1
|
Chen TT, Wei YY, Kang JY, Zhang DW, Ye JJ, Sun XS, Hong M, Zhang WT, Wu HM, Ding ZX, Fei GH. ADAR1-HNRNPL-Mediated CircCANX Decline Promotes Autophagy in Chronic Obstructive Pulmonary Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414211. [PMID: 40091520 DOI: 10.1002/advs.202414211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is a characteristic chronic airway inflammatory disease that worsens over time, however, there are currently limited clinical therapeutics to suspend its progression. Circular RNAs (circRNAs), which have emerged as functional regulators in various diseases, including COPD, may server as new pharmacological targets in COPD. Here, it is identified a nuclear circRNA, circCANX, that is preferentially decreased in COPD. The linear splicing of CANX pre-mRNA, enhanced by the ADAR1-HNRNPL interaction, is responsible for the circCANX decline. Clinically, the higher circCANX expression is associated with a worse lung function index of FEV1/FVC among patients with COPD. CircCANX suppresses autophagy and stress granule (SG) formation to strengthen inflammation of COPD in vivo and in vitro. Mechanistically, circCANX recruits the tumor suppressor protein P53 (P53) mRNA and RNA helicase upstream frameshift 1 (UPF1) to form a ternary complex, which mediates P53 mRNA degradation through nonsense-mediated mRNA decay (NMD) process. Together, this study reveals an important circCANX-mediated regulatory mechanism in COPD, and provides new insights into the potential of circRNA-based drug and biomarker development for COPD.
Collapse
Affiliation(s)
- Ting-Ting Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui Province, 230022, China
| | - Yuan-Yuan Wei
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui Province, 230022, China
| | - Jia-Ying Kang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui Province, 230022, China
| | - Da-Wei Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui Province, 230022, China
| | - Jing-Jing Ye
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui Province, 230022, China
| | - Xi-Shi Sun
- Emergency Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, 524000, China
| | - Mei Hong
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui Province, 230022, China
| | - Wen-Ting Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui Province, 230022, China
| | - Hui-Mei Wu
- Department of Geriatric Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, China
| | - Zhen-Xing Ding
- Department of Emergency Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, China
| | - Guang-He Fei
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui Province, 230022, China
| |
Collapse
|
2
|
Dykstra MM, Weskamp K, Gómez NB, Waksmacki J, Tank E, Glineburg MR, Snyder A, Pinarbasi E, Bekier M, Li X, Miller MR, Bai J, Shahzad S, Nedumaran N, Wieland C, Stewart C, Willey S, Grotewold N, McBride J, Moran JJ, Suryakumar AV, Lucas M, Tessier PM, Ward M, Todd PK, Barmada SJ. TDP43 autoregulation gives rise to dominant negative isoforms that are tightly controlled by transcriptional and post-translational mechanisms. Cell Rep 2025; 44:115113. [PMID: 39792557 PMCID: PMC11848802 DOI: 10.1016/j.celrep.2024.115113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/06/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
The nuclear RNA-binding protein TDP43 is integrally involved in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Previous studies uncovered N-terminal TDP43 isoforms that are predominantly cytosolic in localization, prone to aggregation, and enriched in susceptible spinal motor neurons. In healthy cells, however, these shortened (s)TDP43 isoforms are difficult to detect in comparison to full-length (fl)TDP43, raising questions regarding their origin and selective regulation. Here, we show that sTDP43 is created as a by-product of TDP43 autoregulation and cleared by nonsense-mediated RNA decay (NMD). sTDP43-encoding transcripts that escape NMD are rapidly degraded post-translationally via the proteasome and macroautophagy. Circumventing these regulatory mechanisms by overexpressing sTDP43 results in neurodegeneration via N-terminal oligomerization and impairment of flTDP43 splicing activity, in addition to RNA-binding-dependent gain-of-function toxicity. Collectively, these studies highlight endogenous mechanisms that tightly regulate sTDP43 expression and underscore the consequences of aberrant sTDP43 accumulation in disease.
