant advancement in the field of epigenetic drug discovery has been evidenced in recent years. Epigenetic alterations are hereditary, nevertheless reversible variations to DNA or histone adaptations that regulate gene function individualistically of the fundamental sequence. The design and synthesis of various drugs targeting epigenetic regulators open a new door for epigenetic-targeted therapies to parade worthwhile therapeutic potential for haematological and solid malignancies. Several ongoing clinical trials on dual targeting strategy are being conducted comprising HDAC inhibitory component and an epigenetic regulating agent. In this perspective, the review discusses the pharmacological aspects of HDAC and other epigenetic regulating factors as dual inhibitors as an emerging alternative approach for combination therapies.
Collapse
Affiliation(s)
- Ekta Shirbhate
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, 495 009, CG, India
| | - Vaibhav Singh
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, 495 009, CG, India
| | - Varsha Jahoriya
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, 495 009, CG, India
| | - Aditya Mishra
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, 495 009, CG, India
| | - Ravichandran Veerasamy
- Faculty of Pharmacy, AIMST University, Semeling, 08100, Bedong, Kedah Darul Aman, Malaysia
| | - Amit K Tiwari
- Cancer & System Therapeutics, UAMS College of Pharmacy, UAMS - University of Arkansas for Medical Sciences, AR, United States
| | - Harish Rajak
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, 495 009, CG, India.
| |
Collapse
|
14
|
Sekine I. Clinical development of immune checkpoint inhibitors in Japan-the same goal, different paths. Jpn J Clin Oncol 2023; 53:873-874. [PMID: 37539621 DOI: 10.1093/jjco/hyad085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 08/05/2023] Open
Affiliation(s)
- Ikuo Sekine
- Department of Medical Oncology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
15
|
Donlon NE, Davern M, Sheppard A, O'Connell F, Moran B, Nugent TS, Heeran A, Phelan JJ, Bhardwaj A, Butler C, Ravi N, Donohoe CL, Lynam-Lennon N, Maher S, Reynolds JV, Lysaght J. Potential of damage associated molecular patterns in synergising radiation and the immune response in oesophageal cancer. World J Gastrointest Oncol 2023; 15:1349-1365. [PMID: 37663943 PMCID: PMC10473939 DOI: 10.4251/wjgo.v15.i8.1349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/29/2023] [Accepted: 06/25/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND There is an intimate crosstalk between cancer formation, dissemination, treatment response and the host immune system, with inducing tumour cell death the ultimate therapeutic goal for most anti-cancer treatments. However, inducing a purposeful synergistic response between conventional therapies and the immune system remains evasive. The release of damage associated molecular patterns (DAMPs) is indicative of immunogenic cell death and propagation of established immune responses. However, there is a gap in the literature regarding the importance of DAMP expression in oesophageal adenocarcinoma (OAC) or by immune cells themselves. AIM To investigate the effects of conventional therapies on DAMP expression and to determine whether OAC is an immunogenic cancer. METHODS We investigated the levels of immunogenic cell death-associated DAMPs, calreticulin (CRT) and HMGB1 using an OAC isogenic model of radioresistance. DAMP expression was also assessed directly using ex vivo cancer patient T cells (n = 10) and within tumour biopsies (n = 9) both pre and post-treatment with clinically relevant chemo(radio)therapeutics. RESULTS Hypoxia in combination with nutrient deprivation significantly reduces DAMP expression by OAC cells in vitro. Significantly increased frequencies of T cell DAMP expression in OAC patients were observed following chemo(radio)therapy, which was significantly higher in tumour tissue compared with peripheral blood. Patients with high expression of HMGB1 had a significantly better tumour regression grade (TRG 1-2) compared to low expressors. CONCLUSION In conclusion, OAC expresses an immunogenic phenotype with two distinct subgroups of high and low DAMP expressors, which correlated with tumour regression grade and lymphatic invasion. It also identifies DAMPs namely CRT and HMGB1 as potential promising biomarkers in predicting good pathological responses to conventional chemo(radio)therapies currently used in the multimodal management of locally advanced disease.
Collapse
Affiliation(s)
- Noel E Donlon
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| | - Maria Davern
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| | - Andrew Sheppard
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| | - Fiona O'Connell
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| | - Brendan Moran
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| | - Timothy S Nugent
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| | - Aisling Heeran
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| | - James J Phelan
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| | - Anshul Bhardwaj
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| | - Christine Butler
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| | - Narayanasamy Ravi
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| | - Claire L Donohoe
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| | - Niamh Lynam-Lennon
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| | - Stephen Maher
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| | - John V Reynolds
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin D08, Ireland
| |
Collapse
|
16
|
Reddy A, Nwankwo N, Sekar A, Kumar A. A case report of abscopal toxicity in a patient with lung adenocarcinoma. Oxf Med Case Reports 2023; 2023:omad076. [PMID: 37484555 PMCID: PMC10359066 DOI: 10.1093/omcr/omad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/07/2023] [Accepted: 06/18/2023] [Indexed: 07/25/2023] Open
Abstract
The abscopal effect describes tumor responses outside the irradiated field. The literature shows increased overall survival and response rates in patients receiving immunotherapy and radiation, likely from exaggerated abscopal effects. We present a 57-year-old woman with stage 4 lung adenocarcinoma who received treatment with a combination of chemotherapy and immunotherapy. She had disease progression on maintenance immunotherapy, confirming resistance. Palliative radiation to the sternal bone lesion resulted in a significant response to all areas of cancer, confirming the abscopal effect. Unfortunately, she developed severe pneumonitis; to our knowledge, this is the first case of abscopal lung toxicity.
