1
|
Chen X, Xu S, Chu B, Guo J, Zhang H, Sun S, Song L, Feng XQ. Applying Spatiotemporal Modeling of Cell Dynamics to Accelerate Drug Development. ACS NANO 2024; 18:29311-29336. [PMID: 39420743 DOI: 10.1021/acsnano.4c12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cells act as physical computational programs that utilize input signals to orchestrate molecule-level protein-protein interactions (PPIs), generating and responding to forces, ultimately shaping all of the physiological and pathophysiological behaviors. Genome editing and molecule drugs targeting PPIs hold great promise for the treatments of diseases. Linking genes and molecular drugs with protein-performed cellular behaviors is a key yet challenging issue due to the wide range of spatial and temporal scales involved. Building predictive spatiotemporal modeling systems that can describe the dynamic behaviors of cells intervened by genome editing and molecular drugs at the intersection of biology, chemistry, physics, and computer science will greatly accelerate pharmaceutical advances. Here, we review the mechanical roles of cytoskeletal proteins in orchestrating cellular behaviors alongside significant advancements in biophysical modeling while also addressing the limitations in these models. Then, by integrating generative artificial intelligence (AI) with spatiotemporal multiscale biophysical modeling, we propose a computational pipeline for developing virtual cells, which can simulate and evaluate the therapeutic effects of drugs and genome editing technologies on various cell dynamic behaviors and could have broad biomedical applications. Such virtual cell modeling systems might revolutionize modern biomedical engineering by moving most of the painstaking wet-laboratory effort to computer simulations, substantially saving time and alleviating the financial burden for pharmaceutical industries.
Collapse
Affiliation(s)
- Xindong Chen
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- BioMap, Beijing 100144, China
| | - Shihao Xu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bizhu Chu
- School of Pharmacy, Shenzhen University, Shenzhen 518055, China
- Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jing Guo
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen 361000, China
| | - Huikai Zhang
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Shuyi Sun
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Le Song
- BioMap, Beijing 100144, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Baassiri A, Ghais A, Kurdi A, Rahal E, Nasr R, Shirinian M. The molecular signature of BCR::ABLP210 and BCR::ABLT315I in a Drosophila melanogaster chronic myeloid leukemia model. iScience 2024; 27:109538. [PMID: 38585663 PMCID: PMC10995885 DOI: 10.1016/j.isci.2024.109538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
Chronic myeloid leukemia (CML) is a clonal hematopoietic stem cell disorder resulting from a balanced translocation leading to BCR::ABL1 oncogene with increased tyrosine kinase activity. Despite the advancements in the development of tyrosine kinase inhibitors (TKIs), the T315I gatekeeper point mutation in the BCR::ABL1 gene remains a challenge. We have previously reported in a Drosophila CML model an increased hemocyte count and disruption in sessile hemocyte patterns upon expression of BCR::ABL1p210 and BCR::ABL1T315I in the hemolymph. In this study, we performed RNA sequencing to determine if there is a distinct gene expression that distinguishes BCR::ABL1p210 and BCR::ABL1T315I. We identified six genes that were consistently upregulated in the fly CML model and validated in adult and pediatric CML patients and in a mouse cell line expressing BCR::ABL1T315I. This study provides a comprehensive analysis of gene signatures in BCR::ABL1p210 and BCR::ABL1T315I, laying the groundwork for targeted investigations into the role of these genes in CML pathogenesis.
Collapse
Affiliation(s)
- Amro Baassiri
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali Ghais
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdallah Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Elias Rahal
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Margret Shirinian
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
3
|
Vinothkumar K, Chanda S, Singh VK, Biswas S, Mohapatra S, Biswas G, Chakraborty S. EVI1 upregulates PTGS1 (COX1) and decreases the action of tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia cells. Int J Hematol 2023; 117:110-120. [PMID: 36282419 DOI: 10.1007/s12185-022-03465-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 01/11/2023]
Abstract
Tyrosine kinase inhibitors (TKIs) are highly effective in treating chronic myelogenous leukemia (CML). However, primary and acquired drug resistance to TKIs have been reported. In this study, we used RNA sequencing followed by RQ-PCR to show that the proto-oncogene EVI1 targets the drug-metabolizing gene PTGS1 in CML. The PTGS1 promoter element had an EVI1 binding site, and CHIP assay confirmed its presence. Data from a publicly available CML microarray dataset and an independent set of CML samples showed a significant positive correlation between EVI1 and PTGS1 expression in CML. Downregulation of EVI1 in K562 cells and subsequent treatment with TKIs resulted in a lower IC50 in the control cells. Furthermore, combined inhibition of BCR-ABL with imatinib and PTGS1 with FR122047 (PTGS1 inhibitor) synergistically reduced the viability of imatinib-resistant K562 cells. We conclude that elevated EVI1 expression contributes to TKIs resistance and that combined inhibition of PTGS1 and BCR-ABL may represent a novel therapeutic approach.
Collapse
MESH Headings
- Humans
- Apoptosis
- Cyclooxygenase 1/pharmacology
- Cyclooxygenase 1/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Tyrosine Protein Kinase Inhibitors
Collapse
Affiliation(s)
- Kittappa Vinothkumar
- Cancer Biology Group, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
| | - Sayantan Chanda
- Cancer Biology Group, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Vivek Kumar Singh
- Cancer Biology Group, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
| | - Sutapa Biswas
- Sparsh Hospital and Critical Care, Bhubaneswar, India
| | - Sonali Mohapatra
- Department of Medical Oncology/Hematology, All India Institute of Medical Sciences, Bhubaneswar, India
| | | | - Soumen Chakraborty
- Cancer Biology Group, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India.
- Regional Centre for Biotechnology, Faridabad, Haryana, India.
| |
Collapse
|
4
|
Akgun‑Cagliyan G, Cort‑Donmez A, Kilic‑Toprak E, Altintas F. Verbascoside potentiates the effect of tyrosine kinase inhibitors on the induction of apoptosis and oxidative stress via the Abl-mediated MAPK signalling pathway in chronic myeloid leukaemia. Exp Ther Med 2022; 24:514. [PMID: 35837042 PMCID: PMC9257957 DOI: 10.3892/etm.2022.11441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/18/2022] [Indexed: 11/05/2022] Open
Abstract
Verbascoside (Verb) may exhibit potential antitumour activities in leukaemia. The present study investigated the effect of Verb, in combination with imatinib (IM), dasatinib (Das), lipopolysaccharide (LPS) and TNF, on cell survival, Abl expression, apoptosis, oxidative stress and the MAPK pathway in chronic myeloid leukaemia (CML) cells. Cell viability was determined using the WST-8 assay in K562 and R-K562 cells treated with Verb and/or IM, Das, LPS and TNF. Apoptosis and DNA damage in CML cells was detected by caspase-3 and comet analysis. The protein levels of Abl (Phospho-Tyr412), and total/phosphorylated p38, JNK and ERK in CML cells were analysed using a Colorimetric Cell-Based Assay. Oxidative stress was examined using total antioxidant and oxidant status assays. Treatment with Verb and/or tyrosine kinase inhibitors (TKIs), LPS and TNF resulted in a significant decrease in the Tyr-412 phosphorylation of Abl in K562 and R-K562 cells. In addition, cotreatment with Verb and IM or Das additively induced apoptosis by activating caspase-3 levels in both cell lines. Activation of p38 and JNK can result in growth arrest and cell death, whereas ERK stimulation results in cell division and differentiation. The present study demonstrated that cotreatment with Verb and TKIs suppressed phosphorylated-ERK1/2, whereas the levels of phosphorylated-p-38 and phosphorylated-JNK were significantly elevated by Verb and/or IM, Das, LPS and TNF, thus suggesting that Abl and Src inhibition could be involved in the effects of Verb on MAPK signalling in R-K562 cells. Furthermore, Verb elevated reactive oxygen species levels additively with TKIs in both cell lines by increasing the oxidant capacity and decreasing the antioxidant capacity. In conclusion, anti-leukemic mechanisms of Verb may be mediated by Abl protein and regulation of its downstream p38-MAPK/JNK pathway, caspase-3 and oxidative stress in CML cells.