Collapse
Affiliation(s)
- Megan M Dykstra
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Kaitlin Weskamp
- Chemistry Department, Nebraska Wesleyan University, Lincoln, NE, USA
| | - Nicolás B Gómez
- Graduate Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Jacob Waksmacki
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Elizabeth Tank
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - M Rebecca Glineburg
- Biological Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | | | - Emile Pinarbasi
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Neuropathology, Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Michael Bekier
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Xingli Li
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Morgan R Miller
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Jen Bai
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Shameena Shahzad
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Neha Nedumaran
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Clare Wieland
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Corey Stewart
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Sydney Willey
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Nikolas Grotewold
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Jonathon McBride
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - John J Moran
- Atlanta Pediatric Research Alliance, Emory University, Atlanta, GA, USA
| | | | - Michael Lucas
- Departments of Chemical Engineering and Pharmaceutical Sciences, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Peter M Tessier
- Departments of Chemical Engineering and Pharmaceutical Sciences, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Michael Ward
- Neurogenetics Branch, NINDS, NIH, Bethesda, MD, USA
| | - Peter K Todd
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA; Graduate Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Veterans Affairs Medical Center, Ann Arbor, MI, USA
| | - Sami J Barmada
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA; Graduate Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Koh D, Lee Y, Kim K, Jeon HB, Oh C, Hwang S, Lim M, Lee KP, Park Y, Yang YR, Kim YK, Shim D, Gorospe M, Noh JH, Kim KM. Reduced UPF1 levels in senescence impair nonsense-mediated mRNA decay. Commun Biol 2025; 8:83. [PMID: 39827266 PMCID: PMC11742877 DOI: 10.1038/s42003-025-07502-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Cells regulate gene expression through various RNA regulatory mechanisms, and this regulation often becomes less efficient with age, contributing to accelerated aging and various age-related diseases. Nonsense-mediated mRNA decay (NMD), a well-characterized RNA surveillance mechanism, degrades aberrant mRNAs with premature termination codons (PTCs) to prevent the synthesis of truncated proteins. While the role of NMD in cancer and developmental and genetic diseases is well documented, its implications in human aging remain largely unexplored. This study reveals a significant decline in the levels of the protein UPF1, a key player in NMD, during cellular senescence. Additionally, NMD substrates accumulate in senescent cells, along with decreased levels of cap-binding protein 80/20 (CBP80/20)-dependent translation (CT) factors and reduced binding to active polysomes, indicating reduced efficiency of NMD. Moreover, knockdown of UPF1 in proliferating WI-38 cells induces senescence, as evidenced by increased senescence-associated β-galactosidase activity, alterations in senescence-associated molecular markers, increased endogenous γ-H2AX levels, and reduced cell proliferation. These findings suggest that the decline in UPF1 levels during cellular senescence accelerates the senescent phenotype by impairing NMD activity and the consequent accumulation of abnormal mRNA.
Collapse
Affiliation(s)
- Dahyeon Koh
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yebin Lee
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kyuchan Kim
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyeong Bin Jeon
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Chaehwan Oh
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sangik Hwang
- Molecular Aging Biology Laboratory (MABL), Department of Biochemistry, College of Natural Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Minjung Lim
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kwang-Pyo Lee
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Yeonkyoung Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yong Ryoul Yang
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Yoon Ki Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Ji Heon Noh
- Molecular Aging Biology Laboratory (MABL), Department of Biochemistry, College of Natural Science, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Kyoung Mi Kim
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
4
|
Patro AK, Panigrahi GK, Majumder S, Das R, Sahoo A. Nonsense-mediated mRNA decay: Physiological significance, mechanistic insights and future implications. Pathol Res Pract 2024; 264:155677. [PMID: 39486251 DOI: 10.1016/j.prp.2024.155677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality control mechanism that detects and degrades premature aberrant transcripts and importantly, it also takes part in gene expression regulation by regulating the endogenous transcripts. NMD distinguishes aberrant and non-aberrant transcript by looking after the NMD signatures such as long 3' UTR. NMD modulates cellular surveillance and eliminates the plausible synthesis of truncated proteins as because if the aberrant mRNA escapes the surveillance pathway it can lead to potential negative phenotype resulting in genetic diseases. NMD involves multiple proteins and any alteration or mutation within these proteins results in various pathophysiological consequences. NMD plays a complex role in cancer, it can either aggravate or downregulates the tumour. Some tumours agitate NMD to deteriorate mRNAs encoding tumour suppressor proteins, stress response proteins and neoantigens. In other case, tumours suppress the NMD to encourage the expression of oncoproteins for tumour growth and survival. In this review, we have shed light on the core and associated proteins of NMD, further summarized the mechanism of the NMD pathway and also described the implications of mutations in NMD factors resulting in severe pathological conditions including neurodevelopmental disorder, effects on male sterility and cancer. Understanding the complexities of NMD regulation and its interaction with other cellular processes can lead to the development of new interventions for various diseases. This review summarizes the current understanding of NMD and its role in controlling various cellular processes in both development and disease.