Collapse
Affiliation(s)
- Aswanth Reddy
- Correspondence address. Department of Hematology and Oncology, Mercy Clinic, 7001 Rogers ave, Fort Smith, AR 72903, USA. Tel: 479-314-7490; Fax: 479-314-7494; E-mail:
| | - Nkolika Nwankwo
- Department of Internal Medicine, Mercy Clinic, 7001 Rogers ave, Fort Smith, AR 72903, USA
| | - Arjun Sekar
- Department of Nephrology, Rochester Regional Health, RGH Center for Kidney Disease and Hypertension, 370 Ridge Rd E, Ste 20, Rochester, NY 14621, USA
| | - Aswini Kumar
- Department of Cardiology, Mercy Clinic, 7001 Rogers ave, Fort Smith, AR 72903, USA
| |
Collapse
|
17
|
Kuge T, Shiroyama T, Tamiya A, Tamiya M, Kanazu M, Kinehara Y, Tanaka T, Morimura O, Taniguchi Y, Niki T, Tetsumoto S, Hayashi K, Nishino K, Nagatomo I, Kumanogoh A. Impact of Lymphopenia Recovery After Chemoradiotherapy on Durvalumab Consolidation Therapy in Stage III NSCLC. JTO Clin Res Rep 2023; 4:100505. [PMID: 37284296 PMCID: PMC10239913 DOI: 10.1016/j.jtocrr.2023.100505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Durvalumab maintenance therapy after definitive concurrent chemoradiotherapy (CRT) is the standard treatment modality for stage III NSCLC. Although severe treatment-related lymphopenia (TRL) during CRT may impair the efficacy of subsequent durvalumab therapy, data on the effect of TRL recovery on consolidation durvalumab therapy are lacking. Methods This retrospective study evaluated patients with unresectable stage III NSCLC treated with durvalumab after concurrent CRT. The patients were enrolled across nine institutes throughout Japan between August 2018 and March 2020. The effect of TRL recovery on survival was evaluated. The patients were divided into two groups on the basis of their lymphocyte recovery status: the recovery group involved patients who did not experience severe TRL or experienced TRL but exhibited lymphocyte count recovery at durvalumab initiation, and the nonrecovery group involved patients who experienced severe TRL and did not exhibit lymphocyte count recovery on durvalumab initiation. Results Among the 151 patients evaluated, 41 (27%) and 110 (73%) patients were classified into the recovery and the nonrecovery groups, respectively. The nonrecovery group had significantly worse progression-free survival than the recovery group (21.9 mo versus not reached, p = 0.018). Recovery from TRL (p = 0.027) and high pre-CRT lymphocyte count (p = 0.028) independently influenced progression-free survival. Conclusions Baseline lymphocyte count and recovery from TRL at the start of durvalumab therapy were predictive factors for survival outcomes in patients with NSCLC treated with durvalumab consolidation after concurrent CRT.
Collapse
Affiliation(s)
- Tomoki Kuge
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Thoracic Oncology, National Hospital Organization Osaka Toneyama Medical Center, Osaka, Japan
| | - Takayuki Shiroyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akihiro Tamiya
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Motohiro Tamiya
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masaki Kanazu
- Department of Thoracic Oncology, National Hospital Organization Osaka Toneyama Medical Center, Osaka, Japan
| | - Yuhei Kinehara
- Department of Respiratory Medicine and Clinical Immunology, Nippon Life Hospital, Osaka, Japan
| | - Tsunehiro Tanaka
- Department of Respiratory Medicine, Osaka Police Hospital, Osaka, Japan
| | - Osamu Morimura
- Department of Internal Medicine, Toyonaka Municipal Hospital, Osaka, Japan
| | - Yoshihiko Taniguchi
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Toshie Niki
- Department of Respiratory Medicine, Nishinomiya Municipal Central Hospital, Hyogo, Japan
| | - Satoshi Tetsumoto
- Department of Respiratory Medicine and Clinical Immunology, Suita Municipal Hospital, Osaka, Japan
| | - Kazuhiko Hayashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazumi Nishino
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Izumi Nagatomo
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Immunopathology, World Premier International (WPI), Immunology Frontier Research Center (iFReC), Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
- Japan Agency for Medical Research and Development – Core Research for Evolutional Science and Technology (AMED–CREST), Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka, Japan
| |
Collapse
|
18
|
Awada H, Paris F, Pecqueur C. Exploiting radiation immunostimulatory effects to improve glioblastoma outcome. Neuro Oncol 2023; 25:433-446. [PMID: 36239313 PMCID: PMC10013704 DOI: 10.1093/neuonc/noac239] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 11/14/2022] Open
Abstract
Cancer treatment protocols depend on tumor type, localization, grade, and patient. Despite aggressive treatments, median survival of patients with Glioblastoma (GBM), the most common primary brain tumor in adults, does not exceed 18 months, and all patients eventually relapse. Thus, novel therapeutic approaches are urgently needed. Radiotherapy (RT) induces a multitude of alterations within the tumor ecosystem, ultimately modifying the degree of tumor immunogenicity at GBM relapse. The present manuscript reviews the diverse effects of RT radiotherapy on tumors, with a special focus on its immunomodulatory impact to finally discuss how RT could be exploited in GBM treatment through immunotherapy targeting. Indeed, while further experimental and clinical studies are definitively required to successfully translate preclinical results in clinical trials, current studies highlight the therapeutic potential of immunotherapy to uncover novel avenues to fight GBM.