Collapse
Affiliation(s)
- Gulsum Akgun‑Cagliyan
- Department of Hematology, Faculty of Medicine, Pamukkale University, 20160 Denizli, Turkey
| | - Aysegul Cort‑Donmez
- Department of Biochemistry, Faculty of Medicine, Pamukkale University, 20160 Denizli, Turkey
| | - Emine Kilic‑Toprak
- Department of Physiology, Faculty of Medicine, Pamukkale University, 20160 Denizli, Turkey
| | - Fatih Altintas
- Department of Physiology, Faculty of Medicine, Pamukkale University, 20160 Denizli, Turkey
| |
Collapse
|
5
|
Tusa I, Cheloni G, Poteti M, Silvano A, Tubita A, Lombardi Z, Gozzini A, Caporale R, Scappini B, Dello Sbarba P, Rovida E. In Vitro Comparison of the Effects of Imatinib and Ponatinib on Chronic Myeloid Leukemia Progenitor/Stem Cell Features. Target Oncol 2020; 15:659-671. [PMID: 32780298 PMCID: PMC7568716 DOI: 10.1007/s11523-020-00741-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background The development of molecularly tailored therapeutic agents such as the BCR/ABL-active tyrosine kinase inhibitors (TKi) resulted in an excellent treatment option for chronic myeloid leukemia (CML) patients. However, following TKi discontinuation, disease relapses in 40–60% of patients, an occurrence very likely due to the persistence of leukemic stem cells that are scarcely sensitive to TKi. Nevertheless, TKi are still the only current treatment option for CML patients. Objective The aim of this study was to compare the effects of TKi belonging to different generations, imatinib and ponatinib (first and third generation, respectively), on progenitor/stem cell expansion potential and markers. Patients and Methods We used stabilized CML cell lines (KCL22, K562 and LAMA-84 cells), taking advantage of the previous demonstration of ours that cell lines contain cell subsets endowed with progenitor/stem cell properties. Primary cells explanted from CML patients were also used. The effects of TKi on the expression of stem cell related genes were compared by quantitative PCR. Flow cytometry was performed to evaluate aldehyde-dehydrogenase (ALDH) activity and the expression of cluster of differentiation (CD) cell surface hematopoietic stem cell markers. Progenitor/stem cell potential was estimated by serial colony formation ability (CFA) assay. Results Ponatinib was more effective than imatinib for the reduction of cells with ALDH activity and progenitor/stem cell potential of CML patient-derived cells and cell lines. Furthermore, ponatinib was more effective than imatinib in reducing the percentage of CD26-expressing cells in primary CML cells, whereas imatinib and ponatinib showed similar efficacy on KCL22 cells. Both drugs strongly upregulated NANOG and SOX2 in CML cell lines, but in KCL22 cells this upregulation was significantly lower with ponatinib than with imatinib, an outcome compatible with a lower level of enrichment of the stem cell compartment upon ponatinib treatment. Conclusion Ponatinib seems to target CML progenitor/stem cells better than imatinib. Electronic supplementary material The online version of this article (10.1007/s11523-020-00741-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ignazia Tusa
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Giulia Cheloni
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Martina Poteti
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Angela Silvano
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Alessandro Tubita
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Zoe Lombardi
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | | | - Roberto Caporale
- Dipartimento DAI Oncologico e di Chirurgia ad Indirizzo Robotico SOD Centro Diagnostico di Citofluorimetria e Immunoterapia, AOU Careggi, Florence, Italy
| | | | - Persio Dello Sbarba
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy.
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy.
| |
Collapse
|
6
|
Chirillo R, Aversa I, Di Vito A, Salatino A, Battaglia AM, Sacco A, Di Sanzo MA, Faniello MC, Quaresima B, Palmieri C, Biamonte F, Costanzo F. FtH-Mediated ROS Dysregulation Promotes CXCL12/CXCR4 Axis Activation and EMT-Like Trans-Differentiation in Erythroleukemia K562 Cells. Front Oncol 2020; 10:698. [PMID: 32432042 PMCID: PMC7214836 DOI: 10.3389/fonc.2020.00698] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 04/14/2020] [Indexed: 12/23/2022] Open
Abstract
The cell-microenvironment communication is essential for homing of hematopoietic stem cells in stromal niches. Recent evidences support the involvement of epithelial-to-mesenchymal (EMT) process in hematopoietic stem cell homeostasis as well as in leukemia cells invasiveness and migration capability. Here, we demonstrate that the alteration of iron homeostasis and the consequent increase of redox metabolism, mediated by the stable knock down of ferritin heavy chain (FtH), enhances the expression of CXCR4 in K562 erythroleukemia cells, thus promoting CXCL12-mediated motility. Indeed, addition of the CXCR4 receptor antagonist AMD3100 reverts this effect. Upon FtH knock down K562 cells also acquire an “EMT-like” phenotype, characterized by the increase of Snail, Slug and Vimentin with the parallel loss of E-cadherin. By using fibronectin as substrate, the cell adhesion assay further shows a reduction of cell adhesion capability in FtH-silenced K562 cells. Accordingly, confocal microscopy shows that adherent K562 control cells display a variety of protrusions while FtH-silenced K562 cells remain roundish. These phenomena are largely due to the reactive oxygen species (ROS)-mediated up-regulation of HIF-1α/CXCR4 axis which, in turn, promotes the activation of NF-κB and the enhancement of EMT features. These data are confirmed by treatments with either N-acetylcysteine (NAC) or AMD3100 or NF-κB inhibitor IκB-alpha which revert the FtH-silenced K562 invasive phenotype. Overall, our findings demonstrate the existence of a direct relationship among iron metabolism, redox homeostasis and EMT in the hematological malignancies. The effects of FtH dysregulation on CXCR4/CXCL12-mediated K562 cell motility extend the meaning of iron homeostasis in the leukemia cell microenvironment.
Collapse
Affiliation(s)
- Roberta Chirillo
- Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Ilenia Aversa
- Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Anna Di Vito
- Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Alessandro Salatino
- Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Anna Martina Battaglia
- Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Alessandro Sacco
- Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Maddalena Adriana Di Sanzo
- Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Maria Concetta Faniello
- Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Catanzaro, Italy.,Department of Experimental and Clinical Medicine, Research Center of Biochemistry and Advanced Molecular Biology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Barbara Quaresima
- Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Catanzaro, Italy.,Department of Experimental and Clinical Medicine, Research Center of Biochemistry and Advanced Molecular Biology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Francesco Costanzo
- Department of Experimental and Clinical Medicine, Research Center of Biochemistry and Advanced Molecular Biology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy.,Interdepartmental Center of Services (CIS), "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
7
|
Baykal-Köse S, Acikgoz E, Yavuz AS, Gönül Geyik Ö, Ateş H, Sezerman OU, Özsan GH, Yüce Z. Adaptive phenotypic modulations lead to therapy resistance in chronic myeloid leukemia cells. PLoS One 2020; 15:e0229104. [PMID: 32106243 PMCID: PMC7046262 DOI: 10.1371/journal.pone.0229104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/29/2020] [Indexed: 01/05/2023] Open
Abstract
Tyrosine kinase inhibitor (TKI) resistance is a major problem in chronic myeloid leukemia (CML). We generated a TKI-resistant K562 sub-population, K562-IR, under selective imatinib-mesylate pressure. K562-IR cells are CD34-/CD38-, BCR-Abl-independent, proliferate slowly, highly adherent and form intact tumor spheroids. Loss of CD45 and other hematopoietic markers reveal these cells have diverged from their hematopoietic origin. CD34 negativity, high expression of E-cadherin and CD44; decreased levels of CD45 and β-catenin do not fully confer with the leukemic stem cell (LSC) phenotype. Expression analyses reveal that K562-IR cells differentially express tissue/organ development and differentiation genes. Our data suggest that the observed phenotypic shift is an adaptive process rendering cells under TKI stress to become oncogene independent. Cells develop transcriptional instability in search for a gene expression framework suitable for new environmental stresses, resulting in an adaptive phenotypic shift in which some cells partially display LSC-like properties. With leukemic/cancer stem cell targeted therapies underway, the difference between treating an entity and a spectrum of dynamic cellular states will have conclusive effects on the outcome.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Cadherins/genetics
- Cadherins/metabolism
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Epithelial-Mesenchymal Transition/drug effects
- Epithelial-Mesenchymal Transition/genetics
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Mice
- Mutation/drug effects
- Oligonucleotide Array Sequence Analysis
- Protein Domains/genetics
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
Collapse
Affiliation(s)
- Seda Baykal-Köse
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Eda Acikgoz
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Yuzuncu Yil University, Van, Turkey
| | - Ahmet Sinan Yavuz
- Department of Molecular Biology, Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Öykü Gönül Geyik
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Halil Ateş
- Department of Hematology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Osman Uğur Sezerman
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem University, Istanbul, Turkey
| | - Güner Hayri Özsan
- Department of Hematology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Zeynep Yüce
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
- * E-mail: ,
| |
Collapse
|
8
|
Meenakshi Sundaram DN, Jiang X, Brandwein JM, Valencia-Serna J, Remant KC, Uludağ H. Current outlook on drug resistance in chronic myeloid leukemia (CML) and potential therapeutic options. Drug Discov Today 2019; 24:1355-1369. [PMID: 31102734 DOI: 10.1016/j.drudis.2019.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/25/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Abstract
Chronic myeloid leukemia cells are armed with several resistance mechanisms that can make current drugs ineffective. A better understanding of resistance mechanisms is yielding new approaches to management of the disease. Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm the hallmark of which, the breakpoint cluster region-Abelson (BCR-ABL) oncogene, has been the target of tyrosine kinase inhibitors (TKIs), which have significantly improved the survival of patients with CML. However, because of an increase in TKI resistance, it is becoming imperative to identify resistance mechanisms so that drug therapies can be better prescribed and new agents developed. In this review, we discuss the various BCR-ABL-dependent and -independent mechanisms of resistance observed in CML, and the range of therapeutic solutions available to overcome such resistance and to ultimately improve the survival of patients with CML.