Collapse
Affiliation(s)
- Asish Kumar Patro
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Khordha, Odisha, India
| | - Gagan Kumar Panigrahi
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Khordha, Odisha, India.
| | - Sanjoy Majumder
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Khordha, Odisha, India
| | - Rutupurna Das
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Khordha, Odisha, India
| | - Annapurna Sahoo
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Khordha, Odisha, India.
| |
Collapse
|
5
|
Barbarin-Bocahu I, Ulryck N, Rigobert A, Ruiz Gutierrez N, Decourty L, Raji M, Garkhal B, Le Hir H, Saveanu C, Graille M. Structure of the Nmd4-Upf1 complex supports conservation of the nonsense-mediated mRNA decay pathway between yeast and humans. PLoS Biol 2024; 22:e3002821. [PMID: 39331656 PMCID: PMC11463774 DOI: 10.1371/journal.pbio.3002821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/09/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
The nonsense-mediated mRNA decay (NMD) pathway clears eukaryotic cells of mRNAs containing premature termination codons (PTCs) or normal stop codons located in specific contexts. It therefore plays an important role in gene expression regulation. The precise molecular mechanism of the NMD pathway has long been considered to differ substantially from yeast to metazoa, despite the involvement of universally conserved factors such as the central ATP-dependent RNA-helicase Upf1. Here, we describe the crystal structure of the yeast Upf1 bound to its recently identified but yet uncharacterized partner Nmd4, show that Nmd4 stimulates Upf1 ATPase activity and that this interaction contributes to the elimination of NMD substrates. We also demonstrate that a region of Nmd4 critical for the interaction with Upf1 in yeast is conserved in the metazoan SMG6 protein, another major NMD factor. We show that this conserved region is involved in the interaction of SMG6 with UPF1 and that mutations in this region affect the levels of endogenous human NMD substrates. Our results support the universal conservation of the NMD mechanism in eukaryotes.
Collapse
Affiliation(s)
- Irène Barbarin-Bocahu
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Nathalie Ulryck
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Amandine Rigobert
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Nadia Ruiz Gutierrez
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Laurence Decourty
- Institut Pasteur, Université Paris Cité, Unité Biologie des ARN des Pathogènes Fongiques, Paris, France
| | - Mouna Raji
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Bhumika Garkhal
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Hervé Le Hir
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Cosmin Saveanu
- Institut Pasteur, Université Paris Cité, Unité Biologie des ARN des Pathogènes Fongiques, Paris, France
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
6
|
Ritter AJ, Wallace A, Ronaghi N, Sanford J. junctionCounts: comprehensive alternative splicing analysis and prediction of isoform-level impacts to the coding sequence. NAR Genom Bioinform 2024; 6:lqae093. [PMID: 39131822 PMCID: PMC11310779 DOI: 10.1093/nargab/lqae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024] Open
Abstract
Alternative splicing (AS) is emerging as an important regulatory process for complex biological processes. Transcriptomic studies therefore commonly involve the identification and quantification of alternative processing events, but the need for predicting the functional consequences of changes to the relative inclusion of alternative events remains largely unaddressed. Many tools exist for the former task, albeit each constrained to its own event type definitions. Few tools exist for the latter task; each with significant limitations. To address these issues we developed junctionCounts, which captures both simple and complex pairwise AS events and quantifies them with straightforward exon-exon and exon-intron junction reads in RNA-seq data, performing competitively among similar tools in terms of sensitivity, false discovery rate and quantification accuracy. Its partner utility, cdsInsertion, identifies transcript coding sequence (CDS) information via in silico translation from annotated start codons, including the presence of premature termination codons. Finally, findSwitchEvents connects AS events with CDS information to predict the impact of individual events to the isoform-level CDS. We used junctionCounts to characterize splicing dynamics and NMD regulation during neuronal differentiation across four primates, demonstrating junctionCounts' capacity to robustly characterize AS in a variety of organisms and to predict its effect on mRNA isoform fate.
Collapse
Affiliation(s)
- Alexander J Ritter
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andrew Wallace
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Neda Ronaghi
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jeremy R Sanford
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
7
|
Dykstra MM, Weskamp K, Gómez NB, Waksmacki J, Tank E, Glineburg MR, Snyder A, Pinarbasi E, Bekier M, Li X, Bai J, Shahzad S, Nedumaran J, Wieland C, Stewart C, Willey S, Grotewold N, McBride J, Moran JJ, Suryakumar AV, Lucas M, Tessier P, Ward M, Todd P, Barmada SJ. TDP43 autoregulation gives rise to shortened isoforms that are tightly controlled by both transcriptional and post-translational mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601776. [PMID: 39005384 PMCID: PMC11244999 DOI: 10.1101/2024.07.02.601776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The nuclear RNA-binding protein TDP43 is integrally involved in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Previous studies uncovered N-terminal TDP43 isoforms that are predominantly cytosolic in localization, highly prone to aggregation, and enriched in susceptible spinal motor neurons. In healthy cells, however, these shortened (s)TDP43 isoforms are difficult to detect in comparison to full-length (fl)TDP43, raising questions regarding their origin and selective regulation. Here, we show that sTDP43 is created as a byproduct of TDP43 autoregulation and cleared by nonsense mediated RNA decay (NMD). The sTDP43-encoding transcripts that escape NMD can lead to toxicity but are rapidly degraded post-translationally. Circumventing these regulatory mechanisms by overexpressing sTDP43 results in neurodegeneration in vitro and in vivo via N-terminal oligomerization and impairment of flTDP43 splicing activity, in addition to RNA binding-dependent gain-of-function toxicity. Collectively, these studies highlight endogenous mechanisms that tightly regulate sTDP43 expression and provide insight into the consequences of aberrant sTDP43 accumulation in disease.