Collapse
Affiliation(s)
- Hala Awada
- Nantes Université, CRCI2NA, INSERM, CNRS, F-44000 Nantes, France.,Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - François Paris
- Nantes Université, CRCI2NA, INSERM, CNRS, F-44000 Nantes, France.,Institut de Cancérologie de l'Ouest, Saint-Herblain, France
| | - Claire Pecqueur
- Nantes Université, CRCI2NA, INSERM, CNRS, F-44000 Nantes, France
| |
Collapse
|
19
|
Zhou YJ, Tang Y, Liu SJ, Zeng PH, Qu L, Jing QC, Yin WJ. Radiation-induced liver disease: beyond DNA damage. Cell Cycle 2023; 22:506-526. [PMID: 36214587 PMCID: PMC9928481 DOI: 10.1080/15384101.2022.2131163] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/03/2022] Open
Abstract
Radiation-induced liver disease (RILD), also known as radiation hepatitis, is a serious side effect of radiotherapy (RT) for hepatocellular carcinoma. The therapeutic dose of RT can damage normal liver tissue, and the toxicity that accumulates around the irradiated liver tissue is related to numerous physiological and pathological processes. RILD may restrict treatment use or eventually deteriorate into liver fibrosis. However, the research on the mechanism of radiation-induced liver injury has seen little progress compared with that on radiation injury in other tissues, and no targeted clinical pharmacological treatment for RILD exists. The DNA damage response caused by ionizing radiation plays an important role in the pathogenesis and development of RILD. Therefore, in this review, we systematically summarize the molecular and cellular mechanisms involved in RILD. Such an analysis is essential for preventing the occurrence and development of RILD and further exploring the potential treatment of this disease.
Collapse
Affiliation(s)
- Ying Jie Zhou
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yun Tang
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Si Jian Liu
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Peng Hui Zeng
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Qu
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qian Cheng Jing
- The Affiliated Changsha Central Hospital, Department of Otolaryngology Head and Neck Surgery,Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Otolaryngology Head and Neck Surgery, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Wen Jun Yin
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory, Changsha Central Hospital, University of South China, Changsha, Hunan, China
| |
Collapse
|
20
|
Wang N, Ma T, Yu B. Targeting epigenetic regulators to overcome drug resistance in cancers. Signal Transduct Target Ther 2023; 8:69. [PMID: 36797239 PMCID: PMC9935618 DOI: 10.1038/s41392-023-01341-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/15/2023] [Accepted: 01/28/2023] [Indexed: 02/18/2023] Open
Abstract
Drug resistance is mainly responsible for cancer recurrence and poor prognosis. Epigenetic regulation is a heritable change in gene expressions independent of nucleotide sequence changes. As the common epigenetic regulation mechanisms, DNA methylation, histone modification, and non-coding RNA regulation have been well studied. Increasing evidence has shown that aberrant epigenetic regulations contribute to tumor resistance. Therefore, targeting epigenetic regulators represents an effective strategy to reverse drug resistance. In this review, we mainly summarize the roles of epigenetic regulation in tumor resistance. In addition, as the essential factors for epigenetic modifications, histone demethylases mediate the histone or genomic DNA modifications. Herein, we comprehensively describe the functions of the histone demethylase family including the lysine-specific demethylase family, the Jumonji C-domain-containing demethylase family, and the histone arginine demethylase family, and fully discuss their regulatory mechanisms related to cancer drug resistance. In addition, therapeutic strategies, including small-molecule inhibitors and small interfering RNA targeting histone demethylases to overcome drug resistance, are also described.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ting Ma
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Bin Yu
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
21
|
Ruan H, Oike T, Sato H, Ando K, Ohno T. Association between Tumor Mutational Burden, Stromal CD8 + Tumor-Infiltrating Lymphocytes, and Clinical Factors in Cervical Cancers Treated with Radiotherapy. Cancers (Basel) 2023; 15:cancers15041210. [PMID: 36831552 PMCID: PMC9954714 DOI: 10.3390/cancers15041210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Tumor mutational burden (TMB) and stromal CD8-positive tumor-infiltrating lymphocytes (CD8+TILs) serve important roles in antitumor immune responses to radiotherapy. This study aimed to elucidate the association between TMB, CD8+TILs, and clinical factors in patients with cervical cancer treated with radiotherapy. METHODS Patients with squamous cell carcinoma of the uterine cervix treated with definitive radiotherapy, and with available somatic mutation data and immunohistochemical staining data from identical tumor tissues, were enrolled retrospectively. The association between TMB and/or CD8+TIL density and patient characteristics, mutation profiles, and treatment outcome was analyzed. RESULTS The study analyzed 44 patients (median follow-up period, 61 months). There was no significant correlation between TMB and CD8+TIL density, or between TMB or CD8+TIL density and patient characteristics. TMB-high or CD8+TIL density-low status was associated with worse overall survival and distant metastasis-free survival; the predictive value of these factors became greater when used in combination. TMB-high or CD8+TIL density-high status was associated with ARID1A mutations. CONCLUSIONS These data indicate independence of TMB and CD8+TIL density and the involvement of ARID1A alterations in antitumor immune responses in patients with cervical cancers treated with radiotherapy, warranting further mechanistic research and prospective validation.