Collapse
Affiliation(s)
| | - Xiaoyan Jiang
- Terry Fox Laboratory, British Columbia Cancer Agency and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | - Juliana Valencia-Serna
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - K C Remant
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
9
|
Dubois A, Ginet C, Furstoss N, Belaid A, Hamouda MA, El Manaa W, Cluzeau T, Marchetti S, Ricci JE, Jacquel A, Luciano F, Driowya M, Benhida R, Auberger P, Robert G. Differentiation inducing factor 3 mediates its anti-leukemic effect through ROS-dependent DRP1-mediated mitochondrial fission and induction of caspase-independent cell death. Oncotarget 2018; 7:26120-36. [PMID: 27027430 PMCID: PMC5041969 DOI: 10.18632/oncotarget.8319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/08/2016] [Indexed: 12/23/2022] Open
Abstract
Differentiation-inducing factor (DIF) defines a group of chlorinated hexaphenones that orchestrate stalk-cell differentiation in the slime mold Dictyostelium discoideum (DD). DIF-1 and 3 have also been reported to have tumor inhibiting properties; however, the mechanisms that underlie the effects of these compounds remain poorly defined. Herein, we show that DIF-3 rapidly triggers Ca2+ release and a loss of mitochondrial membrane potential (MMP) in the absence of cytochrome c and Smac release and without caspase activation. Consistently with these findings, we also detected no evidence of apoptosis in cells treated with DIF-3 but instead found that this compound induced autophagy. In addition, DIF-3 promoted mitochondrial fission in K562 and HeLa cells, as assessed by electron and confocal microscopy analysis. Importantly, DIF-3 mediated the phosphorylation and redistribution of dynamin-related protein 1 (DRP1) from the cytoplasmic to the microsomal fraction of K562 cells. Pharmacological inhibition or siRNA silencing of DRP1 not only inhibited mitochondrial fission but also protected K562 cells from DIF-3-mediated cell death. Furthermore, DIF-3 potently inhibited the growth of imatinib-sensitive and imatinib-resistant K562 cells. It also inhibited tumor formation in athymic mice engrafted with an imatinib-resistant CML cell line. Finally, DIF-3 exhibited a clear selectivity toward CD34+ leukemic cells from CML patients, compared with CD34− cells. In conclusion, we show that the potent anti-leukemic effect of DIF-3 is mediated through the induction of mitochondrial fission and caspase-independent cell death. Our findings may have important therapeutic implications, especially in the treatment of tumors that exhibit defects in apoptosis regulation.
Collapse
Affiliation(s)
- Alix Dubois
- INSERM U1065 Centre Méditerranéen de Médecine Moléculaire, Nice, France.,Team 2: Cell Death, Differentiation, Inflammation and Cancer, Nice, France.,Equipe Labellisée Fondation ARC, Paris, France.,Université de Nice Sophia Antipolis, Nice, France
| | - Clemence Ginet
- INSERM U1065 Centre Méditerranéen de Médecine Moléculaire, Nice, France.,Team 2: Cell Death, Differentiation, Inflammation and Cancer, Nice, France.,Equipe Labellisée Fondation ARC, Paris, France.,Université de Nice Sophia Antipolis, Nice, France
| | - Nathan Furstoss
- INSERM U1065 Centre Méditerranéen de Médecine Moléculaire, Nice, France.,Team 2: Cell Death, Differentiation, Inflammation and Cancer, Nice, France.,Equipe Labellisée Fondation ARC, Paris, France.,Université de Nice Sophia Antipolis, Nice, France
| | - Amine Belaid
- INSERM U1065 Centre Méditerranéen de Médecine Moléculaire, Nice, France.,Team 2: Cell Death, Differentiation, Inflammation and Cancer, Nice, France.,Université de Nice Sophia Antipolis, Nice, France
| | - Mohamed Amine Hamouda
- INSERM U1065 Centre Méditerranéen de Médecine Moléculaire, Nice, France.,Team 2: Cell Death, Differentiation, Inflammation and Cancer, Nice, France.,Equipe Labellisée Fondation ARC, Paris, France.,Université de Nice Sophia Antipolis, Nice, France
| | - Wedjene El Manaa
- INSERM U1065 Centre Méditerranéen de Médecine Moléculaire, Nice, France.,Team 2: Cell Death, Differentiation, Inflammation and Cancer, Nice, France.,Equipe Labellisée Fondation ARC, Paris, France.,Université de Nice Sophia Antipolis, Nice, France
| | - Thomas Cluzeau
- INSERM U1065 Centre Méditerranéen de Médecine Moléculaire, Nice, France.,Team 2: Cell Death, Differentiation, Inflammation and Cancer, Nice, France.,Equipe Labellisée Fondation ARC, Paris, France.,Université de Nice Sophia Antipolis, Nice, France.,Institut de Chimie de Nice (ICN), UMR 7272, Nice, France.,CHU de Nice, Service d'Hématologie Clinique, Nice, France
| | - Sandrine Marchetti
- INSERM U1065 Centre Méditerranéen de Médecine Moléculaire, Nice, France.,Team 2: Cell Death, Differentiation, Inflammation and Cancer, Nice, France.,Equipe Labellisée Fondation ARC, Paris, France.,Université de Nice Sophia Antipolis, Nice, France
| | - Jean Ehrland Ricci
- INSERM U1065 Centre Méditerranéen de Médecine Moléculaire, Nice, France.,Université de Nice Sophia Antipolis, Nice, France.,Team 3: Regulation of Caspase Dependent and Independent Cell Death, Nice, France
| | - Arnaud Jacquel
- INSERM U1065 Centre Méditerranéen de Médecine Moléculaire, Nice, France.,Team 2: Cell Death, Differentiation, Inflammation and Cancer, Nice, France.,Equipe Labellisée Fondation ARC, Paris, France.,Université de Nice Sophia Antipolis, Nice, France
| | - Frederic Luciano
- INSERM U1065 Centre Méditerranéen de Médecine Moléculaire, Nice, France.,Team 2: Cell Death, Differentiation, Inflammation and Cancer, Nice, France.,Equipe Labellisée Fondation ARC, Paris, France.,Université de Nice Sophia Antipolis, Nice, France
| | - Mohsine Driowya
- Université de Nice Sophia Antipolis, Nice, France.,Institut de Chimie de Nice (ICN), UMR 7272, Nice, France
| | - Rachid Benhida
- Université de Nice Sophia Antipolis, Nice, France.,Institut de Chimie de Nice (ICN), UMR 7272, Nice, France
| | - Patrick Auberger
- INSERM U1065 Centre Méditerranéen de Médecine Moléculaire, Nice, France.,Team 2: Cell Death, Differentiation, Inflammation and Cancer, Nice, France.,Equipe Labellisée Fondation ARC, Paris, France.,Université de Nice Sophia Antipolis, Nice, France.,CHU de Nice, Service d'Hématologie Clinique, Nice, France
| | - Guillaume Robert
- INSERM U1065 Centre Méditerranéen de Médecine Moléculaire, Nice, France.,Team 2: Cell Death, Differentiation, Inflammation and Cancer, Nice, France.,Equipe Labellisée Fondation ARC, Paris, France.,Université de Nice Sophia Antipolis, Nice, France
| |
Collapse
|
10
|
Hedgehog inhibitors selectively target cell migration and adhesion of mantle cell lymphoma in bone marrow microenvironment. Oncotarget 2018; 7:14350-65. [PMID: 26885608 PMCID: PMC4924720 DOI: 10.18632/oncotarget.7320] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/29/2016] [Indexed: 01/08/2023] Open
Abstract
The clinical benefits of a Hedgehog (Hh) inhibitor, LDE225 (NPV-LDE-225, Erismodegib), have been unclear in hematological cancers. Here, we report that LDE225 selectively inhibited migration and adhesion of mantle cell lymphoma (MCL) to bone marrows via very late antigen-4 (VLA-4) mediated inactivation of focal adhesion kinase (FAK) signaling. LDE225 treatment not only affected MCL cells, but also modulated stromal cells within the bone marrow microenvironment by decreasing their production of SDF-1, IL-6 and VCAM-1, the ligand for VLA-4. Surprisingly, LDE225 treatment alone did not suppress cell proliferation due to increased CXCR4 expression mediated by reactive oxygen species (ROS). The increased ROS/CXCR4 further stimulated autophagy formation. The combination of LDE225 with the autophagy inhibitors further enhanced MCL cell death. Our data, for the first time, revealed LDE225 selectively targets MCL cells migration and adhesion to bone marrows. The ineffectiveness of LDE225 in MCL is due to autophagy formation, which in turn increases cell viability. Inhibiting autophagy will be an effective adjuvant therapy for LDE225 in MCL, especially for advanced MCL patients with bone marrow involvement.
