1
|
Thongsripong P, Carter BH, Ward MJ, Jameson SB, Michaels SR, Yukich JO, Wesson DM. Aedes aegypti and Aedes albopictus (Diptera: Culicidae) Oviposition Activity and the Associated Socio-environmental Factors in the New Orleans Area. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:392-400. [PMID: 36683424 DOI: 10.1093/jme/tjad007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The transmission of Aedes-borne viruses is on the rise globally. Their mosquito vectors, Aedes aegypti (Linnaeus, Diptera: Culicidae) and Ae. albopictus (Skuse, Diptera: Culicidae), are focally abundant in the Southern United States. Mosquito surveillance is an important component of a mosquito control program. However, there is a lack of long-term surveillance data and an incomplete understanding of the factors influencing vector populations in the Southern United States. Our surveillance program monitored Ae. aegypti and Ae. albopictus oviposition intensity in the New Orleans area using ovicups in a total of 75 sites from 2009 to 2016. We found both Aedes spp. throughout the study period and sites. The average number of Ae. aegypti and Ae. albopictus hatched from collected eggs per site per week was 34.1 (SD = 57.7) and 29.0 (SD = 46.5), respectively. Based on current literature, we formed multiple hypotheses on how environmental variables influence Aedes oviposition intensity, and constructed Generalized Linear Mixed Effect models with a negative binomial distribution and an autocorrelation structure to test these hypotheses. We found significant associations between housing unit density and Ae. aegypti and Ae. albopictus oviposition intensity, and between median household income and Ae. albopictus oviposition intensity. Temperature, relative humidity, and accumulated rainfall had either a lagged or an immediate significant association with oviposition. This study provides the first long-term record of Aedes spp. distribution in the New Orleans area, and sheds light on factors associated with their oviposition activity. This information is vital for the control of potential Aedes-borne virus transmission in this area.
Collapse
Affiliation(s)
- Panpim Thongsripong
- Florida Medical Entomology Laboratory, University of Florida, 200 9th Street SE, Vero Beach, FL, USA
| | - Brendan H Carter
- Department of Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2301, New Orleans, LA, USA
| | - Matthew J Ward
- Department of Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2301, New Orleans, LA, USA
| | - Samuel B Jameson
- Department of Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2301, New Orleans, LA, USA
| | - Sarah R Michaels
- Department of Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2301, New Orleans, LA, USA
| | - Joshua O Yukich
- Department of Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2301, New Orleans, LA, USA
| | - Dawn M Wesson
- Department of Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2301, New Orleans, LA, USA
| |
Collapse
|
2
|
Thongsripong P, Hyman JM, Kapan DD, Bennett SN. Human-Mosquito Contact: A Missing Link in Our Understanding of Mosquito-Borne Disease Transmission Dynamics. ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA 2021; 114:397-414. [PMID: 34249219 PMCID: PMC8266639 DOI: 10.1093/aesa/saab011] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 05/26/2023]
Abstract
Despite the critical role that contact between hosts and vectors, through vector bites, plays in driving vector-borne disease (VBD) transmission, transmission risk is primarily studied through the lens of vector density and overlooks host-vector contact dynamics. This review article synthesizes current knowledge of host-vector contact with an emphasis on mosquito bites. It provides a framework including biological and mathematical definitions of host-mosquito contact rate, blood-feeding rate, and per capita biting rates. We describe how contact rates vary and how this variation is influenced by mosquito and vertebrate factors. Our framework challenges a classic assumption that mosquitoes bite at a fixed rate determined by the duration of their gonotrophic cycle. We explore alternative ecological assumptions based on the functional response, blood index, forage ratio, and ideal free distribution within a mechanistic host-vector contact model. We highlight that host-vector contact is a critical parameter that integrates many factors driving disease transmission. A renewed focus on contact dynamics between hosts and vectors will contribute new insights into the mechanisms behind VBD spread and emergence that are sorely lacking. Given the framework for including contact rates as an explicit component of mathematical models of VBD, as well as different methods to study contact rates empirically to move the field forward, researchers should explicitly test contact rate models with empirical studies. Such integrative studies promise to enhance understanding of extrinsic and intrinsic factors affecting host-vector contact rates and thus are critical to understand both the mechanisms driving VBD emergence and guiding their prevention and control.
Collapse
Affiliation(s)
- Panpim Thongsripong
- Department of Microbiology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA
| | - James M Hyman
- Department of Mathematics, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118, USA
| | - Durrell D Kapan
- Department of Entomology and Center for Comparative Genomics, Institute of Biodiversity Sciences and Sustainability, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA
- Center for Conservation and Research Training, Pacific Biosciences Research Center, University of Hawai’i at Manoa, 3050 Maile Way, Honolulu, HI 96822
| | - Shannon N Bennett
- Department of Microbiology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA
| |
Collapse
|