1
|
Quintero‐Galvis JF, Saenz‐Agudelo P, D'Elía G, Nespolo RF. Local adaptation of Dromiciops marsupials (Microbiotheriidae) from southern South America: Implications for species management facing climate change. Ecol Evol 2024; 14:e70355. [PMID: 39371267 PMCID: PMC11450259 DOI: 10.1002/ece3.70355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
The two species of the microbiotheriid marsupial genus Dromiciops (Dromiciops bozinovici: "Panchos's monito del monte" and Dromiciops gliroides: "monito del monte") exhibit a marked latitudinal genetic differentiation. Nevertheless, it is unclear whether this differentiation results from neutral processes or can be explained, to some extent, by local adaptation to different environmental conditions. Here, we used an SNP panel gathered by Rad-seq and searched for footprints of local adaptation (putative loci under selection) by exploring genetic associations with environmental variables in the two species of Dromiciops in Chilean and Argentinean populations. We applied three methods for detecting outlier SNPs and two genotype-environment associations approaches to quantify associations between allelic frequencies and environmental variables. Both species display strong genetic structure. D. bozinovici exhibited three distinct genetic groups, marking the first report of such structuring in this species using SNPs. In contrast, D. gliroides displayed four genetic clusters, consistent with previous studies. Both species exhibited an association of their genetic structure with environmental variables. D. bozinovici exhibited significant associations of allelic frequencies with elevation, precipitation during the warmest periods, and seasonality in the thermal regime. For D. gliroides, genetic variation appeared to be associated with more variables than D. bozinovici, including precipitation and temperature-related variables, isothermality, and elevation. All the outlier SNPs were mapped to the D. gliroides reference genome to explore if they fell within functionally known genes. These results represent a necessary first step toward identifying the genome regions that harbor genes associated with climate adaptations in Dromiciops. Notably, we identified genes involved in various functions, including carbohydrate synthesis (ALG8), muscle and neuronal regulation (MEF2D), and stress responses (PTGES3). Ultimately, this study contributes valuable insights that can inform targeted conservation strategies aimed at preserving the genetic diversity of Dromiciops in the face of environmental challenges.
Collapse
Affiliation(s)
- Julian F. Quintero‐Galvis
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
- Millennium Nucleus of Patagonian Limit of Life (LiLi)ValdiviaChile
| | - Pablo Saenz‐Agudelo
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
- Millenium Nucleus for Ecology and Conservation of Temperate Mesophotic Reefs (NUTME)Las CrucesChile
| | - Guillermo D'Elía
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
- Colección de MamíferosUniversidad Austral de ChileValdiviaChile
| | - Roberto F. Nespolo
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
- Millennium Nucleus of Patagonian Limit of Life (LiLi)ValdiviaChile
- Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias BiológicasUniversidad Católica de ChileSantiagoChile
- Millennium Institute for Integrative Biology (iBio)SantiagoChile
| |
Collapse
|
2
|
Ojeda S, Arancibia M, Gómez F, Sepúlveda IB, Orellana JI, Fontúrbel FE. Spatial aggregation patterns in four mistletoe species: ecological and environmental determinants. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:1186-1195. [PMID: 37703542 DOI: 10.1111/plb.13579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023]
Abstract
Plant spatial distribution is an important topic in ecology as it determines species coexistence and biodiversity dynamics. Usually, plants show clustered distributions in nature. Mistletoes are a good example of aggregated distributions, as they form dense aggregations due to several factors (availability of competent hosts, seed dispersal vectors, microclimate conditions). We analysed four native mistletoe species with divergent life histories and host ranges: Desmaria mutabilis and Tristerix corymbosus from the temperate rainforests of southern Chile; and Tristerix aphyllus and Tristerix verticillatus from the northern semi-desert zone. While T. corymbosus and T. verticillatus have a wide host range, T. aphyllus and D. mutabilis are specialists that can parasitize only a few plant species. We hypothesized that specialized species would be more aggregated due to ecological and environmental restrictions. We used heterogeneous Poisson models to quantify spatial aggregation. Three of the four mistletoe species were spatially clustered at both environments, with aggregation being stronger in the temperate rainforest of southern Chile and particularly in the host-specialist species. Our results suggest that environmental constraints are more important than ecological constraints (host range) in shaping mistletoe spatial structure. Mistletoe aggregated spatial distribution depends primarily on the environment that they inhabit, which conditions host spatial availability, and arrangement.