Collapse
Affiliation(s)
- Megan M. Dykstra
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Kaitlin Weskamp
- Chemistry Department, Nebraska Wesleyan University, Lincoln, NE
| | - Nicolás B. Gómez
- Graduate Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
| | - Jacob Waksmacki
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Elizabeth Tank
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - M. Rebecca Glineburg
- Biological Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA
| | | | - Emile Pinarbasi
- Department of Neurology, University of Michigan, Ann Arbor, MI
- Neuropathology, Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI
| | - Michael Bekier
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Xingli Li
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Jen Bai
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | | | - Juno Nedumaran
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Clare Wieland
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
| | - Corey Stewart
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Sydney Willey
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Nikolas Grotewold
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
| | - Jonathon McBride
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| | - John J. Moran
- Atlanta Pediatric Research Alliance, Emory University, Atlanta, GA
| | | | - Michael Lucas
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI
| | - Peter Tessier
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI
| | | | - Peter Todd
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
- Graduate Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
- Department of Neurology, University of Michigan, Ann Arbor, MI
- Veterans Affairs Medical Center, Ann Arbor, MI
| | - Sami J. Barmada
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
- Graduate Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
- Department of Neurology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
8
|
Yadav P, Tamilselvan R, Mani H, Singh KK. MicroRNA-mediated regulation of nonsense-mediated mRNA decay factors: Insights into microRNA prediction tools and profiling techniques. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195022. [PMID: 38437914 DOI: 10.1016/j.bbagrm.2024.195022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Nonsense-mediated mRNA decay (NMD) stands out as a prominent RNA surveillance mechanism within eukaryotes, meticulously overseeing both RNA abundance and integrity by eliminating aberrant transcripts. These defective transcripts are discerned through the concerted efforts of translating ribosomes, eukaryotic release factors (eRFs), and trans-acting NMD factors, with Up-Frameshift 3 (UPF3) serving as a noteworthy component. Remarkably, in humans, UPF3 exists in two paralogous forms, UPF3A (UPF3) and UPF3B (UPF3X). Beyond its role in quality control, UPF3 wields significant influence over critical cellular processes, including neural development, synaptic plasticity, and axon guidance. However, the precise regulatory mechanisms governing UPF3 remain elusive. MicroRNAs (miRNAs) emerge as pivotal post-transcriptional gene regulators, exerting substantial impact on diverse pathological and physiological pathways. This comprehensive review encapsulates our current understanding of the intricate regulatory nexus between NMD and miRNAs, with particular emphasis on the essential role played by UPF3B in neurodevelopment. Additionally, we bring out the significance of the 3'-untranslated region (3'-UTR) as the molecular bridge connecting NMD and miRNA-mediated gene regulation. Furthermore, we provide an in-depth exploration of diverse computational tools tailored for the prediction of potential miRNA targets. To complement these computational approaches, we delineate experimental techniques designed to validate predicted miRNA-mRNA interactions, empowering readers with the knowledge necessary to select the most appropriate methodology for their specific research objectives.
Collapse
Affiliation(s)
- Priyanka Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Raja Tamilselvan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Harita Mani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kusum Kumari Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
9
|
Korinek M, Candelas Serra M, Abdel Rahman F, Dobrovolski M, Kuchtiak V, Abramova V, Fili K, Tomovic E, Hrcka Krausova B, Krusek J, Cerny J, Vyklicky L, Balik A, Smejkalova T. Disease-Associated Variants in GRIN1, GRIN2A and GRIN2B genes: Insights into NMDA Receptor Structure, Function, and Pathophysiology. Physiol Res 2024; 73:S413-S434. [PMID: 38836461 PMCID: PMC11412357 DOI: 10.33549/physiolres.935346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are a subtype of ionotropic glutamate receptors critical for synaptic transmission and plasticity, and for the development of neural circuits. Rare or de-novo variants in GRIN genes encoding NMDAR subunits have been associated with neurodevelopmental disorders characterized by intellectual disability, developmental delay, autism, schizophrenia, or epilepsy. In recent years, some disease-associated variants in GRIN genes have been characterized using recombinant receptors expressed in non-neuronal cells, and a few variants have also been studied in neuronal preparations or animal models. Here we review the current literature on the functional evaluation of human disease-associated variants in GRIN1, GRIN2A and GRIN2B genes at all levels of analysis. Focusing on the impact of different patient variants at the level of receptor function, we discuss effects on receptor agonist and co-agonist affinity, channel open probability, and receptor cell surface expression. We consider how such receptor-level functional information may be used to classify variants as gain-of-function or loss-of-function, and discuss the limitations of this classification at the synaptic, cellular, or system level. Together this work by many laboratories worldwide yields valuable insights into NMDAR structure and function, and represents significant progress in the effort to understand and treat GRIN disorders. Keywords: NMDA receptor , GRIN genes, Genetic variants, Electrophysiology, Synapse, Animal models.