Collapse
Affiliation(s)
- Hanguang Ruan
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi 371-8511, Gunma, Japan
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi 371-8511, Gunma, Japan
- Gunma University Heavy Ion Medical Center, 3-39-22, Showa-machi, Maebashi 371-8511, Gunma, Japan
- Correspondence:
| | - Hiro Sato
- Gunma University Heavy Ion Medical Center, 3-39-22, Showa-machi, Maebashi 371-8511, Gunma, Japan
| | - Ken Ando
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi 371-8511, Gunma, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi 371-8511, Gunma, Japan
- Gunma University Heavy Ion Medical Center, 3-39-22, Showa-machi, Maebashi 371-8511, Gunma, Japan
| |
Collapse
|
22
|
Kita N, Tomita N, Takaoka T, Sudo S, Tsuzuki Y, Okazaki D, Niwa M, Torii A, Takano S, Niimi A, Hiwatashi A. Comparison of Recurrence Patterns between Adenocarcinoma and Squamous Cell Carcinoma after Stereotactic Body Radiotherapy for Early-Stage Lung Cancer. Cancers (Basel) 2023; 15:cancers15030887. [PMID: 36765844 PMCID: PMC9913504 DOI: 10.3390/cancers15030887] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/29/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
We compared recurrence patterns between adenocarcinoma (ADC) and squamous cell carcinoma (SCC) after stereotactic body radiotherapy (SBRT) for early-stage lung cancer. Patients with ADC and SCC histology, who were treated with SBRT for clinical stage IA1-IIA lung cancer at our institution, were included in the analysis. The rates of disease-free survival (DFS), overall survival (OS), local recurrence (LR), lymph node metastasis (LNM), and distant metastasis (DM) were calculated using the Kaplan-Meier method or the cumulative incidence function. Among the 204 patients analyzed, 138 and 66 were in the ADC and SCC groups, respectively. The median follow-up period was 60 months. The five-year DFS and OS rates were 57% vs. 41% and 69% vs. 48% in the ADC and SCC groups, respectively (p = 0.015 and 0.019, respectively). In the multivariate analysis, the histological type was not associated with DFS or OS. Five-year LR, LNM, and DM rates were 10% vs. 24%, 12% vs. 20%, and 25% vs. 27% in the ADC and SCC groups, respectively (p = 0.0067, 0.074, and 0.67, respectively). The multivariate analysis identified the histological type of SCC as an independent factor for LR (hazard ratio, 2.41; 95% confidence interval, 1.21-4.77; p = 0.012). The present results suggest that the risk of LR after SBRT is higher for SCC than for ADC.
Collapse
Affiliation(s)
- Nozomi Kita
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Aichi, Japan
| | - Natsuo Tomita
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Aichi, Japan
- Correspondence: ; Tel.: +81-52-853-8276
| | - Taiki Takaoka
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Aichi, Japan
| | - Shuou Sudo
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Aichi, Japan
| | - Yusuke Tsuzuki
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Aichi, Japan
| | - Dai Okazaki
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Aichi, Japan
| | - Masanari Niwa
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Aichi, Japan
| | - Akira Torii
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Aichi, Japan
| | - Seiya Takano
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Aichi, Japan
| | - Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Aichi, Japan
| | - Akio Hiwatashi
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Aichi, Japan
| |
Collapse
|
23
|
Affiliation(s)
- Hideo Kunitoh
- Department of Medical Oncology, Japanese Red Cross Medical Center, Tokyo, Japan Editor-in-Chief, Japanese Journal of Clinical Oncology
| |
Collapse
|
24
|
Rodriguez-Ruiz ME, Serrano-Mendioroz I, Garate-Soraluze E, Sánchez-Mateos P, Barrio-Alonso C, Rodríguez López I, Diaz Pascual V, Arbea Moreno L, Alvarez M, Sanmamed MF, Perez-Gracia JL, Escuin-Ordinas H, Quintero M, Melero I. Intratumoral BO-112 in combination with radiotherapy synergizes to achieve CD8 T-cell-mediated local tumor control. J Immunother Cancer 2023; 11:e005011. [PMID: 36631161 PMCID: PMC9835951 DOI: 10.1136/jitc-2022-005011] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Radioimmunotherapy combines irradiation of tumor lesions with immunotherapy to achieve local and abscopal control of cancer. Most immunotherapy agents are given systemically, but strategies for delivering immunotherapy locally are under clinical scrutiny to maximize efficacy and avoid toxicity. Local immunotherapy, by injecting various pathogen-associated molecular patterns, has shown efficacy both preclinically and clinically. BO-112 is a viral mimetic based on nanoplexed double-stranded RNA (poly I:C) which exerts immune-mediated antitumor effects in mice and humans on intratumoral delivery. BO-112 and focal irradiation were used to make the proof-of-concept for local immunotherapy plus radiation therapy combinations. METHODS Murine transplantable tumor cell lines (TS/A, MC38 and B16-OVA) were used to show increased immunogenic features under irradiation, as well as in bilateral tumor models in which only one of the lesions was irradiated or/and injected with BO-112. Flow cytometry and multiplex tissue immunofluorescence were used to determine the effects on antitumor immunity. Depletions of immune cell populations and knockout mice for the IFNAR and BATF-3 genes were used to delineate the immune system requirements for efficacy. RESULTS In cultures of TS/A breast cancer cells, the combination of irradiation and BO-112 showed more prominent features of immunogenic tumor cell death in terms of calreticulin exposure. Injection of BO-112 into the tumor lesion receiving radiation achieved excellent control of the treated tumor and modest delays in contralateral tumor progression. Local effects were associated with more prominent infiltrates of antitumor cytotoxic tumor lymphocytes (CTLs). Importantly, local irradiation plus BO-112 in one of the tumor lesions that enhanced the therapeutic effects of radiotherapy on distant irradiated lesions that were not injected with BO-112. Hence, this beneficial effect of local irradiation plus BO-112 on a tumor lesion enhanced the therapeutic response to radiotherapy on distant non-injected lesions. CONCLUSION This study demonstrates that local BO-112 immunotherapy and focal irradiation may act in synergy to achieve local tumor control. Irradiation plus BO-112 in one of the tumor lesions enhanced the therapeutic effects on distant irradiated lesions that were not injected with BO-112, suggesting strategies to treat oligometastatic patients with lesions susceptible to radiotherapy and with at least one tumor accessible for repeated BO-112 intratumoral injections.