Collapse
Affiliation(s)
- S Ojeda
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - M Arancibia
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - F Gómez
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - I B Sepúlveda
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - J I Orellana
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| | - F E Fontúrbel
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| |
Collapse
|
3
|
Fontúrbel FE, Villarroel J, Orellana JI. With a little help from my friends: Hyperparasitism allows a generalist mistletoe to expand habitat use. Ecology 2023; 104:e3919. [PMID: 36415080 DOI: 10.1002/ecy.3919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Francisco E Fontúrbel
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.,Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| | - Javiera Villarroel
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - José I Orellana
- Laboratorio de Vida Silvestre, Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Osorno, Chile
| |
Collapse
|
4
|
Vazquez MS, Schenone L, Rodriguez-Cabal MA, Amico GC. Modeling spatio-temporal activity dynamics of the small relict marsupial Dromiciops gliroides. Mamm Biol 2022. [DOI: 10.1007/s42991-022-00331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Potential distribution and conservation implications of key marsupials for the Patagonian temperate forest. Mamm Biol 2022. [DOI: 10.1007/s42991-022-00322-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Fontúrbel FE, Franco LM, Bozinovic F, Quintero‐Galvis JF, Mejías C, Amico GC, Vazquez MS, Sabat P, Sánchez‐Hernández JC, Watson DM, Saenz‐Agudelo P, Nespolo RF. The ecology and evolution of the monito del monte, a relict species from the southern South America temperate forests. Ecol Evol 2022; 12:e8645. [PMID: 35261741 PMCID: PMC8888251 DOI: 10.1002/ece3.8645] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/23/2022] Open
Abstract
The arboreal marsupial monito del monte (genus Dromiciops, with two recognized species) is a paradigmatic mammal. It is the sole living representative of the order Microbiotheria, the ancestor lineage of Australian marsupials. Also, this marsupial is the unique frugivorous mammal in the temperate rainforest, being the main seed disperser of several endemic plants of this ecosystem, thus acting as keystone species. Dromiciops is also one of the few hibernating mammals in South America, spending half of the year in a physiological dormancy where metabolism is reduced to 10% of normal levels. This capacity to reduce energy expenditure in winter contrasts with the enormous energy turnover rate they experience in spring and summer. The unique life history strategies of this living Microbiotheria, characterized by an alternation of life in the slow and fast lanes, putatively represent ancestral traits that permitted these cold-adapted mammals to survive in this environment. Here, we describe the ecological role of this emblematic marsupial, summarizing the ecophysiology of hibernation and sociality, updated phylogeographic relationships, reproductive cycle, trophic relationships, mutualisms, conservation, and threats. This marsupial shows high densities, despite presenting slow reproductive rates, a paradox explained by the unique characteristics of its three-dimensional habitat. We finally suggest immediate actions to protect these species that may be threatened in the near future due to habitat destruction and climate change.
Collapse
Affiliation(s)
- Francisco E. Fontúrbel
- Instituto de BiologíaPontificia Universidad Católica de ValparaísoValparaísoChile
- Millennium Nucleus of Patagonian Limit of Life (LiLi)SantiagoChile
| | - Lida M. Franco
- Facultad de Ciencias Naturales y MatemáticasUniversidad de IbaguéIbaguéColombia
| | - Francisco Bozinovic
- Departamento de EcologíaFacultad de Ciencias BiológicasCenter of Applied Ecology and Sustainability (CAPES)Pontificia Universidad Católica de ChileSantiagoChile
| | | | - Carlos Mejías
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
| | | | | | - Pablo Sabat
- Departamento de Ciencias EcológicasFacultad de CienciasUniversidad de ChileSantiagoChile
| | | | - David M. Watson
- School of Agricultural, Environmental and Veterinary SciencesCharles Sturt UniversityAlburyNSWAustralia
| | - Pablo Saenz‐Agudelo
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
| | - Roberto F. Nespolo
- Millennium Nucleus of Patagonian Limit of Life (LiLi)SantiagoChile
- Departamento de EcologíaFacultad de Ciencias BiológicasCenter of Applied Ecology and Sustainability (CAPES)Pontificia Universidad Católica de ChileSantiagoChile
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
- Millennium Institute for Integrative Biology (iBio)SantiagoChile
| |
Collapse
|
7
|
Fontúrbel FE, Nespolo RF, Amico GC, Watson DM. Climate change can disrupt ecological interactions in mysterious ways: Using ecological generalists to forecast community-wide effects. CLIMATE CHANGE ECOLOGY 2021. [DOI: 10.1016/j.ecochg.2021.100044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Intermediate levels of wood extraction may facilitate coexistence of an endemic arboreal marsupial and Indigenous communities. ORYX 2021. [DOI: 10.1017/s003060532000109x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
AbstractLand-use change is a major driver of biodiversity loss. Large-scale disturbances such as habitat loss, fragmentation and degradation are known to have negative consequences for native biota, but the effects of small-scale disturbances such as selective logging are less well known. We compared three sites with different regimes of selective logging performed by Indigenous communities in the South American temperate rainforest, to assess effects on the density and habitat selection patterns of the Near Threatened endemic arboreal marsupial Dromiciops gliroides. We used structured interviews to identify patterns of wood extraction, which was 0.22–2.55 m3 per ha per year. In the less disturbed site only two tree species were logged, in the intermediately disturbed sites eight species were logged at low intensity, and in the most disturbed site seven species were logged intensively. The site with intermediate disturbance had the highest fleshy-fruited plant diversity and fruit biomass values as a result of the proliferation of shade-intolerant plants. This site also had the highest density of D. gliroides. These findings are consistent with Connell's intermediate disturbance hypothesis, suggesting that coexistence of people with nature is possible if wood extraction volumes are moderate, increasing plant diversity. Indigenous communities have sustainably used natural resources for centuries, but current rates of land-use change are becoming a significant threat to both them and their natural resources.