Collapse
Affiliation(s)
- M Korinek
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Asthana S, Mott J, Tong M, Pei Z, Mao Y. The Exon Junction Complex Factor RBM8A in Glial Fibrillary Acid Protein-Expressing Astrocytes Modulates Locomotion Behaviors. Cells 2024; 13:498. [PMID: 38534343 PMCID: PMC10968791 DOI: 10.3390/cells13060498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
The role of RNA Binding Motif Protein 8a (RBM8A), an exon junction complex (EJC) component, in neurodevelopmental disorders has been increasingly studied for its crucial role in regulating multiple levels of gene expression. It regulates mRNA splicing, translation, and mRNA degradation and influences embryonic development. RBM8A protein is expressed in both neurons and astrocytes, but little is known about RBM8A's specific role in glial fibrillary acid protein (GFAP)-positive astrocytes. To address the role of RBM8A in astrocytes, we generated a conditional heterozygous knockout (KO) mouse line of Rbm8a in astrocytes using a GFAP-cre line. We confirmed a decreased expression of RBM8A in astrocytes of heterozygous conditional KO mice via RT-PCR and Sanger sequencing, as well as qRT-PCR, immunohistochemistry, and Western blot. Interestingly, these mice exhibit significantly increased movement and mobility, alongside sex-specific altered anxiety in the open field test (OFT) and elevated plus maze (OPM) tests. These tests, along with the rotarod test, suggest that these mice have normal motor coordination but hyperactive phenotypes. In addition, the haploinsufficiency of Rbm8a in astrocytes leads to a sex-specific change in astrocyte density in the dentate gyrus. This study further reveals the contribution of Rbm8a deletion to CNS pathology, generating more insights via the glial lens of an Rbm8a model of neurodevelopmental disorder.
Collapse
Affiliation(s)
- Shravan Asthana
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA; (S.A.); (J.M.); (M.T.); (Z.P.)
- Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA
| | - Jennifer Mott
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA; (S.A.); (J.M.); (M.T.); (Z.P.)
| | - Mabel Tong
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA; (S.A.); (J.M.); (M.T.); (Z.P.)
| | - Zifei Pei
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA; (S.A.); (J.M.); (M.T.); (Z.P.)
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA; (S.A.); (J.M.); (M.T.); (Z.P.)
| |
Collapse
|
11
|
Hu J, Li P, Zhao H, Ji P, Yang Y, Ma J, Zhao X. Alterations of gut microbiota and its correlation with the liver metabolome in the process of ameliorating Parkinson's disease with Buyang Huanwu decoction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116893. [PMID: 37423520 DOI: 10.1016/j.jep.2023.116893] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buyang Huanwu decoction (BHD), a famous traditional Chinese medicine (TCM) formula, was first recorded in Qing Dynasty physician Qingren Wang's Yi Lin Gai Cuo. BHD has been widely utilized in the treatment of patients with neurological disorders, including Parkinson's disease (PD). However, the underlying mechanism has not been fully elucidated. In particular, little is known about the role of gut microbiota. AIM OF THE STUDY We aimed to reveal the alterations and functions of gut microbiota and its correlation with the liver metabolome in the process of improving PD with BHD. MATERIALS AND METHODS The cecal contents were collected from PD mice treated with or without BHD. 16S rRNA gene sequencing was performed on an Illumina MiSeq-PE250 platform, and the ecological structure, dominant taxa, co-occurrence patterns, and function prediction of the gut microbial community were analyzed by multivariate statistical methods. The correlation between differential microbial communities in the gut and differentially accumulated metabolites in the liver was analyzed using Spearman's correlation analysis. RESULTS The abundance of Butyricimonas, Christensenellaceae, Coprococcus, Peptococcaceae, Odoribacteraceae, and Roseburia was altered significantly in the model group, which was by BHD. Ten genera, namely Dorea, unclassified_Lachnospiraceae, Oscillospira, unidentified_Ruminococcaceae, unclassified_Clostridiales, unidentified_Clostridiales, Bacteroides, unclassified_Prevotellaceae, unidentified_Rikenellaceae, and unidentified_S24-7, were identified as key bacterial communities. According to the function prediction of differential genera, the mRNA surveillance pathway might be a target of BHD. Integrated analysis of gut microbiota and the liver metabolome revealed that several gut microbiota genera such as Parabacteroides, Ochrobactrum, Acinetobacter, Clostridium, and Halomonas, were positively or negatively correlated with some nervous system-related metabolites, such as L-carnitine, L-pyroglutamic acid, oleic acid, and taurine. CONCLUSIONS Gut microbiota might be a target of BHD in the process of ameliorating PD. Our findings provide novel insight into the mechanisms underlying the effects of BHD on PD and contribute to the development of TCM.
