1
|
Pietri JE, Laroche M. Invasive indoor pests under the microbiological lens: bacterial and viral diversity from local to global scales in bed bugs and cockroaches. CURRENT OPINION IN INSECT SCIENCE 2025; 69:101344. [PMID: 39929276 PMCID: PMC12066223 DOI: 10.1016/j.cois.2025.101344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/15/2025] [Accepted: 02/03/2025] [Indexed: 02/19/2025]
Abstract
Essentially, all animal life interacts closely with an array of microorganisms, such as bacteria and viruses, which can have both beneficial and harmful effects. The advancement of high-throughput molecular biology approaches (DNA and RNA sequencing) has led to an ongoing boom in investigating the composition and functions of microbial communities (microbiota) associated with a wide range of animal taxa, including insects. As this area of investigation has blossomed, such research on indoor urban insect pests has lagged more widely studied species. However, over the last several years, significant strides have been made in understanding the diversity and biological roles of microbes associated with such insects. This review highlights and discusses recent key findings, focusing on bed bugs and cockroaches, two of the most prolific globally invasive indoor insect pests. Advances in this area of research have long-term implications for public health and for the development of novel pest control approaches.
Collapse
Affiliation(s)
- Jose E Pietri
- Purdue University, Department of Entomology, Center for Urban and Industrial Pest Management, West Lafayette, IN, USA; Purdue University, Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, IN, USA; Purdue University, Department of Biological Sciences, West Lafayette, IN, USA; University of South Dakota, Sanford School of Medicine, Division of Basic Biomedical Sciences, Vermillion, SD, USA.
| | - Maureen Laroche
- University of Texas Medical Branch, Department of Microbiology & Immunology, Galveston, TX, USA; University of Texas Medical Branch, Department of Global Health, Galveston, TX, USA; Clima, Latin American Center of Excellence for Climate Change and Health, Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| |
Collapse
|
2
|
M’madi SA, Zan Diarra A, Bérenger JM, Hasnaoui B, Parola P. Identification of Bed Bugs from Comoros, Using Morphological, Matrix-Assisted Laser Desorption Ionisation Time-of-Flight Mass Spectrometry, and Molecular Biology Tools, and the Detection of Associated Bacteria. INSECTS 2025; 16:148. [PMID: 40003778 PMCID: PMC11855698 DOI: 10.3390/insects16020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
After virtually disappearing from domestic dwellings in the Western world at the end of the Second World War, bed bugs have re-emerged in recent years. Few studies, however, have been carried out on these insects in tropical islands. In this study, we focussed on describing bed bug specimens collected from dwellings in a high-altitude village in Grande Comore, an island in the Comoros, in the Indian Ocean. We also aimed to detect the bacteria associated with them. Using MALDI-TOF MS coupled with molecular biology, we were able to confirm that the C. hemipterus species (the tropical bug) was the bug infesting these homes. Interestingly, the results also show that MALDI-TOF MS can differentiate between the developmental stages of bed bugs (immature and adult). Screening for bacteria was carried out using qPCR, regular PCR, and sequencing, with only Wolbachia DNA being found. Widespread surveys throughout the country are needed to ascertain the level of bed bug infestation, with a view to implementing appropriate control measures.
Collapse
Affiliation(s)
- Saidou Ahamada M’madi
- RITMES, Aix-Marseille Univ, SSA, 13005 Marseille, France; (S.A.M.)
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Adama Zan Diarra
- RITMES, Aix-Marseille Univ, SSA, 13005 Marseille, France; (S.A.M.)
- EMR 279 Maladies Infectieuses, Négligées et Emergentes au Sud, (MINES), IRD, 13005 Marseille, France
| | - Jean-Michel Bérenger
- RITMES, Aix-Marseille Univ, SSA, 13005 Marseille, France; (S.A.M.)
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Bouthaina Hasnaoui
- RITMES, Aix-Marseille Univ, SSA, 13005 Marseille, France; (S.A.M.)
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Philippe Parola
- RITMES, Aix-Marseille Univ, SSA, 13005 Marseille, France; (S.A.M.)