Collapse
|
11
|
Kidan N, Khamaisie H, Ruimi N, Roitman S, Eshel E, Dally N, Ruthardt M, Mahajna J. Ectopic Expression of Snail and Twist in Ph+ Leukemia Cells Upregulates CD44 Expression and Alters Their Differentiation Potential. J Cancer 2017; 8:3952-3968. [PMID: 29187870 PMCID: PMC5705997 DOI: 10.7150/jca.19633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 08/14/2017] [Indexed: 12/26/2022] Open
Abstract
Philadelphia chromosome-positive (Ph+) leukemia is characterized by reciprocal translocation between chromosomes 9 and 22. The resultant BCR/ABL fusion protein displays constitutive tyrosine kinase activity, leading to the induction of aberrant proliferation and neoplastic transformation. The bone marrow (BM) microenvironment is tumor-promoting, and contributes to disease recurrence in Ph+ leukemia. Activity in the BM microenvironment is mediated by several cellular compartments, extracellular matrix, various soluble factors including transforming growth factor beta 1 (TGF-β1), and the hypoxic conditions in the BM niche. TGF-β1 is released during bone remodeling and plays a role in maintaining leukemic stem cells, as well as being implicated in the epithelial-mesenchymal transition (EMT) process in most solid tumors. Although EMT is largely implicated in epithelial tumors, recent findings argue for an EMT-like process in leukemia as well. The surface receptor CD44 is involved in cell adhesion, cell migration, and homing of normal and malignant hematopoietic stem cells. Elevation of CD44 expression is considered a marker for a worse prognosis in most hematological malignancies. We explored the functions of Snail and Twist1 in Ph+ leukemia. We showed that ectopic expression of Snail and, to a lesser extent, Twist1, upregulates CD44 expression that is β-catenin-dependent. Moreover, the presence of Snail or Twist1 partially blocked phorbol 12-myristate 13-acetate-induced megakaryocyte differentiation, while that of Twist significantly altered imatinib-induced erythroid differentiation. Thus EMT modulators affected proliferation, CD44 gene expression and differentiation ability of Ph+ leukemia cells.
Collapse
Affiliation(s)
- Noa Kidan
- Cancer Drug Discovery Program, Migal - Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, Israel
| | - Hazem Khamaisie
- Cancer Drug Discovery Program, Migal - Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, Israel
| | - Nili Ruimi
- Cancer Drug Discovery Program, Migal - Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, Israel
| | - Shay Roitman
- Cancer Drug Discovery Program, Migal - Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, Israel
| | - Elizabeth Eshel
- Hematology Institute, Ziv Medical Center, associated with the Bar Ilan University Faculty of Medicine, Safed, Israel
| | - Najib Dally
- Hematology Institute, Ziv Medical Center, associated with the Bar Ilan University Faculty of Medicine, Safed, Israel
| | - Martin Ruthardt
- Department of Hematology, Division of Cancer and Genetics, Cardiff University, Cardiff, CF10 3AT, UK
| | - Jamal Mahajna
- Cancer Drug Discovery Program, Migal - Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, Israel.,Department of Nutritional Sciences, Tel-Hai College, Kiryat Shmona, Israel
| |
Collapse
|
12
|
Kumar A, Bhattacharyya J, Jaganathan BG. Adhesion to stromal cells mediates imatinib resistance in chronic myeloid leukemia through ERK and BMP signaling pathways. Sci Rep 2017; 7:9535. [PMID: 28842696 PMCID: PMC5572702 DOI: 10.1038/s41598-017-10373-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/09/2017] [Indexed: 12/22/2022] Open
Abstract
Chronic myeloid leukemia (CML) is characterized by abnormal proliferation of myeloid cells which when untreated leads to bone marrow failure. Imatinib mesylate (IM) is the first line of therapy for treatment of CML and results in remission in most cases. However, a significant percentage of patients develop chemoresistance to IM, which might be due to the presence of chemoresistant cells in the bone marrow. In the current study, we explored the role of cell-cell interaction of CML cells with the bone marrow stromal cells in the development of chemoresistance in CML. We found that the stromal cells offered long-term chemoprotection to the CML cells from the apoptotic effect of IM. These stroma interacting CML cells were maintained in a non-proliferative stage and had increased ERK1/2 and SMAD1/8 phosphorylation levels. Prolonged interaction of CML cells with the stromal cells in the presence of IM resulted in the acquisition of stroma-free chemoresistance to IM treatment. However, inhibition of actin cytoskeleton, ERK1/2 and SMAD signaling abrogated the chemoresistance acquisition and sensitized the chemoresistant CML cells to IM induced apoptosis.
Collapse
MESH Headings
- Bone Morphogenetic Proteins/metabolism
- Cell Adhesion
- Cell Communication
- Cell Line, Tumor
- Coculture Techniques
- Drug Resistance, Neoplasm
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Signal Transduction
- Stromal Cells/metabolism
- Tumor Cells, Cultured
- Tumor Microenvironment
Collapse
Affiliation(s)
- Atul Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | | | - Bithiah Grace Jaganathan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
13
|
Chorzalska A, Kim JF, Roder K, Tepper A, Ahsan N, Rao RSP, Olszewski AJ, Yu X, Terentyev D, Morgan J, Treaba DO, Zhao TC, Liang O, Gruppuso PA, Dubielecka PM. Long-Term Exposure to Imatinib Mesylate Downregulates Hippo Pathway and Activates YAP in a Model of Chronic Myelogenous Leukemia. Stem Cells Dev 2017; 26:656-677. [PMID: 28103766 DOI: 10.1089/scd.2016.0262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Despite the success of tyrosine kinase inhibitor (TKI) therapy in chronic myelogenous leukemia (CML), leukemic stem/progenitor cells remain detectable even in the state of deep molecular remission. Mechanisms that allow them to persist despite continued kinase inhibition remain unclear. We have previously shown that prolonged exposure to imatinib mesylate (IM) results in dysregulation of Akt/Erk 1/2 signaling, upregulation of miR-181a, enhanced adhesiveness, and resistance to high IM. To characterize the molecular basis and reversibility of those effects, we applied gene and protein expression analysis, quantitative phosphoproteomics, and direct miR-181a inhibition to our cellular model of CML cells subjected to prolonged exposure to IM. Those cells demonstrated upregulation of pluripotency markers (SOX2, SALL4) and adhesion receptors (CD44, VLA-4, CXCR4), as well as downregulation of Hippo signaling and upregulation of transcription coactivator YAP. Furthermore, inhibition of miR-181a using a microRNA sponge inhibitor resulted in decreased transcription of SOX2 and SALL4, decreased activation of YAP, and increased sensitivity to IM. Our findings indicate that long-term exposure to IM results in dysregulation of stem cell renewal-regulatory Hippo/YAP signaling, acquisition of expression of stem cell markers and that experimental interference with YAP activity may help to restore chemosensitivity to TKI.
Collapse
Affiliation(s)
- Anna Chorzalska
- 1 Signal Transduction Laboratory, Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - Javier Flores Kim
- 1 Signal Transduction Laboratory, Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - Karim Roder
- 2 Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - Alexander Tepper
- 1 Signal Transduction Laboratory, Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - Nagib Ahsan
- 3 Division of Biology and Medicine, Brown University , Center for Cancer Research and Development Proteomics Core Facility, Rhode Island Hospital, Providence, Rhode Island
| | - R Shyama Prasad Rao
- 4 Division of Biostatistics and Bioinformatics Division, Yenepoya Research Center, Yenepoya University , Mangalore, India
| | - Adam J Olszewski
- 5 Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - Xiaoqing Yu
- 6 Department of Biostatistics, Yale School of Public Health , New Haven, Connecticut
| | - Dmitry Terentyev
- 2 Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - John Morgan
- 7 Flow Cytometry and Cell Sorting Core Facility, Roger Williams Medical Center , Providence, Rhode Island
| | - Diana O Treaba
- 8 Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - Ting C Zhao
- 9 Cardiovascular Laboratory, Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine , Providence, Rhode Island
| | - Olin Liang
- 5 Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island.,10 Department of Orthopedics, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - Philip A Gruppuso
- 11 Department of Pediatrics, Brown University , Rhode Island Hospital, Providence, Rhode Island
| | - Patrycja M Dubielecka
- 1 Signal Transduction Laboratory, Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| |
Collapse
|
14
|
Arya D, Sachithanandan SP, Ross C, Palakodeti D, Li S, Krishna S. MiRNA182 regulates percentage of myeloid and erythroid cells in chronic myeloid leukemia. Cell Death Dis 2017; 8:e2547. [PMID: 28079885 PMCID: PMC5386378 DOI: 10.1038/cddis.2016.471] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 12/20/2022]
Abstract
The deregulation of lineage control programs is often associated with the progression of haematological malignancies. The molecular regulators of lineage choices in the context of tyrosine kinase inhibitor (TKI) resistance remain poorly understood in chronic myeloid leukemia (CML). To find a potential molecular regulator contributing to lineage distribution and TKI resistance, we undertook an RNA-sequencing approach for identifying microRNAs (miRNAs). Following an unbiased screen, elevated miRNA182-5p levels were detected in Bcr-Abl-inhibited K562 cells (CML blast crisis cell line) and in a panel of CML patients. Earlier, miRNA182-5p upregulation was reported in several solid tumours and haematological malignancies. We undertook a strategy involving transient modulation and CRISPR/Cas9 (clustered regularly interspersed short palindromic repeats)-mediated knockout of the MIR182 locus in CML cells. The lineage contribution was assessed by methylcellulose colony formation assay. The transient modulation of miRNA182-5p revealed a biased phenotype. Strikingly, Δ182 cells (homozygous deletion of MIR182 locus) produced a marked shift in lineage distribution. The phenotype was rescued by ectopic expression of miRNA182-5p in Δ182 cells. A bioinformatic analysis and Hes1 modulation data suggested that Hes1 could be a putative target of miRNA182-5p. A reciprocal relationship between miRNA182-5p and Hes1 was seen in the context of TK inhibition. In conclusion, we reveal a key role for miRNA182-5p in restricting the myeloid development of leukemic cells. We propose that the Δ182 cell line will be valuable in designing experiments for next-generation pharmacological interventions.