Collapse
Affiliation(s)
- Maria E Rodriguez-Ruiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Irantzu Serrano-Mendioroz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Eneko Garate-Soraluze
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | | | - Celia Barrio-Alonso
- Departments of immunology and pathology, Hospital Gregorio Marañon, Madrid, Spain
| | - Inmaculada Rodríguez López
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Victor Diaz Pascual
- Departments of medical physic, Clínica Universidad de Navarra, Pamplona, Spain
| | - Leire Arbea Moreno
- Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Maite Alvarez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Miguel F Sanmamed
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Jose Luis Perez-Gracia
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | | | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
25
|
Okada K, Sato H, Kumazawa T, Mori Y, Permata TBM, Uchihara Y, Noda SE, Suzuki K, Ikota H, Yokoo H, Gondhowiardjo S, Nakano T, Ohno T, Shibata A. Calreticulin Upregulation in Cervical Cancer Tissues From Patients After 10 Gy Radiation Therapy. Adv Radiat Oncol 2022; 8:101159. [PMID: 36793509 PMCID: PMC9922916 DOI: 10.1016/j.adro.2022.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
Purpose Understanding the immune response during radiation therapy (RT) in a clinical setting is imperative for maximizing the efficacy of combined RT and immunotherapy. Calreticulin, a major damage-associated molecular pattern that is exposed on the cell surface after RT, is presumed to be associated with the tumor-specific immune response. Here, we examined changes in calreticulin expression in clinical specimens obtained before and during RT and analyzed its relationship with the density of CD8+ T cells in the same patient set. Methods and Materials This retrospective analysis evaluated 67 patients with cervical squamous cell carcinoma who were treated with definitive RT. Tumor biopsy specimens were collected before RT and after 10 Gy irradiation. Calreticulin expression in tumor cells was evaluated via immunohistochemical staining. Subsequently, the patients were divided into 2 groups according to the level of calreticulin expression, and the clinical outcomes were compared. Finally, the correlation between calreticulin levels and density of stromal CD8+ T cells was evaluated. Results The calreticulin expression significantly increased after 10 Gy (82% of patients showed an increase; P < .01). Patients with increased calreticulin levels tended to show better progression-free survival, but this was not statistically significant (P = .09). In patients with high expression of calreticulin, a positive trend was observed between calreticulin and CD8+ T cell density, but the association was not statistically significant (P = .06). Conclusions Calreticulin expression increased after 10 Gy irradiation in tissue biopsies of patients with cervical cancer. Higher calreticulin expression levels are potentially associated with better progression-free survival and greater T cell positivity, but there was no statistically significant relationship between calreticulin upregulation and clinical outcomes or CD8+ T cell density. Further analysis will be required to clarify mechanisms underlying the immune response to RT and to optimize the RT and immunotherapy combination approach.
Collapse
Affiliation(s)
- Kohei Okada
- Department of Radiation Oncology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Hiro Sato
- Department of Radiation Oncology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan,Corresponding authors: Hiro Sato, MD, PhD and Tatsuya Ohno, MD, PhD
| | - Takuya Kumazawa
- Department of Radiation Oncology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan,Department of Radiation Oncology, Saku Central Hospital Advanced Care Center, Nakagomi, Saku, Nagano, Japan
| | - Yasumasa Mori
- National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Anagawa, Inage, Chiba, Japan
| | - Tiara Bunga Mayang Permata
- Department of Radiation Oncology, Faculty of Medicine Universitas Indonesia - Dr. Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Yuki Uchihara
- Signal Transduction Program, Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma, Japan
| | - Shin-ei Noda
- Department of Radiation Oncology, Comprehensive Cancer Center, International Medical Center, Saitama Medical University, Saitama, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Hayato Ikota
- Clinical Department of Pathology, Gunma University Hospital, Maebashi, Gunma, Japan
| | - Hideaki Yokoo
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Soehartati Gondhowiardjo
- Department of Radiation Oncology, Faculty of Medicine Universitas Indonesia - Dr. Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Takashi Nakano
- National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Anagawa, Inage, Chiba, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan,Corresponding authors: Hiro Sato, MD, PhD and Tatsuya Ohno, MD, PhD
| | - Atsushi Shibata
- Signal Transduction Program, Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
26
|
Eek Mariampillai A, Hauge S, Øynebråten I, Rødland GE, Corthay A, Syljuåsen RG. Caspase activation counteracts interferon signaling after G2 checkpoint abrogation by ATR inhibition in irradiated human cancer cells. Front Oncol 2022; 12:981332. [PMID: 36387237 PMCID: PMC9650454 DOI: 10.3389/fonc.2022.981332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022] Open
Abstract
Recent studies suggest that inhibition of the ATR kinase can potentiate radiation-induced antitumor immune responses, but the extent and mechanisms of such responses in human cancers remain scarcely understood. We aimed to assess whether the ATR inhibitors VE822 and AZD6738, by abrogating the G2 checkpoint, increase cGAS-mediated type I IFN response after irradiation in human lung cancer and osteosarcoma cell lines. Supporting that the checkpoint may prevent IFN induction, radiation-induced IFN signaling declined when the G2 checkpoint arrest was prolonged at high radiation doses. G2 checkpoint abrogation after co-treatment with radiation and ATR inhibitors was accompanied by increased radiation-induced IFN signaling in four out of five cell lines tested. Consistent with the hypothesis that the cytosolic DNA sensor cGAS may detect DNA from ruptured micronuclei after G2 checkpoint abrogation, cGAS co-localized with micronuclei, and depletion of cGAS or STING abolished the IFN responses. Contrastingly, one lung cancer cell line showed no increase in IFN signaling despite irradiation and G2 checkpoint abrogation. This cell line showed a higher level of the exonuclease TREX1 than the other cell lines, but TREX1 depletion did not enhance IFN signaling. Rather, addition of a pan-caspase inhibitor restored the IFN response in this cell line and also increased the responses in the other cell lines. These results show that treatment-induced caspase activation can suppress the IFN response after co-treatment with radiation and ATR inhibitors. Caspase activation thus warrants further consideration as a possible predictive marker for lack of IFN signaling.