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
3
|
Hasnaoui B, Diarra AZ, Makouloutou-Nzassi P, Bérenger JM, Hamame A, Ngoubangoye B, Gaye M, Davoust B, Mediannikov O, Lekana-Douki JB, Parola P. Identification of termites from Gabon using MALDI-TOF MS. Heliyon 2024; 10:e28081. [PMID: 38524549 PMCID: PMC10957415 DOI: 10.1016/j.heliyon.2024.e28081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024] Open
Abstract
Termites are one of the most common pests that damage wood and other cellulosic materials. Although Africa has more varieties of termite species than any other continent, few entomological studies have been conducted in Gabon. Identifying termites poses significant difficulties for entomologists. The aim of this study was to evaluate the reliability and confirm the significance of MALDI-TOF MS in identifying fresh termites collected in equatorial Africa. A total of 108 termites were collected from 13 termite nests during a field mission in 2021 in Lekedi and Bongoville, Gabon. Termites were morphologically identified and subjected to MALDI-TOF MS, then molecular analyses using the COI and 12S rRNA genes. Four termite species were morphologically identified in this study: Pseudacanthotermes militaris, Macrotermes muelleri, Macrotermes nobilis, and Noditermes indoensis. However, when using molecular biology, only three species were identified, namely Macrotermes bellicosus, P. militaris, and N. indoensis, because the specimens initially identified as M. muelleri and M. nobilis were found to be M. bellicosus. The MALDI-TOF MS spectral profiles of the termites were all of good quality, with intra-species reproducibility and inter-species specificity. The spectra of 98 termites were blind tested against our upgraded database, which included the spectra of ten termite specimens. All tested spectra were correctly matched to their respective species, with log score values (LSVs) ranging from 1.649 to 2.592. The mean LSV was 2.215 ± 0.203, and the median was 2.241. However, 95.91% (94/98) of our spectra had LSVs above 1.8. This study demonstrates how a proteomic approach can overcome termites' molecular and morphological identification limitations and serve as a useful taxonomic tool.
Collapse
Affiliation(s)
- Bouthaina Hasnaoui
- Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Adama Zan Diarra
- Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Patrice Makouloutou-Nzassi
- Unité de Recherches en Ecologie de La Santé (URES), Centre Interdisciplinaire de Recherches Médicales de Franceville, B.P. 769, Franceville, Gabon
- Institut de Recherches en Ecologie Tropicale (IRET-CENAREST), B.P. 13354, Libreville, Gabon
| | - Jean-Michel Bérenger
- Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Afaf Hamame
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Barthelemy Ngoubangoye
- Centre de Primatologie, Centre Interdisciplinaire de Recherches Médicales de Franceville, B.P. 769, Franceville, Gabon
| | - Mapenda Gaye
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Bernard Davoust
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Oleg Mediannikov
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Jean Bernard Lekana-Douki
- Unité D’Evolution, Epidémiologie et Résistances Parasitaires, Centre Interdisciplinaire de Recherches Médicales de Franceville, B.P. 769, Franceville, Gabon
- Département de Parasitologie- Mycologie, Université des Sciences de La Santé, B.P. 4009, Libreville, Gabon
| | - Philippe Parola
- Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
4
|
Ngnindji-Youdje Y, Lontsi-Demano M, Diarra AZ, Makaila AM, Tchuinkam T, Berenger JM, Parola P. Morphological, molecular, and MALDI-TOF MS identification of bed bugs and associated Wolbachia species from Cameroon. Acta Trop 2024; 249:107086. [PMID: 38036023 DOI: 10.1016/j.actatropica.2023.107086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
After vanishing from the public eye for more than 50 years, bed bugs have resurged to become one of the most widely discussed and heavily researched insect pests in the world. This study presents the basic information of infestations of tropical bed bugs, Cimex hemipterus (Hemiptera: Cimicidae), in Cameroon. A total of 248 immature stage and adult bed bug specimens were collected from households and a travel agency in Yaoundé and Douala, Cameroon. The ability of MALDI-TOF MS to identify bed bugs was tested using heads for adults and cephalothoraxes for immature stages. Microorganism screening was performed by qPCR and confirmed by regular PCR and sequencing. Based on morphometrical criteria, four stages of immature bed bugs are represented. Of the 248 bed bug specimens morphologically identified as Cimex hemipterus, 246 (77 males, 65 females and 104 immature specimens) were submitted to MALDI-TOF MS analysis. Of the 222 adults and immature specimens tested, 122 (59.9 %) produced good quality MALDI-TOF MS spectra (35 adults and 87 immature specimens). Blind testing allowed species level identification of 98.21 % of adult and immature C. hemipterus. Among the bacteria tested, only Wolbachia DNA was found in 12/246 (4.8 %) bed bugs. More surveys in the country are warranted to assess the true level of bed bug infestations, in order to take appropriate action for their control.