Collapse
Affiliation(s)
- Deepak Arya
- Cellular Organization and Signalling Group, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Manipal University, Manipal, India
| | - Sasikala P Sachithanandan
- Cellular Organization and Signalling Group, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Cecil Ross
- Department of Medicine, St Johns Medical College and Hospitals, Bangalore, India
| | - Dasaradhi Palakodeti
- Stem Cells and Regeneration Group, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | - Shang Li
- Duke-NUS Graduate Medical School, Singapore
| | - Sudhir Krishna
- Cellular Organization and Signalling Group, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
15
|
Imatinib and Nilotinib increase glioblastoma cell invasion via Abl-independent stimulation of p130Cas and FAK signalling. Sci Rep 2016; 6:27378. [PMID: 27293031 PMCID: PMC4904410 DOI: 10.1038/srep27378] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 05/17/2016] [Indexed: 01/04/2023] Open
Abstract
Imatinib was the first targeted tyrosine kinase inhibitor to be approved for clinical use, and remains first-line therapy for Philadelphia chromosome (Ph+)-positive chronic myelogenous leukaemia. We show that treatment of human glioblastoma multiforme (GBM) tumour cells with imatinib and the closely-related drug, nilotinib, strikingly increases tyrosine phosphorylation of p130Cas, focal adhesion kinase (FAK) and the downstream adaptor protein paxillin (PXN), resulting in enhanced cell migration and invasion. Imatinib and nilotinib-induced tyrosine phosphorylation was dependent on expression of p130Cas and FAK activity and was independent of known imatinib targets including Abl, platelet derived growth factor receptor beta (PDGFRβ) and the collagen receptor DDR1. Imatinib and nilotinib treatment increased two dimensional cell migration and three dimensional radial spheroid invasion in collagen. In addition, silencing of p130Cas and inhibition of FAK activity both strongly reduced imatinib and nilotinib stimulated invasion. Importantly, imatinib and nilotinib increased tyrosine phosphorylation of p130Cas, FAK, PXN and radial spheroid invasion in stem cell lines isolated from human glioma biopsies. These findings identify a novel mechanism of action in GBM cells for two well established front line therapies for cancer resulting in enhanced tumour cell motility.
Collapse
|
16
|
Crottès D, Rapetti-Mauss R, Alcaraz-Perez F, Tichet M, Gariano G, Martial S, Guizouarn H, Pellissier B, Loubat A, Popa A, Paquet A, Presta M, Tartare-Deckert S, Cayuela ML, Martin P, Borgese F, Soriani O. SIGMAR1 Regulates Membrane Electrical Activity in Response to Extracellular Matrix Stimulation to Drive Cancer Cell Invasiveness. Cancer Res 2016; 76:607-18. [PMID: 26645564 DOI: 10.1158/0008-5472.can-15-1465] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/27/2015] [Indexed: 01/12/2023]
Abstract
The sigma 1 receptor (Sig1R) is a stress-activated chaperone that regulates ion channels and is associated with pathologic conditions, such as stroke, neurodegenerative diseases, and addiction. Aberrant expression levels of ion channels and Sig1R have been detected in tumors and cancer cells, such as myeloid leukemia and colorectal cancer, but the link between ion channel regulation and Sig1R overexpression during malignancy has not been established. In this study, we found that Sig1R dynamically controls the membrane expression of the human voltage-dependent K(+) channel human ether-à-go-go-related gene (hERG) in myeloid leukemia and colorectal cancer cell lines. Sig1R promoted the formation of hERG/β1-integrin signaling complexes upon extracellular matrix stimulation, triggering the activation of the PI3K/AKT pathway. Consequently, the presence of Sig1R in cancer cells increased motility and VEGF secretion. In vivo, Sig1R expression enhanced the aggressiveness of tumor cells by potentiating invasion and angiogenesis, leading to poor survival. Collectively, our findings highlight a novel function for Sig1R in mediating cross-talk between cancer cells and their microenvironment, thus driving oncogenesis by shaping cellular electrical activity in response to extracellular signals. Given the involvement of ion channels in promoting several hallmarks of cancer, our study also offers a potential strategy to therapeutically target ion channel function through Sig1R inhibition.
Collapse
Affiliation(s)
- David Crottès
- Université Nice Sophia Antipolis, iBV, Nice, France. CNRS, iBV, UMR7277, Nice, France. INSERM U1091, Nice, France. Department of Physiology, University of California, San Francisco, San Francisco, California
| | - Raphael Rapetti-Mauss
- Université Nice Sophia Antipolis, iBV, Nice, France. CNRS, iBV, UMR7277, Nice, France. INSERM U1091, Nice, France
| | - Francisca Alcaraz-Perez
- Telomerase, Aging and Cancer Group, Research Unit, Department of Surgery, CIBERehd, University Hospital "Virgen de la Arrixaca", Murcia, Spain. Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Mélanie Tichet
- Université Nice Sophia Antipolis, C3M, Inserm U1065, Nice, France
| | - Giuseppina Gariano
- Unit of Oncology and Experimental Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sonia Martial
- Université Nice Sophia Antipolis, iBV, Nice, France. CNRS, iBV, UMR7277, Nice, France. INSERM U1091, Nice, France
| | - Hélène Guizouarn
- Université Nice Sophia Antipolis, iBV, Nice, France. CNRS, iBV, UMR7277, Nice, France. INSERM U1091, Nice, France
| | - Bernard Pellissier
- Université Nice Sophia Antipolis, iBV, Nice, France. CNRS, iBV, UMR7277, Nice, France. INSERM U1091, Nice, France
| | - Agnès Loubat
- Université Nice Sophia Antipolis, iBV, Nice, France. CNRS, iBV, UMR7277, Nice, France. INSERM U1091, Nice, France
| | - Alexandra Popa
- Université Nice Sophia Antipolis, IPMC, CNRS UMR7275, Sophia Antipolis, France
| | - Agnès Paquet
- Université Nice Sophia Antipolis, IPMC, CNRS UMR7275, Sophia Antipolis, France
| | - Marco Presta
- Unit of Oncology and Experimental Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Maria Luisa Cayuela
- Telomerase, Aging and Cancer Group, Research Unit, Department of Surgery, CIBERehd, University Hospital "Virgen de la Arrixaca", Murcia, Spain. Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Patrick Martin
- Université Nice Sophia Antipolis, iBV, Nice, France. CNRS, iBV, UMR7277, Nice, France. INSERM U1091, Nice, France
| | - Franck Borgese
- Université Nice Sophia Antipolis, iBV, Nice, France. CNRS, iBV, UMR7277, Nice, France. INSERM U1091, Nice, France
| | - Olivier Soriani
- Université Nice Sophia Antipolis, iBV, Nice, France. CNRS, iBV, UMR7277, Nice, France. INSERM U1091, Nice, France.
| |
Collapse
|
17
|
Xishan Z, Ziying L, Jing D, Gang L. MicroRNA-320a acts as a tumor suppressor by targeting BCR/ABL oncogene in chronic myeloid leukemia. Sci Rep 2015; 5:12460. [PMID: 26228085 PMCID: PMC4521206 DOI: 10.1038/srep12460] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/30/2015] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidences demonstrated that the induction of epithelial-mesenchymal transition (EMT) and aberrant expression of microRNAs (miRNAs) are associated with tumorigenesis, tumor progression, metastasis and relapse in cancers, including chronic myeloid leukemia (CML). We found that miR-320a expression was reduced in K562 and in CML cancer stem cells. Moreover, we found that miR-320a inhibited K562 cell migration, invasion, proliferation and promoted apoptosis by targeting BCR/ABL oncogene. As an upstream regulator of BCR/ABL, miR-320a directly targets BCR/ABL. The enhanced expression of miR-320a inhibited the phosphorylation of PI3K, AKT and NF-κB; however, the expression of phosphorylated PI3K, AKT and NF-κB were restored by the overexpression of BCR/ABL. In K562, infected with miR-320a or transfected with SiBCR/ABL, the protein levels of fibronectin, vimentin, and N-cadherin were decreased, but the expression of E-cadherin was increased. The expression of mesenchymal markers in miR-320a-expressing cells was restored to normal levels by the restoration of BCR/ABL expression. Generally speaking, miR-320a acts as a novel tumor suppressor gene in CML and miR-320a can decrease migratory, invasive, proliferative and apoptotic behaviors, as well as CML EMT, by attenuating the expression of BCR/ABL oncogene.