Collapse
Affiliation(s)
- Jianran Hu
- Department of Biological Science and Technology, Jinzhong University, Jinzhong, 030619, China
| | - Ping Li
- Department of Biological Science and Technology, Jinzhong University, Jinzhong, 030619, China.
| | - Hongmei Zhao
- Department of Biological Science and Technology, Jinzhong University, Jinzhong, 030619, China
| | - Pengyu Ji
- Department of Biological Science and Technology, Jinzhong University, Jinzhong, 030619, China
| | - Yanjun Yang
- Department of Biological Science and Technology, Jinzhong University, Jinzhong, 030619, China
| | - Jianhua Ma
- Department of Biological Science and Technology, Jinzhong University, Jinzhong, 030619, China
| | - Xin Zhao
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
12
|
Mercer HM, Nair AM, Ridgel A, Piontkivska H. Alterations in RNA editing in skeletal muscle following exercise training in individuals with Parkinson's disease. PLoS One 2023; 18:e0287078. [PMID: 38134032 PMCID: PMC10745226 DOI: 10.1371/journal.pone.0287078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/01/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disease behind Alzheimer's Disease, currently affecting more than 10 million people worldwide and 1.5 times more males than females. The progression of PD results in the loss of function due to neurodegeneration and neuroinflammation. The etiology of PD is multifactorial, including both genetic and environmental origins. Here we explored changes in RNA editing, specifically editing through the actions of the Adenosine Deaminases Acting on RNA (ADARs), in the progression of PD. Analysis of ADAR editing of skeletal muscle transcriptomes from PD patients and controls, including those that engaged in a rehabilitative exercise training program revealed significant differences in ADAR editing patterns based on age, disease status, and following rehabilitative exercise. Further, deleterious editing events in protein coding regions were identified in multiple genes with known associations to PD pathogenesis. Our findings of differential ADAR editing complement findings of changes in transcriptional networks identified by a recent study and offer insights into dynamic ADAR editing changes associated with PD pathogenesis.
Collapse
Affiliation(s)
- Heather Milliken Mercer
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
- Department of Biological and Environmental Sciences, University of Mount Union, Alliance, OH, United States of America
- Healthy Communities Research Institute, Kent State University, Kent, OH, United States of America
| | - Aiswarya Mukundan Nair
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
| | - Angela Ridgel
- School of Health Sciences, Kent State University, Kent, OH, United States of America
- Brain Health Research Institute, Kent State University, Kent, OH, United States of America
- Healthy Communities Research Institute, Kent State University, Kent, OH, United States of America
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
- Brain Health Research Institute, Kent State University, Kent, OH, United States of America
- Healthy Communities Research Institute, Kent State University, Kent, OH, United States of America
| |
Collapse
|
13
|
Yang S, Wijegunawardana D, Sheth U, Veire AM, Salgado JMS, Agrawal M, Zhou J, Pereira JD, Gendron TF, Guo JU. Aberrant splicing exonizes C9ORF72 repeat expansion in ALS/FTD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566896. [PMID: 38014069 PMCID: PMC10680656 DOI: 10.1101/2023.11.13.566896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A nucleotide repeat expansion (NRE) in the first annotated intron of the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). While C9 NRE-containing RNAs can be translated into several toxic dipeptide repeat proteins, how an intronic NRE can assess the translation machinery in the cytoplasm remains unclear. By capturing and sequencing NRE-containing RNAs from patient-derived cells, we found that C9 NRE was exonized by the usage of downstream 5' splice sites and exported from the nucleus in a variety of spliced mRNA isoforms. C9ORF72 aberrant splicing was substantially elevated in both C9 NRE+ motor neurons and human brain tissues. Furthermore, NREs above the pathological threshold were sufficient to activate cryptic splice sites in reporter mRNAs. In summary, our results revealed a crucial and potentially widespread role of repeat-induced aberrant splicing in the biogenesis, localization, and translation of NRE-containing RNAs.