Collapse
Affiliation(s)
- Yannick Ngnindji-Youdje
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; Institut Hospitalo-Universitaire MInstitut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France; Vector-Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Faculty of Sciences of the University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Michel Lontsi-Demano
- Vector-Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Faculty of Sciences of the University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; Institut Hospitalo-Universitaire MInstitut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Ahmat Mahamat Makaila
- Vector-Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Faculty of Sciences of the University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Timoléon Tchuinkam
- Vector-Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Faculty of Sciences of the University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Jean-Michel Berenger
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; Institut Hospitalo-Universitaire MInstitut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; Institut Hospitalo-Universitaire MInstitut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France.
| |
Collapse
|
5
|
Sheele JM, Peta V, Miron A, Balvin O, Cain D, Edelheit S, McCormick T, Pietri JE. A metatranscriptomic evaluation of viruses in field-collected bed bugs. Parasitol Res 2023; 123:4. [PMID: 38049683 DOI: 10.1007/s00436-023-08049-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/03/2023] [Indexed: 12/06/2023]
Abstract
Cimex lectularius, known as the common bed bug, is a widespread hematophagous human ectoparasite and urban pest that is not known to be a vector of any human infectious disease agents. However, few studies in the era of molecular biology have profiled the microorganisms harbored by field populations of bed bugs. The objective of this study was to examine the viruses present in a large sampling of common bed bugs and related bat bugs (Cimex pipistrelle). RNA sequencing was undertaken on an international sampling of > 500 field-collected bugs, and multiple workflows were used to assemble contigs and query these against reference nucleotide databases to identify viral genomes. Shuangao bed bug virus 2, an uncharacterized rhabdovirus previously discovered in Cimex hemipterus from China, was found in several bed bug pools from the USA and Europe, as well as in C. pipistrelle, suggesting that this virus is common among bed bug populations. In addition, Shuangao bed bug virus 1 was detected in a bed bug pool from China, and sequences matching Enterobacteria phage P7 were found in all bed bug pools, indicating the ubiquitous presence of phage-derived elements in the genome of the bed bug or its enterobacterial symbiont. However, viral diversity was low in bed bugs in our study, as no other viral genomes were detected with significant coverage. These results provide evidence against frequent virus infection in bed bugs. Nonetheless, our investigation had several important limitations, and additional studies should be conducted to better understand the prevalence and composition of viruses in bed bugs. Most notably, our study largely focused on insects from urban areas in industrialized nations, thus likely missing infrequent virus infections and those that could occur in rural or tropical environments or developing nations.
Collapse
Affiliation(s)
- Johnathan M Sheele
- Department of Emergency Medicine, University Hospitals Cleveland Medical Center & Case Western Reserve University, Cleveland, OH, USA.