Collapse
Affiliation(s)
- Zhu Xishan
- Clinical Research Center, Affiliated Hospital of Guangdong Medical College, 0086-027-7398722, China
| | - Lin Ziying
- Clinical Research Center, Affiliated Hospital of Guangdong Medical College, 0086-027-7398722, China
| | - Du Jing
- Weifang Traditional Chinese Medicine Hospital, Department of Urology. 0086-0536-8300338, China
| | - Liu Gang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical College, 0086-027-7398722, China,
| |
Collapse
|
18
|
Mochmann LH, Neumann M, von der Heide EK, Nowak V, Kühl AA, Ortiz-Tanchez J, Bock J, Hofmann WK, Baldus CD. ERG induces a mesenchymal-like state associated with chemoresistance in leukemia cells. Oncotarget 2015; 5:351-62. [PMID: 24504051 PMCID: PMC3964212 DOI: 10.18632/oncotarget.1449] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Overexpression of the oncogene ERG (ETS-related gene) is an adverse prognostic factor in acute myeloid and T-cell lymphoblastic leukemia (AML and T-ALL). We hypothesize that ERG overexpression is associated with primary drug resistance thereby influencing the outcome in leukemia. We previously reported a cell-line based model of ERG overexpression which induced a potentially chemo-resistant spindle shape cell type. Herein, we report a specific transcriptional gene signature for the observed spindle shaped morphology. Genes significantly over-expressed after ERG induction strongly resembled adhesive mesenchymal-like genes that included integrins (ITGA10, ITGB5, ITGB3, ITGA2B), CD44, and CD24. Interestingly, the mesenchymal-like signature was accompanied by the repression of DNA chromatin remodeling and DNA repair genes, such as CHEK1, EZH2, SUZ12, and DNMT3a. The ERG-induced mesenchymal-like signature positively correlated with TMPRSS2-ERG prostate tissues and invasive breast cancer mRNA expression datasets reflecting a general ERG-driven pattern of malignancy. Furthermore, inhibitors modulating ERG druggable pathways WNT, PKC, and AKT, and chemotherapeutic agent cytarabine revealed ERG-induced drug resistance. In particular, PKC412 treatment enhanced proliferative rates and promoted spindle shape formation in ERG-induced cells. Nilotinib and dasatinib were effective at abolishing ERG-induced cells. Moreover, ERG overexpression also led to an increase in double strand breaks. This report provides mechanistic clues into ERG-driven drug resistance in the poor prognostic group of high ERG expressers, provides insight to improved drug targeted therapies, and provides novel markers for a mesenchymal-like state in acute leukemia.
Collapse
Affiliation(s)
- Liliana H Mochmann
- Department of Hematology and Oncology, Charité University Medicine Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cai J, Wu G, Tan X, Han Y, Chen C, Li C, Wang N, Zou X, Chen X, Zhou F, He D, Zhou L, Jose PA, Zeng C. Transferred BCR/ABL DNA from K562 extracellular vesicles causes chronic myeloid leukemia in immunodeficient mice. PLoS One 2014; 9:e105200. [PMID: 25133686 PMCID: PMC4136837 DOI: 10.1371/journal.pone.0105200] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 07/22/2014] [Indexed: 12/20/2022] Open
Abstract
Our previous study showed that besides mRNAs and microRNAs, there are DNA fragments within extracellular vesicles (EVs). The BCR/ABL hybrid gene, involved in the pathogenesis of chronic myeloid leukemia (CML), could be transferred from K562 EVs to neutrophils and decrease their phagocytic activity in vitro. Our present study provides evidence that BCR/ABL DNAs transferred from EVs have pathophysiological significance in vivo. Two months after injection of K562 EVs into the tail vein of Sprague-Dawley (SD) rats, they showed some characteristics of CML, e.g., feeble, febrile, and thin, with splenomegaly and neutrophilia but with reduced neutrophil phagocytic activity. These findings were also observed in immunodeficient NOD/SCID mice treated with K562 EVs; BCR/ABL mRNA and protein were found in their neutrophils. The administration of actinomycin D, an inhibitor of de novo mRNA synthesis, prevented the abnormalities caused by K562 EVs in NOD/SCID mice related to CML, including neutrophilia and bone marrow hyperplasia. As a specific inhibitor of tyrosine kinases, imatinib blocked the activity of tyrosine kinases and the expression of phospho-Crkl, induced by the de novo BCR/ABL protein caused by K562 EVs bearing BCR/ABL DNA. Our current study shows the pathophysiological significance of transferred tumor gene from EVs in vivo, which may represent an important mechanism for tumorigenesis, tumor progression, and metastasis.
Collapse
Affiliation(s)
- Jin Cai
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
- Clinic of Health Service, Logistics Department, Air Force of Nanjing Area Command, Nanjing, Jiangsu, P.R. China
| | - Gengze Wu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
| | - Xiaorong Tan
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
| | - Yu Han
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
| | - Chuanwei Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
| | - Na Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
| | - Xue Zou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
| | - Xinjian Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
| | - Faying Zhou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
| | - Duofen He
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
| | - Lin Zhou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
| | - Pedro A. Jose
- Division of Nephrology, Departments of Medicine and Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
- * E-mail:
| |
Collapse
|
20
|
Tabone-Eglinger S, Calderin-Sollet Z, Pinon P, Aebischer N, Wehrle-Haller M, Jacquier MC, Boettiger D, Wehrle-Haller B. Niche anchorage and signaling through membrane-bound Kit-ligand/c-kit receptor are kinase independent and imatinib insensitive. FASEB J 2014; 28:4441-56. [PMID: 25002122 DOI: 10.1096/fj.14-249425] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Kit ligand (KitL) and its tyrosine kinase receptor c-kit are critical for germ cells, melanocytes, mastocytes, and hematopoietic stem cells. Alternative splicing of KitL generates membrane-bound KitL (mb-KitL) or soluble KitL, providing survival or cell migration, respectively. Here we analyzed whether c-kit can function both as an adhesion and signaling receptor to mb-KitL presented by the environmental niche. At contacts between fibroblasts and MC/9 mast cells, mb-KitL, and c-kit formed ligand/receptor clusters that formed stable complexes, which resisted dissociation by c-kit blocking mAbs and provided cell anchorage under physiological shear stresses. Clusters recruited tyrosine-phosphorylated proteins and induced spatially restricted F-actin polymerization. Mutational analysis of c-kit demonstrated kinase-independent mb-KitL/c-kit clustering, anchorage, F-actin polymerization, and Tyr567-dependent cluster phosphorylation. Kinase inhibition of c-kit by imatinib reduced cluster coalescence, but allowed cluster phosphorylation and F-actin polymerization, which required PI3K recruitment and a newly identified juxtamembrane residue. Synergies between integrin and c-kit-mediated spreading and adhesion of MC/9 cells were studied in vitro on immobilized-KitL/fibronectin surfaces. While c-kit blocking antibodies prevented spreading, imatinib blocked spreading induced by soluble- but not immobilized KitL. Thus, "mechanical" activation of c-kit provides signaling, niche-anchorage, and synergies with integrin-mediated adhesion, which is independent of kinase function and resistant to c-kit kinase inhibitors.-
Collapse
Affiliation(s)
- Séverine Tabone-Eglinger
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland; and
| | - Zuleika Calderin-Sollet
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland; and
| | - Perrine Pinon
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland; and
| | - Nicole Aebischer
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland; and
| | - Monique Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland; and
| | - Marie-Claude Jacquier
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland; and
| | - David Boettiger
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland; and
| |
Collapse
|
21
|
Chorzalska A, Salloum I, Shafqat H, Khan S, Marjon P, Treaba D, Schorl C, Morgan J, Bryke CR, Falanga V, Zhao TC, Reagan J, Winer E, Olszewski AJ, Al-Homsi AS, Kouttab N, Dubielecka PM. Low expression of Abelson interactor-1 is linked to acquired drug resistance in Bcr-Abl-induced leukemia. Leukemia 2014; 28:2165-77. [PMID: 24699303 PMCID: PMC4185277 DOI: 10.1038/leu.2014.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 03/03/2014] [Accepted: 03/10/2014] [Indexed: 01/04/2023]
Abstract
The basis for persistence of leukemic stem cells in the bone marrow microenvironment (BMME) remains poorly understood. We present evidence that signaling crosstalk between α4 integrin and Abelson interactor-1 (Abi-1) is involved in acquisition of an anchorage-dependent phenotype and drug resistance in Bcr-Abl positive leukemia cells. Comparison of Abi-1 (ABI-1) and α4 integrin (ITGA4) gene expression in relapsing Bcr-Abl positive CD34+ progenitor cells demonstrated a reduction in Abi-1 and an increase in α4 integrin mRNA in the absence of Bcr-Abl mutations. This inverse correlation between Abi-1 and α4 integrin expression, as well as linkage to elevated phospho-Akt and phospho-Erk signaling, was confirmed in imatinib mesylate (IM) resistant leukemic cells. These results indicate that the α4-Abi-1 signaling pathway may mediate acquisition of the drug resistant phenotype of leukemic cells.