Collapse
Affiliation(s)
- Suzhou Yang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Denethi Wijegunawardana
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Udit Sheth
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences; Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Austin M. Veire
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences; Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Juliana M. S. Salgado
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Manasi Agrawal
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jeffrey Zhou
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - João D. Pereira
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tania F. Gendron
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences; Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Junjie U. Guo
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
14
|
Li C, Lin J, Jiang Q, Yang T, Xiao Y, Huang J, Hou Y, Wei Q, Cui Y, Wang S, Zheng X, Ou R, Liu K, Chen X, Song W, Zhao B, Shang H. Genetic Modifiers of Age at Onset for Amyotrophic Lateral Sclerosis: A Genome-Wide Association Study. Ann Neurol 2023; 94:933-941. [PMID: 37528491 DOI: 10.1002/ana.26752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVE Age at onset (AAO) is an essential clinical feature associated with disease progression and mortality in amyotrophic lateral sclerosis (ALS). Identification of genetic variants and environmental risk factors influencing AAO of ALS could help better understand the disease's biological mechanism and provide clinical guidance. However, most genetic studies focused on the risk of ALS, while the genetic background of AAO is less explored. This study aimed to identify genetic and environmental determinants for AAO of ALS. METHODS We performed a genome-wide association analysis using a Cox proportional hazards model on AAO of ALS in 10,068 patients. We further conducted colocalization analysis and in-vitro functional exploration for the target variants, as well as Mendelian randomization analysis to identify risk factors influencing AAO of ALS. RESULTS The total heritability of AAO of ALS was ~0.16 (standard error [SE] = 0.03). One novel locus rs2046243 (CTIF) was significantly associated with earlier AAO by ~1.29 years (p = 1.68E-08, beta = 0.10, SE = 0.02). Functional exploration suggested this variant was associated with increased expression of CTIF in multiple tissues including the brain. Colocalization analysis detected a colocalization signal at the locus between AAO of ALS and expression of CTIF. Causal inference indicated higher education level was associated with later AAO. INTERPRETATION These findings improve the current knowledge of the genetic and environmental etiology of AAO of ALS, and provide a novel target CTIF for further research on ALS pathogenesis and potential therapeutic options to delay the disease onset. ANN NEUROL 2023;94:933-941.
Collapse
Affiliation(s)
- Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Qirui Jiang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Tianmi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Xiao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Jingxuan Huang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Yanbing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Yiyuan Cui
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Shichan Wang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoting Zheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Kuncheng Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Xueping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Song
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Bi Zhao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Petrić Howe M, Patani R. Nonsense-mediated mRNA decay in neuronal physiology and neurodegeneration. Trends Neurosci 2023; 46:879-892. [PMID: 37543480 DOI: 10.1016/j.tins.2023.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/19/2023] [Accepted: 07/09/2023] [Indexed: 08/07/2023]
Abstract
The processes of mRNA export from the nucleus and subsequent mRNA translation in the cytoplasm are of particular relevance in eukaryotic cells. In highly polarised cells such as neurons, finely-tuned molecular regulation of these processes serves to safeguard the spatiotemporal fidelity of gene expression. Nonsense-mediated mRNA decay (NMD) is a cytoplasmic translation-dependent quality control process that regulates gene expression in a wide range of scenarios in the nervous system, including neurodevelopment, learning, and memory formation. Moreover, NMD dysregulation has been implicated in a broad range of neurodevelopmental and neurodegenerative disorders. We discuss how NMD and related aspects of mRNA translation regulate key neuronal functions and, in particular, we focus on evidence implicating these processes in the molecular pathogenesis of neurodegeneration. Finally, we discuss the therapeutic potential and challenges of targeting mRNA translation and NMD across the spectrum of largely untreatable neurological diseases.
Collapse
Affiliation(s)
- Marija Petrić Howe
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London (UCL), Queen Square, WC1N 3BG London, UK.
| | - Rickie Patani
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London (UCL), Queen Square, WC1N 3BG London, UK.
| |
Collapse
|
16
|
Sun L, Mailliot J, Schaffitzel C. Nonsense-Mediated mRNA Decay Factor Functions in Human Health and Disease. Biomedicines 2023; 11:722. [PMID: 36979701 PMCID: PMC10045457 DOI: 10.3390/biomedicines11030722] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a cellular surveillance mechanism that degrades mRNAs with a premature stop codon, avoiding the synthesis of C-terminally truncated proteins. In addition to faulty mRNAs, NMD recognises ~10% of endogenous transcripts in human cells and downregulates their expression. The up-frameshift proteins are core NMD factors and are conserved from yeast to human in structure and function. In mammals, NMD diversified into different pathways that target different mRNAs employing additional NMD factors. Here, we review our current understanding of molecular mechanisms and cellular roles of NMD pathways and the involvement of more specialised NMD factors. We describe the consequences of mutations in NMD factors leading to neurodevelopmental diseases, and the role of NMD in cancer. We highlight strategies of RNA viruses to evade recognition and decay by the NMD machinery.