Collapse
Affiliation(s)
- Adrian Eek Mariampillai
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Sissel Hauge
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Inger Øynebråten
- Tumor Immunology Lab, Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Gro Elise Rødland
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub – Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Randi G. Syljuåsen
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- *Correspondence: Randi G. Syljuåsen,
| |
Collapse
|
27
|
Unraveling Mitochondrial Determinants of Tumor Response to Radiation Therapy. Int J Mol Sci 2022; 23:ijms231911343. [PMID: 36232638 PMCID: PMC9569617 DOI: 10.3390/ijms231911343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Radiotherapy represents a highly targeted and efficient treatment choice in many cancer types, both with curative and palliative intents. Nevertheless, radioresistance, consisting in the adaptive response of the tumor to radiation-induced damage, represents a major clinical problem. A growing body of the literature suggests that mechanisms related to mitochondrial changes and metabolic remodeling might play a major role in radioresistance development. In this work, the main contributors to the acquired cellular radioresistance and their relation with mitochondrial changes in terms of reactive oxygen species, hypoxia, and epigenetic alterations have been discussed. We focused on recent findings pointing to a major role of mitochondria in response to radiotherapy, along with their implication in the mechanisms underlying radioresistance and radiosensitivity, and briefly summarized some of the recently proposed mitochondria-targeting strategies to overcome the radioresistant phenotype in cancer.
Collapse
|
28
|
Research progress of neoantigens in gynecologic cancers. Int Immunopharmacol 2022; 112:109236. [PMID: 36113318 DOI: 10.1016/j.intimp.2022.109236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 11/24/2022]
Abstract
The incidence and mortality of gynecological cancers have increased over the past decade. In the absence of effective treatment strategies, many advanced patients develop resistance to conventional therapies and have poor prognosis. Neoantigens have emerged as a novel tumor-specific antigen (TSA) that arises from genomic mutations in tumor cells. With higher immunogenicity than tumor-associated antigens (TAA), they have no risk of developing autoimmune response, leading them an attractive candidate for tumor therapeutic vaccines. With the development of next-generation sequencing (NGS) technology, the identification of neoantigens has been gradually improved, and the scope of application of neoantigen vaccines has continued to expand. Combined with other therapies such as immune-checkpoint inhibitors (ICIs) or adoptive cell therapy (ACT), the application of neoantigen in gynecological cancers has extended to clinical practice. Here, we reviewed the preclinical and clinical studies of neoantigens in gynecological cancers.
Collapse
|
29
|
Li Z, Lai X, Fu S, Ren L, Cai H, Zhang H, Gu Z, Ma X, Luo K. Immunogenic Cell Death Activates the Tumor Immune Microenvironment to Boost the Immunotherapy Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201734. [PMID: 35652198 PMCID: PMC9353475 DOI: 10.1002/advs.202201734] [Citation(s) in RCA: 259] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Indexed: 02/05/2023]
Abstract
Tumor immunotherapy is only effective in a fraction of patients due to a low response rate and severe side effects, and these challenges of immunotherapy in clinics can be addressed through induction of immunogenic cell death (ICD). ICD is elicited from many antitumor therapies to release danger associated molecular patterns (DAMPs) and tumor-associated antigens to facilitate maturation of dendritic cells (DCs) and infiltration of cytotoxic T lymphocytes (CTLs). The process can reverse the tumor immunosuppressive microenvironment to improve the sensitivity of immunotherapy. Nanostructure-based drug delivery systems (NDDSs) are explored to induce ICD by incorporating therapeutic molecules for chemotherapy, photosensitizers (PSs) for photodynamic therapy (PDT), photothermal conversion agents for photothermal therapy (PTT), and radiosensitizers for radiotherapy (RT). These NDDSs can release loaded agents at a right dose in the right place at the right time, resulting in greater effectiveness and lower toxicity. Immunotherapeutic agents can also be combined with these NDDSs to achieve the synergic antitumor effect in a multi-modality therapeutic approach. In this review, NDDSs are harnessed to load multiple agents to induce ICD by chemotherapy, PDT, PTT, and RT in combination of immunotherapy to promote the therapeutic effect and reduce side effects associated with cancer treatment.