- Department of Emergency Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA.
| | - Vincent Peta
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Alexander Miron
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ondrej Balvin
- Department of Ecology, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - David Cain
- Bed Bugs Limited, 3 Cobden Road, London, UK
| | - Simone Edelheit
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA
| | - Tom McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA
| | - Jose E Pietri
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.
| |
Collapse
|
6
|
Chebbah D, Hamarsheh O, Sereno D, Elissa N, Brun S, Jan J, Izri A, Akhoundi M. Molecular characterization and genetic diversity of Wolbachia endosymbionts in bed bugs (Hemiptera; Cimicidae) collected in Paris. PLoS One 2023; 18:e0292229. [PMID: 37768955 PMCID: PMC10538740 DOI: 10.1371/journal.pone.0292229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
PURPOSE This study aimed to investigate the genetic diversity of Wolbachia in field-caught bed bug species in Paris areas. METHODS The bed bug specimens were captured from various infested localities in Paris and surrounding cities. They belonged to diverse life stages, including egg, nymph, and adult. They were then identified using morphological and molecular approaches. Furthermore, Wolbachia was detected, and its genetic diversity was investigated by conventional PCR of 16S-rRNA and Wolbachia surface protein (wsp) genes. RESULTS A total of 256 bed bug specimens belonging to various life stages [adult (183 specimens), nymph (48), and egg (25)] were captured from seven private apartments, five social apartments, three houses, two immigrant residences, and one retirement home situated in 10 districts of Paris and 8 surrounding cities. They were identified as Cimex lectularius (237 specimens) and C. hemipterus (19) using morphological and molecular approaches. The presence and diversity of Wolbachia were ascertained by targeting 16S-rRNA and wsp genes. Based on molecular analysis, 182 and 148 out of 256 processed specimens were positive by amplifying 16S-rRNA and wsp fragments, respectively. The inferred phylogenetic analysis with 16S-rRNA and wsp sequences displayed monophyletic Wolbachia strains clustering each one in three populations. The median-joining network, including the Wolbachia 16S-rRNA and wsp sequences of C. lectularius and C. hemipterous specimens, indicated a significant genetic differentiation among these populations in Paris areas which was consent with Neighbor-Joining analyses. A phylogenetic analysis of our heterogenic Wolbachia sequences with those reported from other arthropod species confirmed their belonging to supergroup F. Moreover, no difference between Wolbachia sequences from eggs, nymphs, and adults belonging to the same clade and between Wolbachia sequences of C. lectularius and C. hemipterus were observed after sequence alignment. Furthermore, no significant correlation was found between multiple geographical locations (or accomodation type) where bed bugs were collected and the genetic diversity of Wolbachia. CONCLUSIONS We highlight a significant heterogeneity within Wolbachia symbionts detected in C. lectularius and C. hemipterus. No correlation between Wolbachia species and bed bug species (C. lectularius versus C. hemipterus), physiological stages (egg, nymph, and adult), and sampling location was recorded in this study.
Collapse
Affiliation(s)
- Dahlia Chebbah
- Parasitology-Mycology Department, Avicenne Hospital, AP-HP, Bobigny, France
- Service Parisien de Santé Environnementale (SPSE), Sous-Direction de la Santé Environnementale et de la Prévention (SDSEP), Direction de la Santé Publique (DSP)-Mairie de Paris, Paris, France
| | - Omar Hamarsheh
- Department of Biological Sciences, Al-Quds University, Jerusalem, Palestine
| | - Denis Sereno
- Institut de Recherche pour le Développement, MIVEGEC, Montpellier, France
- Institut de Recherche pour le Développement, InterTryp, Montpellier, France
| | - Nohal Elissa
- Service Parisien de Santé Environnementale (SPSE), Sous-Direction de la Santé Environnementale et de la Prévention (SDSEP), Direction de la Santé Publique (DSP)-Mairie de Paris, Paris, France
| | - Sophie Brun