Collapse
Affiliation(s)
- Lingling Sun
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Justine Mailliot
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
- Bristol Engineering Biology Centre BrisEngBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| |
Collapse
|
17
|
Sabo SL, Lahr JM, Offer M, Weekes ALA, Sceniak MP. GRIN2B-related neurodevelopmental disorder: current understanding of pathophysiological mechanisms. Front Synaptic Neurosci 2023; 14:1090865. [PMID: 36704660 PMCID: PMC9873235 DOI: 10.3389/fnsyn.2022.1090865] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
The GRIN2B-related neurodevelopmental disorder is a rare disease caused by mutations in the GRIN2B gene, which encodes the GluN2B subunit of NMDA receptors. Most individuals with GRIN2B-related neurodevelopmental disorder present with intellectual disability and developmental delay. Motor impairments, autism spectrum disorder, and epilepsy are also common. A large number of pathogenic de novo mutations have been identified in GRIN2B. However, it is not yet known how these variants lead to the clinical symptoms of the disease. Recent research has begun to address this issue. Here, we describe key experimental approaches that have been used to better understand the pathophysiology of this disease. We discuss the impact of several distinct pathogenic GRIN2B variants on NMDA receptor properties. We then critically review pivotal studies examining the synaptic and neurodevelopmental phenotypes observed when disease-associated GluN2B variants are expressed in neurons. These data provide compelling evidence that various GluN2B mutants interfere with neuronal differentiation, dendrite morphogenesis, synaptogenesis, and synaptic plasticity. Finally, we identify important open questions and considerations for future studies aimed at understanding this complex disease. Together, the existing data provide insight into the pathophysiological mechanisms that underlie GRIN2B-related neurodevelopmental disorder and emphasize the importance of comparing the effects of individual, disease-associated variants. Understanding the molecular, cellular and circuit phenotypes produced by a wide range of GRIN2B variants should lead to the identification of core neurodevelopmental phenotypes that characterize the disease and lead to its symptoms. This information could help guide the development and application of effective therapeutic strategies for treating individuals with GRIN2B-related neurodevelopmental disorder.
Collapse
Affiliation(s)
- Shasta L. Sabo
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States,Program in Biochemistry, Cell and Molecular Biology, Central Michigan University, Mount Pleasant, MI, United States,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States,*Correspondence: Shasta L. Sabo
| | - Jessica M. Lahr
- Program in Biochemistry, Cell and Molecular Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - Madelyn Offer
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Anika LA Weekes
- Program in Biochemistry, Cell and Molecular Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - Michael P. Sceniak
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| |
Collapse
|
18
|
Farré X, Blay N, Cortés B, Carreras A, Iraola-Guzmán S, de Cid R. Skin Phototype and Disease: A Comprehensive Genetic Approach to Pigmentary Traits Pleiotropy Using PRS in the GCAT Cohort. Genes (Basel) 2023; 14:149. [PMID: 36672889 PMCID: PMC9859115 DOI: 10.3390/genes14010149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/09/2023] Open
Abstract
Human pigmentation has largely been associated with different disease prevalence among populations, but most of these studies are observational and inconclusive. Known to be genetically determined, pigmentary traits have largely been studied by Genome-Wide Association Study (GWAS), mostly in Caucasian ancestry cohorts from North Europe, identifying robustly, several loci involved in many of the pigmentary traits. Here, we conduct a detailed analysis by GWAS and Polygenic Risk Score (PRS) of 13 pigmentary-related traits in a South European cohort of Caucasian ancestry (n = 20,000). We observed fair phototype strongly associated with non-melanoma skin cancer and other dermatoses and confirmed by PRS-approach the shared genetic basis with skin and eye diseases, such as melanoma (OR = 0.95), non-melanoma skin cancer (OR = 0.93), basal cell carcinoma (OR = 0.97) and darker phototype with vitiligo (OR = 1.02), cataracts (OR = 1.04). Detailed genetic analyses revealed 37 risk loci associated with 10 out of 13 analyzed traits, and 16 genes significantly associated with at least two pigmentary traits. Some of them have been widely reported, such as MC1R, HERC2, OCA2, TYR, TYRP1, SLC45A2, and some novel candidate genes C1QTNF3, LINC02876, and C1QTNF3-AMACR have not been reported in the GWAS Catalog, with regulatory potential. These results highlight the importance of the assess phototype as a genetic proxy of skin functionality and disease when evaluating open mixed populations.
Collapse
Affiliation(s)
| | | | | | | | | | - Rafael de Cid
- Genomes for Life-GCAT Lab, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| |
Collapse
|
19
|
Karousis ED, Mühlemann O. The broader sense of nonsense. Trends Biochem Sci 2022; 47:921-935. [PMID: 35780009 DOI: 10.1016/j.tibs.2022.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 12/21/2022]
Abstract
The term 'nonsense-mediated mRNA decay' (NMD) was initially coined to describe the translation-dependent degradation of mRNAs harboring premature termination codons (PTCs), but it is meanwhile known that NMD also targets many canonical mRNAs with numerous biological implications. The molecular mechanisms determining on which RNAs NMD ensues are only partially understood. Considering the broad range of NMD-sensitive RNAs and the variable degrees of their degradation, we highlight here the hallmarks of mammalian NMD and point out open questions. We review the links between NMD and disease by summarizing the role of NMD in cancer, neurodegeneration, and viral infections. Finally, we describe strategies to modulate NMD activity and specificity as potential therapeutic approaches for various diseases.
Collapse
Affiliation(s)
- Evangelos D Karousis
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Oliver Mühlemann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|