3
|
Zubair AS, McAlpine LS, Gobeske KT. Virology, ecology, epidemiology, pathology, and treatment of eastern equine encephalitis. J Neurol Sci 2024; 457:122886. [PMID: 38278094 DOI: 10.1016/j.jns.2024.122886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Eastern equine encephalitis (EEE) was one of the first-recognized neuroinvasive arboviral diseases in North America, and it remains the most lethal. Although EEE is known to have periodic spikes in infection rates, there is increasing evidence that it may be undergoing a change in its prevalence and its public health burden. Numerous factors shape the scope of EEE in humans, and there are important similarities with other emergent viral diseases that have surfaced or strengthened in recent years. Because environmental and ecological conditions that broadly influence the epidemiology of arboviral diseases also are changing, and the frequency, severity, and scope of outbreaks are expected to worsen, an expanded understanding of EEE will have untold importance in coming years. Here we review the factors shaping EEE transmission cycles and the conditions leading to outbreaks in humans from an updated, multidomain perspective. We also provide special consideration of factors shaping the virology, host-vector-environment relationships, and mechanisms of pathology and treatment as a reference for broadening audiences.
Collapse
Affiliation(s)
- Adeel S Zubair
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | | | - Kevin T Gobeske
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Hill V, Koch RT, Bialosuknia SM, Ngo K, Zink SD, Koetzner CA, Maffei JG, Dupuis AP, Backenson PB, Oliver J, Bransfield AB, Misencik MJ, Petruff TA, Shepard JJ, Warren JL, Gill MS, Baele G, Vogels CBF, Gallagher G, Burns P, Hentoff A, Smole S, Brown C, Osborne M, Kramer LD, Armstrong PM, Ciota AT, Grubaugh ND. Dynamics of eastern equine encephalitis virus during the 2019 outbreak in the Northeast United States. Curr Biol 2023; 33:2515-2527.e6. [PMID: 37295427 PMCID: PMC10316540 DOI: 10.1016/j.cub.2023.05.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
Eastern equine encephalitis virus (EEEV) causes a rare but severe disease in horses and humans and is maintained in an enzootic transmission cycle between songbirds and Culiseta melanura mosquitoes. In 2019, the largest EEEV outbreak in the United States for more than 50 years occurred, centered in the Northeast. To explore the dynamics of the outbreak, we sequenced 80 isolates of EEEV and combined them with existing genomic data. We found that, similar to previous years, cases were driven by multiple independent but short-lived virus introductions into the Northeast from Florida. Once in the Northeast, we found that Massachusetts was important for regional spread. We found no evidence of any changes in viral, human, or bird factors which would explain the increase in cases in 2019, although the ecology of EEEV is complex and further data is required to explore these in more detail. By using detailed mosquito surveillance data collected by Massachusetts and Connecticut, however, we found that the abundance of Cs. melanura was exceptionally high in 2019, as was the EEEV infection rate. We employed these mosquito data to build a negative binomial regression model and applied it to estimate early season risks of human or horse cases. We found that the month of first detection of EEEV in mosquito surveillance data and vector index (abundance multiplied by infection rate) were predictive of cases later in the season. We therefore highlight the importance of mosquito surveillance programs as an integral part of public health and disease control.
Collapse
Affiliation(s)
- Verity Hill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA.
| | - Robert T Koch
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Sean M Bialosuknia
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA
| | - Kiet Ngo
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA
| | - Steven D Zink
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA
| | - Cheri A Koetzner
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA
| | - Joseph G Maffei
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA
| | - Alan P Dupuis
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA
| | - P Bryon Backenson
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, NY 12237, USA
| | - JoAnne Oliver
- New York State Department of Health, Bureau of Communicable Disease Control, Syracuse, NY 13202, USA; Division of Environmental and Renewable Resources, State University of New York at Morrisville - School of Agriculture, Business and Technology, Morrisville, NY 13408, USA
| | - Angela B Bransfield
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Michael J Misencik
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Tanya A Petruff
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - John J Shepard
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Joshua L Warren
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA; Public Health Modeling Unit, Yale School of Public Health, New Haven, CT 06510, USA
| | - Mandev S Gill
- Department of Statistics, University of Georgia, Athens, GA 30602, USA
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven BE-3000, Belgium
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Glen Gallagher
- Massachusetts Department of Public Health, Boston, MA 02108, USA; Rhode Island State Health Laboratory, Rhode Island Department of Health, Providence, RI 02904, USA
| | - Paul Burns
- Massachusetts Department of Public Health, Boston, MA 02108, USA
| | - Aaron Hentoff
- Massachusetts Department of Public Health, Boston, MA 02108, USA
| | - Sandra Smole
- Massachusetts Department of Public Health, Boston, MA 02108, USA
| | - Catherine Brown
- Massachusetts Department of Public Health, Boston, MA 02108, USA
| | - Matthew Osborne
- Massachusetts Department of Public Health, Boston, MA 02108, USA
| | - Laura D Kramer
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA; Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY 12237, USA
| | - Philip M Armstrong
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA; Division of Environmental and Renewable Resources, State University of New York at Morrisville - School of Agriculture, Business and Technology, Morrisville, NY 13408, USA.