- Parasitology-Mycology Department, Avicenne Hospital, AP-HP, Bobigny, France
| | - Julie Jan
- Agence Régionale de Santé (ARS) Île-de-France, Paris, France
| | - Arezki Izri
- Parasitology-Mycology Department, Avicenne Hospital, AP-HP, Bobigny, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - Mohammad Akhoundi
- Parasitology-Mycology Department, Avicenne Hospital, AP-HP, Bobigny, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| |
Collapse
|
7
|
Ndiaye EHI, Diarra AZ, Diouf FS, Bouganali C, Almeras L, Sokhna C, Diatta G, Parola P. Ornithodoros sonrai Soft Ticks and Associated Bacteria in Senegal. Pathogens 2023; 12:1078. [PMID: 37764886 PMCID: PMC10534570 DOI: 10.3390/pathogens12091078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
The soft ticks, Ornithodoros sonrai, are known as vectors of the tick-borne relapsing fever caused by Borrelia spp. and have also been reported to carry other micro-organisms. The objective of this study was to collect and to identify O. sonrai ticks and to investigate the micro-organisms associated with them. In 2019, an investigation of burrows within human dwellings was conducted in 17 villages in the Niakhar area and in 15 villages in the Sine-Saloum area in the Fatick region of Senegal. Ticks collected from the burrows were identified morphologically and by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Micro-organism screening was performed by bacteria-specific qPCR and some identifications were made by standard PCR and gene sequencing. O. sonrai ticks were found in 100% (17/17) of the villages surveyed in the Niakhar area and in 66% (10/15) of the villages in the Sine-Saloum area. A total of 1275 soft tick specimens were collected from small mammal burrows. The ticks collected were morphologically identified as O. sonrai. About 20% (259/1275) of the specimens were also submitted to MALDI-TOF MS for identification. Among the resulting MS profiles, 87% (139/159) and 95% (95/100) were considered good quality specimens, preserved in alcohol and silica gel, respectively. All spectra of good quality were tested against our MALDI-TOF MS arthropod spectra database and identified as O. sonrai species, corroborating the morphological classification. The carriage of four micro-organisms was detected in the ticks with a high prevalence of Bartonella spp., Anaplasmataceae, and Borrelia spp. of 35, 28, and 26%, respectively, and low carriage of Coxiella burnetii (2%). This study highlights the level of tick infestation in domestic burrows, the inventory of pathogens associated with the O. sonrai tick, and the concern about the potential risk of tick involvement in the transmission of these pathogens in Senegal.
Collapse
Affiliation(s)
- El Hadji Ibrahima Ndiaye
- Faculté des Sciences Médicales et Paramédicales, Aix Marseille Univ IRD, AP-HM, SSA, VITROME, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (E.H.I.N.); (A.Z.D.); (F.S.D.); (L.A.); (C.S.)
- IHU Méditerranée Infection, 13005 Marseille, France
- VITROME, Campus International IRD-UCAD Hann, Dakar 1386, Senegal; (C.B.); (G.D.)
| | - Adama Zan Diarra
- Faculté des Sciences Médicales et Paramédicales, Aix Marseille Univ IRD, AP-HM, SSA, VITROME, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (E.H.I.N.); (A.Z.D.); (F.S.D.); (L.A.); (C.S.)
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Fatou Samba Diouf
- Faculté des Sciences Médicales et Paramédicales, Aix Marseille Univ IRD, AP-HM, SSA, VITROME, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (E.H.I.N.); (A.Z.D.); (F.S.D.); (L.A.); (C.S.)
- IHU Méditerranée Infection, 13005 Marseille, France
- VITROME, Campus International IRD-UCAD Hann, Dakar 1386, Senegal; (C.B.); (G.D.)
| | - Charles Bouganali
- VITROME, Campus International IRD-UCAD Hann, Dakar 1386, Senegal; (C.B.); (G.D.)
| | - Lionel Almeras
- Faculté des Sciences Médicales et Paramédicales, Aix Marseille Univ IRD, AP-HM, SSA, VITROME, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (E.H.I.N.); (A.Z.D.); (F.S.D.); (L.A.); (C.S.)
- IHU Méditerranée Infection, 13005 Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France
| | - Cheikh Sokhna
- Faculté des Sciences Médicales et Paramédicales, Aix Marseille Univ IRD, AP-HM, SSA, VITROME, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (E.H.I.N.); (A.Z.D.); (F.S.D.); (L.A.); (C.S.)
