1
|
Yang S, Yu F, Yang M, Ni H, Bu W, Yin H, Yang J, Wang W, Zhai D, Wu X, Ma N, Li T, Hao H, Ran J, Song T, Li D, Yoshida S, Lu Q, Yang Y, Zhou J, Liu M. CYLD Maintains Retinal Homeostasis by Deubiquitinating ENKD1 and Promoting the Phagocytosis of Photoreceptor Outer Segments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404067. [PMID: 39373352 PMCID: PMC11615780 DOI: 10.1002/advs.202404067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/13/2024] [Indexed: 10/08/2024]
Abstract
Phagocytosis of shed photoreceptor outer segments by the retinal pigment epithelium (RPE) is essential for retinal homeostasis. Dysregulation of the phagocytotic process is associated with irreversible retinal degenerative diseases. However, the molecular mechanisms underlying the phagocytic activity of RPE cells remain elusive. In an effort to uncover proteins orchestrating retinal function, the cylindromatosis (CYLD) deubiquitinase is identified as a critical regulator of photoreceptor outer segment phagocytosis. CYLD-deficient mice exhibit abnormal retinal structure and function. Mechanistically, CYLD interacts with enkurin domain containing protein 1 (ENKD1) and deubiquitinates ENKD1 at lysine residues K141 and K242. Deubiquitinated ENKD1 interacts with Ezrin, a membrane-cytoskeleton linker, and stimulates the microvillar localization of Ezrin, which is essential for the phagocytic activity of RPE cells. These findings thus reveal a crucial role for the CYLD-ENKD1-Ezrin axis in regulating retinal homeostasis and may have important implications for the prevention and treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Song Yang
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
- School of Health and Life SciencesQingdao Central HospitalUniversity of Health and Rehabilitation SciencesQingdao266113China
| | - Fan Yu
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
- School of Health and Life SciencesQingdao Central HospitalUniversity of Health and Rehabilitation SciencesQingdao266113China
| | - Mulin Yang
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Hua Ni
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Weiwen Bu
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Hanxiao Yin
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Jia Yang
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Weishu Wang
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Denghui Zhai
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Xuemei Wu
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Nan Ma
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Te Li
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Huijie Hao
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Jie Ran
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Ting Song
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Dengwen Li
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Sei Yoshida
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Quanlong Lu
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Yunfan Yang
- Department of Cell BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinan250012China
| | - Jun Zhou
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Min Liu
- Laboratory of Tissue HomeostasisHaihe Laboratory of Cell EcosystemTianjin300462China
| |
Collapse
|
2
|
Zhou P, Hu M, Li Q, Yang G. Both intrinsic and microenvironmental factors contribute to the regulation of stem cell quiescence. J Cell Physiol 2024; 239:e31325. [PMID: 38860372 DOI: 10.1002/jcp.31325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
Precise regulation of stem cell quiescence is essential for tissue development and homeostasis. Therefore, its aberrant regulation is intimately correlated with various human diseases. However, the detailed mechanisms of stem cell quiescence and its specific role in the pathogenesis of various diseases remain to be determined. Recent studies have revealed that the intrinsic and microenvironmental factors are the potential candidates responsible for the orderly switch between the dormant and activated states of stem cells. In addition, defects in signaling pathways related to internal and external factors of stem cells might contribute to the initiation and development of diseases by altering the dormancy of stem cells. In this review, we focus on the mechanisms underlying stem cell quiescence, especially the involvement of intrinsic and microenvironmental factors. In addition, we discuss the relationship between the anomalies of stem cell quiescence and related diseases, hopefully providing therapeutic insights for developing novel treatments.
Collapse
Affiliation(s)
- Ping Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Mingzheng Hu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Guiwen Yang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
3
|
Ni H, Li L, Hu D, Yang M, Wang D, Ma H, Bu W, Yang J, Zhu LE, Zhai D, Song T, Yang S, Lu Q, Li D, Ran J, Liu M. Dynamic changes of endothelial and stromal cilia are required for the maintenance of corneal homeostasis. J Cell Physiol 2024; 239:e31215. [PMID: 38308657 DOI: 10.1002/jcp.31215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Primary cilia are distributed extensively within the corneal epithelium and endothelium. However, the presence of cilia in the corneal stroma and the dynamic changes and roles of endothelial and stromal cilia in corneal homeostasis remain largely unknown. Here, we present compelling evidence for the presence of primary cilia in the corneal stroma, both in vivo and in vitro. We also demonstrate dynamic changes of both endothelial and stromal cilia during corneal development. In addition, our data show that cryoinjury triggers dramatic cilium formation in the corneal endothelium and stroma. Furthermore, depletion of cilia in mutant mice lacking intraflagellar transport protein 88 compromises the corneal endothelial capacity to establish the effective tissue barrier, leading to an upregulation of α-smooth muscle actin within the corneal stroma in response to cryoinjury. These observations underscore the essential involvement of corneal endothelial and stromal cilia in maintaining corneal homeostasis and provide an innovative strategy for the treatment of corneal injuries and diseases.
Collapse
Affiliation(s)
- Hua Ni
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
- College of Life and Geographic Sciences, Kashi University, Kashi, China
| | - Lamei Li
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Die Hu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Mulin Yang
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Difei Wang
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongbo Ma
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Weiwen Bu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jia Yang
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Li-E Zhu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Denghui Zhai
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Ting Song
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Song Yang
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Quanlong Lu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dengwen Li
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Min Liu
- Laboratory of Tissue Homeostasis, Haihe Laboratory of Cell Ecosystem, Tianjin, China
| |
Collapse
|