| | - Alexander T Ciota
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA; Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY 12237, USA.
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA; Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
5
|
Hill V, Koch RT, Bialosuknia SM, Ngo K, Zink SD, Koetzner CA, Maffei JG, Dupuis AP, Backenson PB, Oliver J, Bransfield AB, Misencik MJ, Petruff TA, Shepard JJ, Warren JL, Gill MS, Baele G, Vogels CB, Gallagher G, Burns P, Hentoff A, Smole S, Brown C, Osborne M, Kramer LD, Armstrong PM, Ciota AT, Grubaugh ND. Dynamics of Eastern equine encephalitis virus during the 2019 outbreak in the Northeast United States. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.06.23286851. [PMID: 36945576 PMCID: PMC10029029 DOI: 10.1101/2023.03.06.23286851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Eastern equine encephalitis virus (EEEV) causes a rare but severe disease in horses and humans, and is maintained in an enzootic transmission cycle between songbirds and Culiseta melanura mosquitoes. In 2019, the largest EEEV outbreak in the United States for more than 50 years occurred, centered in the Northeast. To explore the dynamics of the outbreak, we sequenced 80 isolates of EEEV and combined them with existing genomic data. We found that, like previous years, cases were driven by frequent short-lived virus introductions into the Northeast from Florida. Once in the Northeast, we found that Massachusetts was important for regional spread. We found no evidence of any changes in viral, human, or bird factors which would explain the increase in cases in 2019. By using detailed mosquito surveillance data collected by Massachusetts and Connecticut, however, we found that the abundance of Cs. melanura was exceptionally high in 2019, as was the EEEV infection rate. We employed these mosquito data to build a negative binomial regression model and applied it to estimate early season risks of human or horse cases. We found that the month of first detection of EEEV in mosquito surveillance data and vector index (abundance multiplied by infection rate) were predictive of cases later in the season. We therefore highlight the importance of mosquito surveillance programs as an integral part of public health and disease control.
Collapse
Affiliation(s)
- Verity Hill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Robert T. Koch
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Sean M. Bialosuknia
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
| | - Kiet Ngo
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
| | - Steven D. Zink
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
| | - Cheri A. Koetzner
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
| | - Joseph G. Maffei
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
| | - Alan P. Dupuis
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
| | - P. Bryon Backenson
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, NY, USA
| | - JoAnne Oliver
- New York State Department of Health, Bureau of Communicable Disease Control, Syracuse, NY, USA
- Division of Environmental and Renewable Resources, State University of New York at Morrisville - School of Agriculture, Business and Technology, Morrisville, NY, USA
| | - Angela B. Bransfield
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Michael J. Misencik
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Tanya A. Petruff
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - John J. Shepard
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Joshua L. Warren
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, USA
| | - Mandev S. Gill
- Department of Statistics, University of Georgia, Athens, GA, USA
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Chantal B.F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Glen Gallagher
- Massachusetts Department of Public Health, Boston, MA, USA
- Rhode Island State Health Laboratory, Rhode Island Department of Health, Providence, RI, USA
| | - Paul Burns
- Massachusetts Department of Public Health, Boston, MA, USA
| | - Aaron Hentoff
- Massachusetts Department of Public Health, Boston, MA, USA
| | - Sandra Smole
- Massachusetts Department of Public Health, Boston, MA, USA
| | | | | | - Laura D. Kramer
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, USA
| | - Philip M. Armstrong
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Division of Environmental and Renewable Resources, State University of New York at Morrisville - School of Agriculture, Business and Technology, Morrisville, NY, USA
| | - Alexander T. Ciota
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, USA
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|