- IHU Méditerranée Infection, 13005 Marseille, France
- VITROME, Campus International IRD-UCAD Hann, Dakar 1386, Senegal; (C.B.); (G.D.)
| | - Georges Diatta
- VITROME, Campus International IRD-UCAD Hann, Dakar 1386, Senegal; (C.B.); (G.D.)
| | - Philippe Parola
- Faculté des Sciences Médicales et Paramédicales, Aix Marseille Univ IRD, AP-HM, SSA, VITROME, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (E.H.I.N.); (A.Z.D.); (F.S.D.); (L.A.); (C.S.)
- IHU Méditerranée Infection, 13005 Marseille, France
| |
Collapse
|
8
|
Hasnaoui B, Bérenger JM, Delaunay P, Diarra AZ, Ndiaye EHI, M'madi SA, Masotti N, Sevestre J, Parola P. Survey of bed bug infestations in homeless shelters in southern France. Sci Rep 2023; 13:12557. [PMID: 37532686 PMCID: PMC10397270 DOI: 10.1038/s41598-023-38458-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/08/2023] [Indexed: 08/04/2023] Open
Abstract
Bed bug has become a major public health pest worldwide. Infestation may result in numerous negative health effects. Homeless shelters are one of the most habitats that can be infested with bed bugs, a few studies have focused on bed bug infestations in these settings. We conducted a survey of infestations of bed bugs in a homeless shelter in southern France, using an innovative seven-level scale (0-6) to assess the degree of infestation, MALDI TOF-MS to identify bed bugs, and a biomolecular tool to detect bacteria. Bed bug infestations were documented in 13% (9/68) of investigated rooms. A total of 184 bed bugs were collected and morphologically identified as Cimex lectularius. MALDI TOF-MS analysis allowed us to obtain high-quality MS spectra for all 184 specimens, to correctly identify all specimens, and included 178/184 (97%) Log Score Values higher than 1.8. Among the bacteria tested, Wolbachia sp. DNA was found in 149/184 (81%) of the bed bugs, and one sample was positive for Coxiella burnetii, the agent of Q fever. Our study is the first of its kind that offers new perspectives for increasing public awareness of the conditions in homeless shelters.
Collapse
Affiliation(s)
- Bouthaina Hasnaoui
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Jean Michel Bérenger
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Pascal Delaunay
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
- Laboratory of Parasitology Mycology, Nice University Hospital, Nice, France
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - El Hadji Ibrahima Ndiaye
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Saidou Ahamada M'madi
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Noelle Masotti
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Jacques Sevestre
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Philippe Parola
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.
- IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
9
|
Sevestre J, Lemrabott MAO, Bérenger JM, Zan Diarra A, Ould Mohamed Salem Boukhary A, Parola P. Detection of Arthropod-Borne Bacteria and Assessment of MALDI-TOF MS for the Identification of Field-Collected Immature Bed Bugs from Mauritania. INSECTS 2023; 14:69. [PMID: 36661997 PMCID: PMC9864073 DOI: 10.3390/insects14010069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Human infestations by bed bugs have upsurged globally in recent decades, including in African countries, where recent reports pointed out an increase in infestation. Sympatric dwelling has been described for two species of bed bug parasitizing humans: Cimex hemipterus (the tropical bed bug) and C. lectularius. Identification of these two species is based on morphological characteristics, and gene sequencing, and may also rely on Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS). The present work aimed to assess whether MALDI-TOF MS was applicable for species level identification of immature stages of Cimex. Arthropods were collected in domestic settings in Nouakchott, Mauritania. Identification used morphological keys and MALDI-TOF MS identification was assessed for immature stages. Quantitative PCR and sequencing assays were used to detect arthropod-associated bacteria in each specimen. A total of 92 arthropods were collected, all morphologically identified as C. hemipterus (32 males, 14 females and 45 immature stages). A total of 35/45 specimens produced good quality MALDI-TOF MS spectra. Analysis allowed species level identification of all immature C. hemipterus after their spectra were entered into our in-house MALDI-TOF MS arthropod spectra database. Molecular screening allowed detection of Wolbachia DNA in each specimen. These results suggested that MALDI-TOF MS is a reliable tool for species level identification of Cimex specimens, including immature specimens. Future studies should assess this approach on larger panels of immature specimens for different Cimex species and focus on the precise staging of their different immature developmental stages.