Collapse
Affiliation(s)
- A Chorzalska
- Signal Transduction Laboratory, NIH Center of Biomedical Excellence (COBRE) for Stem Cell Biology, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, USA
| | - I Salloum
- Signal Transduction Laboratory, NIH Center of Biomedical Excellence (COBRE) for Stem Cell Biology, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, USA
| | - H Shafqat
- Signal Transduction Laboratory, NIH Center of Biomedical Excellence (COBRE) for Stem Cell Biology, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, USA
| | - S Khan
- Signal Transduction Laboratory, NIH Center of Biomedical Excellence (COBRE) for Stem Cell Biology, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, USA
| | - P Marjon
- Signal Transduction Laboratory, NIH Center of Biomedical Excellence (COBRE) for Stem Cell Biology, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, USA
| | - D Treaba
- Hematopathology Laboratories at Rhode Island Hospital and Miriam Hospital, Providence, RI, USA
| | - C Schorl
- Genomics Core Facility, Brown University, Providence, RI, USA
| | - J Morgan
- Flow Cytometry and Cell Sorting Core Facility, NIH Center of Biomedical Excellence (COBRE) for Stem Cell Biology, Roger Williams Medical Center, Providence, RI, USA
| | - C R Bryke
- Cytogenetics, Quest Diagnostics Nichols Institute, Chantilly, VA, USA
| | - V Falanga
- 1] Department of Dermatology, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, USA [2] Departments of Dermatology and Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - T C Zhao
- Cardiovascular Lab, Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, USA
| | - J Reagan
- Division of Hematology/Oncology, Rhode Island Hospital, Brown University Warren Alpert School of Medicine, Providence, RI, USA
| | - E Winer
- Division of Hematology/Oncology, Rhode Island Hospital, Brown University Warren Alpert School of Medicine, Providence, RI, USA
| | - A J Olszewski
- Memorial Hospital of Rhode Island, Brown University Warren Alpert School of Medicine, Pawtucket, RI, USA
| | - A S Al-Homsi
- Adult Blood and Marrow Transplantation, Spectrum Health, Michigan State University, Grand Rapids, MI, USA
| | - N Kouttab
- Department of Pathology, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, USA
| | - P M Dubielecka
- Signal Transduction Laboratory, NIH Center of Biomedical Excellence (COBRE) for Stem Cell Biology, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, USA
| |
Collapse
|
22
|
Beider K, Darash-Yahana M, Blaier O, Koren-Michowitz M, Abraham M, Wald H, Wald O, Galun E, Eizenberg O, Peled A, Nagler A. Combination of imatinib with CXCR4 antagonist BKT140 overcomes the protective effect of stroma and targets CML in vitro and in vivo. Mol Cancer Ther 2014; 13:1155-69. [PMID: 24502926 DOI: 10.1158/1535-7163.mct-13-0410] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Functional role of CXCR4 in chronic myelogenous leukemia (CML) progression was evaluated. Elevated CXCR4 significantly increased the in vitro survival and proliferation in response to CXCL12. CXCR4 stimulation resulted in activation of extracellular signal-regulated kinase (Erk)-1/2, Akt, S6K, STAT3, and STAT5 prosurvival signaling pathways. In accordance, we found that in vitro treatment with CXCR4 antagonist BKT140 directly inhibited the cell growth and induced cell death of CML cells. Combination of BKT140 with suboptimal concentrations of imatinib significantly increased the anti-CML effect. BKT140 induced apoptotic cell death, decreasing the levels of HSP70 and HSP90 chaperones and antiapoptotic proteins BCL-2 and BCL-XL, subsequently promoting the release of mitochondrial factors cytochrome c and SMAC/Diablo. Bone marrow (BM) stromal cells (BMSC) markedly increased the proliferation of CML cells and protected them from imatinib-induced apoptosis. Furthermore, BMSCs elevated proto-oncogene BCL6 expression in the CML cells in response to imatinib treatment, suggesting the possible role of BCL6 in stroma-mediated TKI resistance. BKT140 reversed the protective effect of the stroma, effectively promoted apoptosis, and decreased BCL6 levels in CML cells cocultured with BMSCs. BKT140 administration in vivo effectively reduced the growth of subcutaneous K562-produced xenografts. Moreover, the combination of BKT140 with low-dose imatinib markedly inhibited tumor growth, achieving 95% suppression. Taken together, our data indicate the importance of CXCR4/CXCL12 axis in CML growth and CML-BM stroma interaction. CXCR4 inhibition with BKT140 antagonist efficiently cooperated with imatinib in vitro and in vivo. These results provide the rational basis for CXCR4-targeted therapy in combination with TKI to override drug resistance and suppress residual disease.
Collapse
Affiliation(s)
- Katia Beider
- Authors' Affiliations: Hematology Division and CBB, Sheba Medical Center, Tel-Hashomer; Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem; and Biokine Therapeutics Ltd., Science Park, Ness Ziona, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Romano G. The role of the dysfunctional akt-related pathway in cancer: establishment and maintenance of a malignant cell phenotype, resistance to therapy, and future strategies for drug development. SCIENTIFICA 2013; 2013:317186. [PMID: 24381788 PMCID: PMC3870877 DOI: 10.1155/2013/317186] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/14/2013] [Indexed: 06/01/2023]
Abstract
Akt serine/threonine kinases, or PKB, are key players in the regulation of a wide variety of cellular activities, such as growth, proliferation, protection from apoptotic injuries, control of DNA damage responses and genome stability, metabolism, migration, and angiogenesis. The Akt-related pathway responds to the stimulation mediated by growth factors, cytokines, hormones, and several nutrients. Akt is present in three isoforms: Akt1, Akt2, and Akt3, which may be alternatively named PKB α , PKB β , and PKB γ , respectively. The Akt isoforms are encoded on three diverse chromosomes and their biological functions are predominantly distinct. Deregulations in the Akt-related pathway were observed in many human maladies, including cancer, cardiopathies, neurological diseases, and type-2 diabetes. This review discusses the significance of the abnormal activities of the Akt axis in promoting and sustaining malignancies, along with the development of tumor cell populations that exhibit enhanced resistance to chemo- and/or radiotherapy. This occurrence may be responsible for the relapse of the disease, which is unfortunately very often related to fatal consequences in patients.
Collapse
Affiliation(s)
- Gaetano Romano
- Department of Biology, College of Science and Technology, Temple University, Bio Life Science Building, Suite 456, 1900 N. 12th Street, Philadelphia, PA 19122, USA
| |
Collapse
|
24
|
Ovcharenko A, Granot G, Rokah OH, Park J, Shpilberg O, Raanani P. Enhanced adhesion/migration and induction of Pyk2 expression in K562 cells following imatinib exposure. Leuk Res 2013; 37:1729-36. [DOI: 10.1016/j.leukres.2013.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/16/2013] [Accepted: 10/04/2013] [Indexed: 11/27/2022]
|
25
|
Chang G, Zhang H, Wang J, Zhang Y, Xu H, Wang C, Zhang H, Ma L, Li Q, Pang T. CD44 targets Wnt/β-catenin pathway to mediate the proliferation of K562 cells. Cancer Cell Int 2013; 13:117. [PMID: 24257075 PMCID: PMC4176735 DOI: 10.1186/1475-2867-13-117] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/19/2013] [Indexed: 11/10/2022] Open
Abstract
Background Chronic myeloid leukemia is a clonal myeloproliferative disorder disease in which BCR/ABL plays an important role as an oncoprotein and molecular target. Despite the success of targeted therapy using tyrosine kinase inhibitors, CML remains largely incurable, most likely due to the treatment resistance after firstly chemical therapy. So know well the unique molecular pathway of CML is very important. Methods The expressions of CD44 in different leukemia patients and cell lines were detected by real-time PCR and western blotting. The effects of CD44 on proliferation of K562 cells were determined using the MTT and colony formation assays, and even in a nude mouse transplantation model. Then, the cell cycle changes were detected by flow cytometric analysis and the early apoptosis of cells was detected by the annexin V/propidium iodide double-staining assay. The expressions of the cycles and apoptosis-related proteins p21, Cyclin D1 and Bcl-2 were analyzed by western blot and real-time PCR assay. Finally, the decreased nuclear accumulation of β-catenin was detected by western blotting and immunefluorescence. Results Firstly, we showed that CD44 expression was increased in several kinds of leukemia patients and K562 cells. By contrast, the down-regulation of CD44 resulted in decreased proliferation with a G0/G1 arrest of cell cycle in K562 cells according to the MTT assay and the flow cytometric analysis. And no significant induction of both the early and late phases of apoptosis was shown by the annexin V-FITC and PI staining. During this process, p21 and cyclin D1 are the major causes for cell cycle arrest. In addition, we found CD44 down-regulation decreased the expression of β-catenin and increased the expression of phosphorylated β-catenin. The instability of Wnt/β-catenin pathway induced by increased expression of p-β-catenin resulted in a decreased nuclear accumulation in CD44 silenced K562 cells. In the nude mouse transplantation model, we also found the same results. Conclusions These results show that K562 cells depend to a greater extent on CD44 for proliferation, and CD44 down-regulation may induce a cell cycle arrest through Wnt/β-catenin pathway. CD44 blockade may be beneficial in therapy of CML.
Collapse
Affiliation(s)
- Guoqiang Chang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cassuto O, Dufies M, Jacquel A, Robert G, Ginet C, Dubois A, Hamouda A, Puissant A, Luciano F, Karsenti JM, Legros L, Cassuto JP, Lenain P, Auberger P. All tyrosine kinase inhibitor-resistant chronic myelogenous cells are highly sensitive to ponatinib. Oncotarget 2013; 3:1557-65. [PMID: 23238683 PMCID: PMC3681494 DOI: 10.18632/oncotarget.692] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The advent of tyrosine kinase inhibitor (TKI) therapy has considerably improved the survival of patients suffering chronic myelogenous leukemia (CML). Indeed, inhibition of BCR-ABL by imatinib, dasatinib or nilotinib triggers durable responses in most patients suffering from this disease. Moreover, resistance to imatinib due to kinase domain mutations can be generally circumvented using dasatinib or nilotinib, but the multi-resistant T315I mutation that is insensitive to these TKIs, remains to date a major clinical problem. In this line, ponatinib (AP24534) has emerged as a promising therapeutic option in patients with all kinds of BCR-ABL mutations, especially the T315I one. However and surprisingly, the effect of ponatinib has not been extensively studied on imatinib-resistant CML cell lines. Therefore, in the present study, we used several CML cell lines with different mechanisms of resistance to TKI to evaluate the effect of ponatinib on cell viability, apoptosis and signaling. Our results show that ponatinib is highly effective on both sensitive and resistant CML cell lines, whatever the mode of resistance and also on BaF3 murine B cells carrying native BCR-ABL or T315I mutation. We conclude that ponatinib could be effectively used for all types of TKI-resistant patients.