Collapse
Affiliation(s)
- Zhilin Li
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Xiaoqin Lai
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Shiqin Fu
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Long Ren
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Hao Cai
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Hu Zhang
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
- Amgen Bioprocessing CentreKeck Graduate InstituteClaremontCA91711USA
| | - Zhongwei Gu
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Xuelei Ma
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Kui Luo
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
- Functional and Molecular Imaging Key Laboratory of Sichuan Provinceand Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengdu610041China
| |
Collapse
|
30
|
Rallis KS, Makrakis D, Ziogas IA, Tsoulfas G. Immunotherapy for advanced hepatocellular carcinoma: From clinical trials to real-world data and future advances. World J Clin Oncol 2022; 13:448-472. [PMID: 35949435 PMCID: PMC9244967 DOI: 10.5306/wjco.v13.i6.448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/27/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated mortality worldwide. HCC is an inflammation-associated immunogenic cancer that frequently arises in chronically inflamed livers. Advanced HCC is managed with systemic therapies; the tyrosine kinase inhibitor (TKI) sorafenib has been used in 1st-line setting since 2007. Immunotherapies have emerged as promising treatments across solid tumors including HCC for which immune checkpoint inhibitors (ICIs) are licensed in 1st- and 2nd-line treatment setting. The treatment field of advanced HCC is continuously evolving. Several clinical trials are investigating novel ICI candidates as well as new ICI regimens in combination with other therapeutic modalities including systemic agents, such as other ICIs, TKIs, and anti-angiogenics. Novel immunotherapies including adoptive cell transfer, vaccine-based approaches, and virotherapy are also being brought to the fore. Yet, despite advances, several challenges persist. Lack of real-world data on the use of immunotherapy for advanced HCC in patients outside of clinical trials constitutes a main limitation hindering the breadth of application and generalizability of data to this larger and more diverse patient cohort. Consequently, issues encountered in real-world practice include patient ineligibly for immunotherapy because of contraindications, comorbidities, or poor performance status; lack of response, efficacy, and safety data; and cost-effectiveness. Further real-world data from high-quality large prospective cohort studies of immunotherapy in patients with advanced HCC is mandated to aid evidence-based clinical decision-making. This review provides a critical and comprehensive overview of clinical trials and real-world data of immunotherapy for HCC, with a focus on ICIs, as well as novel immunotherapy strategies underway.
Collapse
Affiliation(s)
- Kathrine S Rallis
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AD, United Kingdom
- Surgery Working Group, Society of Junior Doctors, Athens 15123, Greece
| | - Dimitrios Makrakis
- Surgery Working Group, Society of Junior Doctors, Athens 15123, Greece
- Division of Oncology, University of Washington School of Medicine, Seattle, WA 98195, United States
| | - Ioannis A Ziogas
- Surgery Working Group, Society of Junior Doctors, Athens 15123, Greece
- Department of Surgery, Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Georgios Tsoulfas
- Department of Transplantation Surgery, Aristotle University School of Medicine, Thessaloniki 54622, Greece
| |
Collapse
|
31
|
Ota N, Yoshimoto Y, Darwis NDM, Sato H, Ando K, Oike T, Ohno T. High tumor mutational burden predicts worse prognosis for cervical cancer treated with radiotherapy. Jpn J Radiol 2022; 40:534-541. [PMID: 34860358 PMCID: PMC9068645 DOI: 10.1007/s11604-021-01230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 10/26/2022]
Abstract
PURPOSE Tumor mutational burden (TMB) is a surrogate biomarker of neo-antigens and high TMB status is associated with favorable response to immune-checkpoint inhibitors (ICIs). This study aimed to elucidate the association between TMB and the outcome of definitive radiotherapy in patients with cervical cancer. MATERIALS AND METHODS TMB and treatment outcome were retrospectively analyzed in patients with newly diagnosed cervical cancer treated with definitive radiotherapy available with somatic mutation data of pre-treatment tumors obtained using a commercially available gene panel. RESULTS The study enrolled 98 patients (median follow-up period, 61 months). The median TMB was 9.5 mutations per megabase (range, 3.0-35.5 mutations per megabase). After dichotomization based on this median value, the 5-year overall survival (OS) for TMB-high patients was significantly worse than that of TMB-low patients (61.1% vs. 82.2%). Multivariate analysis identified high TMB status as a significant prognostic factor for worse OS, along with advanced stage, para-aortic lymph node involvement, and absence of concurrent chemotherapy. CONCLUSION These data indicate that TMB is a potential prognostic factor for worse survival in patients with cervical cancer treated with definitive radiotherapy, thereby providing a rationale for treatment of TMB-high cervical cancers with a combination of ICIs plus radiotherapy. This retrospective study of 98 patients demonstrates for the first time that tumor mutational burden (TMB) is an independent prognostic factor for worse overall survival of patients treated with definitive radiotherapy, providing a rationale for treatment of TMB-high cervical cancers with a combination of immune-checkpoint inhibitors plus radiotherapy.
Collapse
Affiliation(s)
- Norichika Ota
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Yuya Yoshimoto
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
- Department of Radiation Oncology, School of Medicine, Fukushima Medical University, 1, Hikarigaoka, Fukushima, 960-1295, Japan
| | - Narisa Dewi Maulany Darwis
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
- Department of Radiation Oncology, Faculty of Medicine Universitas Indonesia, Dr. Cipto Mangunkusumo National General Hospital, Jl. Diponegoro No. 71, Jakarta Pusat, DKI Jakarta, 10430, Indonesia
| | - Hiro Sato
- Gunma University Heavy Ion Medical Center, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Ken Ando
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan.