Collapse
Affiliation(s)
- Jacques Sevestre
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France
- IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13005 Marseille, France
| | - Mohamed Aly Ould Lemrabott
- Unité de Recherche Génomes et Milieux, Faculté des Sciences et Techniques, Université de Nouakchott, Nouakchott BP 880, Mauritania
| | - Jean-Michel Bérenger
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France
- IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13005 Marseille, France
| | - Adama Zan Diarra
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France
- IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13005 Marseille, France
| | - Ali Ould Mohamed Salem Boukhary
- Unité de Recherche Génomes et Milieux, Faculté des Sciences et Techniques, Université de Nouakchott, Nouakchott BP 880, Mauritania
| | - Philippe Parola
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France
- IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13005 Marseille, France
| |
Collapse
|
10
|
Sy I, Conrad L, Becker SL. Recent Advances and Potential Future Applications of MALDI-TOF Mass Spectrometry for Identification of Helminths. Diagnostics (Basel) 2022; 12:3035. [PMID: 36553043 PMCID: PMC9777230 DOI: 10.3390/diagnostics12123035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Helminth infections caused by nematodes, trematodes, and cestodes are major neglected tropical diseases and of great medical and veterinary relevance. At present, diagnosis of helminthic diseases is mainly based on microscopic observation of different parasite stages, but microscopy is associated with limited diagnostic accuracy. Against this background, recent studies described matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry as a potential, innovative tool for helminth identification and differentiation. MALDI-TOF mass spectrometry is based on the analysis of spectra profiles generated from protein extracts of a given pathogen. It requires an available spectra database containing reference spectra, also called main spectra profiles (MSPs), which are generated from well characterized specimens. At present, however, there are no commercially available databases for helminth identification using this approach. In this narrative review, we summarize recent developments and published studies between January 2019 and September 2022 that report on the use of MALDI-TOF mass spectrometry for helminths. Current challenges and future research needs are identified and briefly discussed.
Collapse
Affiliation(s)
- Issa Sy
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany
| | - Lucie Conrad
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany
| | - Sören L. Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
11
|
Deku G, Combey R, Doggett SL. Morphometrics of the Tropical Bed Bug (Hemiptera: Cimicidae) From Cape Coast, Ghana. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1534-1547. [PMID: 35703110 PMCID: PMC9473658 DOI: 10.1093/jme/tjac072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 05/30/2023]
Abstract
Bed bugs, Cimex lectularius (L.) (Hemiptera: Cimicidae) and Cimex hemipterus (F.), have become established worldwide in recent years largely due to the development of insecticide resistance. However, limited attention has been given to ongoing morphological and macroevolutionary changes within the species and their populations, which could have implications for their control. Here, we evaluated whether bed bugs of the species C. hemipterus inhabiting different communities in Cape Coast, Ghana are undergoing segregation, which could lead to possible speciation. We also aimed to provide a morphometric description of all nymphal stages. Nine-bed bug populations of C. hemipterus were field-collected in Cape Coast and were subjected to geometric morphometric analysis. The multivariate parameters applied distinguished various populations from each of the locations, indicating the presence of morphologically distinct subpopulations of C. hemipterus. Shape-based segregation and shape changes associated with the insect pronotum (which is an important taxonomic character in the Cimicidae) were evident across the populations. Through this comparative study of C. hemipterus, we showed that possible subpopulations of this bed bug are being spread from Ghana. The nymphal stages (first-fifth) of C. hemipterus were distinguished by the length of the last three antennal segment and pronota width; such information contributes to the taxonomic knowledge of the species.
Collapse
Affiliation(s)
- Godwin Deku
- Department of Conservation Biology and Entomology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Rofela Combey
- Department of Conservation Biology and Entomology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Stephen L Doggett
- Department of Medical Entomology, NSW Health Pathology-ICPMR, Westmead Hospital, Sydney, Australia
| |
Collapse
|