Collapse
|
9
|
Giroud S, Habold C, Nespolo RF, Mejías C, Terrien J, Logan SM, Henning RH, Storey KB. The Torpid State: Recent Advances in Metabolic Adaptations and Protective Mechanisms †. Front Physiol 2021; 11:623665. [PMID: 33551846 PMCID: PMC7854925 DOI: 10.3389/fphys.2020.623665] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Torpor and hibernation are powerful strategies enabling animals to survive periods of low resource availability. The state of torpor results from an active and drastic reduction of an individual's metabolic rate (MR) associated with a relatively pronounced decrease in body temperature. To date, several forms of torpor have been described in all three mammalian subclasses, i.e., monotremes, marsupials, and placentals, as well as in a few avian orders. This review highlights some of the characteristics, from the whole organism down to cellular and molecular aspects, associated with the torpor phenotype. The first part of this review focuses on the specific metabolic adaptations of torpor, as it is used by many species from temperate zones. This notably includes the endocrine changes involved in fat- and food-storing hibernating species, explaining biomedical implications of MR depression. We further compare adaptive mechanisms occurring in opportunistic vs. seasonal heterotherms, such as tropical and sub-tropical species. Such comparisons bring new insights into the metabolic origins of hibernation among tropical species, including resistance mechanisms to oxidative stress. The second section of this review emphasizes the mechanisms enabling heterotherms to protect their key organs against potential threats, such as reactive oxygen species, associated with the torpid state. We notably address the mechanisms of cellular rehabilitation and protection during torpor and hibernation, with an emphasis on the brain, a central organ requiring protection during torpor and recovery. Also, a special focus is given to the role of an ubiquitous and readily-diffusing molecule, hydrogen sulfide (H2S), in protecting against ischemia-reperfusion damage in various organs over the torpor-arousal cycle and during the torpid state. We conclude that (i) the flexibility of torpor use as an adaptive strategy enables different heterothermic species to substantially suppress their energy needs during periods of severely reduced food availability, (ii) the torpor phenotype implies marked metabolic adaptations from the whole organism down to cellular and molecular levels, and (iii) the torpid state is associated with highly efficient rehabilitation and protective mechanisms ensuring the continuity of proper bodily functions. Comparison of mechanisms in monotremes and marsupials is warranted for understanding the origin and evolution of mammalian torpor.
Collapse
Affiliation(s)
- Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Caroline Habold
- University of Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France
| | - Roberto F. Nespolo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, ANID – Millennium Science Initiative Program-iBio, Valdivia, Chile
- Center of Applied Ecology and Sustainability, Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Mejías
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, ANID – Millennium Science Initiative Program-iBio, Valdivia, Chile
- Center of Applied Ecology and Sustainability, Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jérémy Terrien
- Unité Mécanismes Adaptatifs et Evolution (MECADEV), UMR 7179, CNRS, Muséum National d’Histoire Naturelle, Brunoy, France
| | | | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, Netherlands
| | | |
Collapse
|
10
|
Rodríguez-Gómez GB, Fontúrbel FE. Regional-scale variation on Dromiciops gliroides occurrence, abundance, and activity patterns along a habitat disturbance gradient. J Mammal 2020. [DOI: 10.1093/jmammal/gyaa022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
AbstractHabitat structure may have a significant influence on the occurrence, abundance, and activity patterns of forest mammals. However, anthropogenic habitat disturbance changes habitat structure, which may alter those patterns of activity. We assessed occurrence, relative abundance, and activity patterns of Dromiciops gliroides, an arboreal marsupial endemic to the temperate rainforests of southern South America, contrasting four forest conditions at a regional scale: old-growth, second-growth, and logged forests, and abandoned exotic plantations. We conducted a camera-trap assessment in two consecutive austral summers across most of the Chilean range of D. gliroides, and compared habitat structure along a disturbance gradient. All structural features assessed differed among forest conditions. Dromiciops gliroides was present in all forest conditions, but its abundance decreased and activity got narrower as disturbance increased, being significantly lower in the exotic plantations. Activity patterns were variable among forest conditions and months, and were significantly more restricted temporally at exotic plantations. Although D. gliroides is tolerant to habitat disturbance, we show that structural alteration results in lower abundances and narrower activity patterns.
Collapse
Affiliation(s)
- Gloria B Rodríguez-Gómez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Santiago, Chile
| | - Francisco E Fontúrbel
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile (FEF)
| |
Collapse
|