Collapse
Affiliation(s)
- Ophélie Cassuto
- C3M/ INSERM U1065 Team Cell Death, Differentiation, Inflammation and Cancer, Nice, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Robert G, Jullian V, Jacquel A, Ginet C, Dufies M, Torino S, Pottier A, Peyrade F, Tartare-Deckert S, Bourdy G, Deharo E, Auberger P. Simalikalactone E (SkE), a new weapon in the armamentarium of drugs targeting cancers that exhibit constitutive activation of the ERK pathway. Oncotarget 2013; 3:1688-99. [PMID: 23518796 PMCID: PMC3681504 DOI: 10.18632/oncotarget.791] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Simalikalactone E (SkE) is a quassinoid extracted from a widely used Amazonian antimalarial remedy. Although SkE has previously been shown to have cytostatic and/or cytotoxic activities in some tumor cell lines, its mechanism of action has not yet been characterized. We show here that SkE in the high nanomolar range inhibited the growth of various leukemic and solid tumor cell lines. Importantly, SkE was highly efficient at inhibiting chronic myelogenous leukemia (CML) cells that exhibit constitutive activation of the MAPK pathway and, accordingly, it impaired the phosphorylation of ERK1/2. SkE also abrogated MEK1/2 and B-Raf phosphorylation but had no effect on Ras activity. Moreover, SkE was particularly effective against melanoma cell lines carrying the B-Raf-V600E mutation. Importantly, SkE resensitized the PLX-4032-resistant 451Lu melanoma cell line (451Lu-R) and was more efficient than U0126, a MEK inhibitor, and PLX-4032 (PLX) at inducing the apoptosis of two Hairy Cell Leukemia (HCL) patient samples carrying the B-Raf-V600E mutation. Finally, SkE was as efficient as imatinib at inhibiting tumor formation in a xenograft model of CML cells in athymic mice. In conclusion, we show that SkE, a very potent inhibitor of B-Raf-V600E, is highly effective against cancer cell lines that exhibit constitutive activation of the ERK1/2 pathway.
Collapse
|
28
|
Cai J, Han Y, Ren H, Chen C, He D, Zhou L, Eisner GM, Asico LD, Jose PA, Zeng C. Extracellular vesicle-mediated transfer of donor genomic DNA to recipient cells is a novel mechanism for genetic influence between cells. J Mol Cell Biol 2013; 5:227-38. [PMID: 23580760 DOI: 10.1093/jmcb/mjt011] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Extracellular vesicles (EVs) carry signals within or at their limiting membranes, providing a mechanism by which cells can exchange more complex information than what was previously thought. In addition to mRNAs and microRNAs, there are DNA fragments in EVs. Solexa sequencing indicated the presence of at least 16434 genomic DNA (gDNA) fragments in the EVs from human plasma. Immunofluorescence study showed direct evidence that acridine orange-stained EV DNAs could be transferred into the cells and localize to and inside the nuclear membrane. However, whether the transferred EV DNAs are functional or not is not clear. We found that EV gDNAs could be homologously or heterologously transferred from donor cells to recipient cells, and increase gDNA-coding mRNA, protein expression, and function (e.g. AT1 receptor). An endogenous promoter of the AT1 receptor, NF-κB, could be recruited to the transferred DNAs in the nucleus, and increase the transcription of AT1 receptor in the recipient cells. Moreover, the transferred EV gDNAs have pathophysiological significance. BCR/ABL hybrid gene, involved in the pathogenesis of chronic myeloid leukemia, could be transferred from K562 EVs to HEK293 cells or neutrophils. Our present study shows that the gDNAs transferred from EVs to cells have physiological significance, not only to increase the gDNA-coding mRNA and protein levels, but also to influence function in recipient cells.
Collapse
Affiliation(s)
- Jin Cai
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
RUSSO MARIKAA, PAOLILLO MAYRA, SANCHEZ-HERNANDEZ YULY, CURTI DANIELA, CIUSANI EMILIO, SERRA MASSIMO, COLOMBO LINO, SCHINELLI SERGIO. A small-molecule RGD-integrin antagonist inhibits cell adhesion, cell migration and induces anoikis in glioblastoma cells. Int J Oncol 2013; 42:83-92. [PMID: 23174862 PMCID: PMC3583633 DOI: 10.3892/ijo.2012.1708] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/28/2012] [Indexed: 11/06/2022] Open
Abstract
In cancer cells integrins modulate important cellular events that regulate the metastasic cascade which involves detachment from the tumor mass, dissemination and attachment to the oncogenic niche. The α5β1, αvβ3 and αvβ5 integrins are widely expressed in different cancer types and recognize the tripeptide Arg-Gly-Asp (RGD) motif present in several extracellular matrix proteins. In human glioblastoma, αvβ3 integrin expression correlates with tumor grade, suggesting that this integrin may play a crucial role in the highly infiltrative behavior of high grade gliomas. However, few selective RGD-like antagonists have been developed and few studies have investigated their effects in in vitro models of human glioblastoma. In this study, we investigated several cellular effects and the underlying molecular mechanisms exerted by a new small-molecule RGD antagonist, 1a-RGD, in the U251 and U373 human glioblastoma cell lines. Treatment with 1a-RGD (20 µM) demonstrated a weak effect on cell viability and cell proliferation but strongly inhibited cell attachment and cell migration together with actin cytoskeleton disassembly. Prolonged 1a-RGD treatment (72 h) induced anoikis, assessed by Annexin staining and nucleosome assay, particularly in the detached cells. When integrin-linked transduction pathways were investigated, 1aRGD was found to exert a marked reduction in focal adhesion kinase (FAK) phosphorylation without affecting the AKT- and ERK-dependent pathways. Our data indicate that 1a-RGD, probably via modulation of the FAK-dependent pathway, inhibits cell migration and attachment and induces anoikis in glioblastoma cells. This novel finding suggests that the development of an RGD-like molecule may represent a promising tool for the pharmacological approach aimed at reducing the malignancy of glioblastoma cells.
Collapse
Affiliation(s)
- MARIKA A. RUSSO
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461,
USA
| | | | | | - DANIELA CURTI
- Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, I-27100 Pavia
| | - EMILIO CIUSANI
- Carlo Besta Neurological Institute, I-20133 Milan,
Italy
| | | | | | | |
Collapse
|
30
|
Kahlert UD, Nikkhah G, Maciaczyk J. Epithelial-to-mesenchymal(-like) transition as a relevant molecular event in malignant gliomas. Cancer Lett 2012; 331:131-8. [PMID: 23268331 DOI: 10.1016/j.canlet.2012.12.010] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/10/2012] [Accepted: 12/16/2012] [Indexed: 12/12/2022]
Abstract
Tumor dissemination and metastatic behavior account for the vast majority of cancer associated mortality. Epithelial tumors achieve this progressive state via epithelial-to-mesenchymal transition (EMT); however, the importance of this process in the neuroepithelial context is currently very controversially discussed. The review describes the current research status concerning EMT-like changes in malignant gliomas including the role of TWIST1, ZEB1/ZEB2 and SNAIl1/SNAIl2 as inducers for cell-invasiveness in GBMs. Furthermore, WNT/β-catenin signaling with its key-component FRIZZLED4 activating an EMT-like program in malignant gliomas and its relationship to the stem-like phenotype as well as discoveries on micro-RNA-level regulating the EMT-like process are discussed.
Collapse
Affiliation(s)
- U D Kahlert
- Department of General Neurosurgery, Section of Stereotactic Neurosurgery, University Medical Center Freiburg, Germany
| | | | | |
Collapse
|
31
|
A comparison of epithelial-to-mesenchymal transition and re-epithelialization. Semin Cancer Biol 2012; 22:471-83. [PMID: 22863788 DOI: 10.1016/j.semcancer.2012.07.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 07/20/2012] [Indexed: 12/21/2022]
Abstract
Wound healing and cancer metastasis share a common starting point, namely, a change in the phenotype of some cells from stationary to motile. The term, epithelial-to-mesenchymal transition (EMT) describes the changes in molecular biology and cellular physiology that allow a cell to transition from a sedentary cell to a motile cell, a process that is relevant not only for cancer and regeneration, but also for normal development of multicellular organisms. The present review compares the similarities and differences in cellular response at the molecular level as tumor cells enter EMT or as keratinocytes begin the process of re-epithelialization of a wound. Looking toward clinical interventions that might modulate these processes, the mechanisms and outcomes of current and potential therapies are reviewed for both anti-cancer and pro-wound healing treatments related to the pathways that are central to EMT. Taken together, the comparison of re-epithelialization and tumor EMT serves as a starting point for the development of therapies that can selectively modulate different forms of EMT.
Collapse
|