- Gunma University Heavy Ion Medical Center, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
- Gunma University Heavy Ion Medical Center, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
32
|
Kunitoh H. Message from the Editor-in-Chief. Jpn J Clin Oncol 2022; 52:1-2. [PMID: 34978327 DOI: 10.1093/jjco/hyab190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hideo Kunitoh
- Department of Medical Oncology, Japanese Red Cross Medical Center, Tokyo, JapanEditor-in-Chief, Japanese Journal of Clinical Oncology
| |
Collapse
|
33
|
Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int J Mol Sci 2021; 22:ijms222011047. [PMID: 34681703 PMCID: PMC8541263 DOI: 10.3390/ijms222011047] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, radiation effects have been considered to be mainly due to nuclear DNA damage and their management by repair mechanisms. However, molecular biology studies reveal that the outcomes of exposures to ionizing radiation (IR) highly depend on activation and regulation through other molecular components of organelles that determine cell survival and proliferation capacities. As typical epigenetic-regulated organelles and central power stations of cells, mitochondria play an important pivotal role in those responses. They direct cellular metabolism, energy supply and homeostasis as well as radiation-induced signaling, cell death, and immunological responses. This review is focused on how energy, dose and quality of IR affect mitochondria-dependent epigenetic and functional control at the cellular and tissue level. Low-dose radiation effects on mitochondria appear to be associated with epigenetic and non-targeted effects involved in genomic instability and adaptive responses, whereas high-dose radiation effects (>1 Gy) concern therapeutic effects of radiation and long-term outcomes involving mitochondria-mediated innate and adaptive immune responses. Both effects depend on radiation quality. For example, the increased efficacy of high linear energy transfer particle radiotherapy, e.g., C-ion radiotherapy, relies on the reduction of anastasis, enhanced mitochondria-mediated apoptosis and immunogenic (antitumor) responses.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Correspondence:
| | - Claire Rodriguez-Lafrasse
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| |
Collapse
|
34
|
Franzese O, Torino F, Giannetti E, Cioccoloni G, Aquino A, Faraoni I, Fuggetta MP, De Vecchis L, Giuliani A, Kaina B, Bonmassar E. Abscopal Effect and Drug-Induced Xenogenization: A Strategic Alliance in Cancer Treatment? Int J Mol Sci 2021; 22:ijms221910672. [PMID: 34639014 PMCID: PMC8509363 DOI: 10.3390/ijms221910672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
The current state of cancer treatment is still far from being satisfactory considering the strong impairment of patients' quality of life and the high lethality of malignant diseases. Therefore, it is critical for innovative approaches to be tested in the near future. In view of the crucial role that is played by tumor immunity, the present review provides essential information on the immune-mediated effects potentially generated by the interplay between ionizing radiation and cytotoxic antitumor agents when interacting with target malignant cells. Therefore, the radiation-dependent abscopal effect (i.e., a biological effect of ionizing radiation that occurs outside the irradiated field), the influence of cancer chemotherapy on the antigenic pattern of target neoplastic cells, and the immunogenic cell death (ICD) caused by anticancer agents are the main topics of this presentation. It is widely accepted that tumor immunity plays a fundamental role in generating an abscopal effect and that anticancer drugs can profoundly influence not only the host immune responses, but also the immunogenic pattern of malignant cells. Remarkably, several anticancer drugs impact both the abscopal effect and ICD. In addition, certain classes of anticancer agents are able to amplify already expressed tumor-associated antigens (TAA). More importantly, other drugs, especially triazenes, induce the appearance of new tumor neoantigens (TNA), a phenomenon that we termed drug-induced xenogenization (DIX). The adoption of the abscopal effect is proposed as a potential therapeutic modality when properly applied concomitantly with drug-induced increase in tumor cell immunogenicity and ICD. Although little to no preclinical or clinical studies are presently available on this subject, we discuss this issue in terms of potential mechanisms and therapeutic benefits. Upcoming investigations are aimed at evaluating how chemical anticancer drugs, radiation, and immunotherapies are interacting and cooperate in evoking the abscopal effect, tumor xenogenization and ICD, paving the way for new and possibly successful approaches in cancer therapy.
Collapse
Affiliation(s)
- Ornella Franzese
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Francesco Torino
- Department of Systems Medicine, Medical Oncology, University of Rome Tor Vergata, 00133 Rome, Italy; (F.T.); (E.G.)
| | - Elisa Giannetti
- Department of Systems Medicine, Medical Oncology, University of Rome Tor Vergata, 00133 Rome, Italy; (F.T.); (E.G.)
| | - Giorgia Cioccoloni
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK
| | - Angelo Aquino
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Isabella Faraoni
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Maria Pia Fuggetta
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere, 00133 Rome, Italy; (M.P.F.); (A.G.)
| | - Liana De Vecchis
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Anna Giuliani
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere, 00133 Rome, Italy; (M.P.F.); (A.G.)
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, D-55131 Mainz, Germany
- Correspondence: (B.K.); (E.B.)
| | - Enzo Bonmassar
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere, 00133 Rome, Italy; (M.P.F.); (A.G.)
- Correspondence: (B.K.); (E.B.)
| |
Collapse
|