1
|
Núñez AI, Talavera S, Aranda C, Birnberg L, Rivas R, Pujol N, Verdún M, Failloux AB, Busquets N. European Aedes caspius mosquitoes are experimentally unable to transmit Zika virus. Parasit Vectors 2019; 12:363. [PMID: 31345269 PMCID: PMC6659212 DOI: 10.1186/s13071-019-3620-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/19/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aedes caspius (Pallas, 1771) is a floodwater mosquito species widely distributed in the Western Palaearctic. As an anthropophilic species, its role as an arbovirus vector may be the key for understanding the transmission cycle of certain diseases in Europe such as Zika virus (ZIKV). Concerning vector competence for ZIKV, studies related to Ae. caspius are still scarce. ZIKV is an arbovirus that has provoked a widespread epidemic in the Pacific region (2007-2013) and in the Americas (2015-2016). ZIKV is associated with serious neurological injuries (e.g. microcephaly) and Guillain-Barré syndrome. Due to the ZIKV epidemics in the American continent, some viraemic travellers coming from endemic countries have been reported in Europe. More knowledge is therefore required to define the susceptibility of autochthonous mosquito species such as Ae. caspius for ZIKV in order to improve arbovirus surveillance and control programmes. In the present study, the vector competence of a European population of Ae. caspius was evaluated for two ZIKV lineages, the Suriname ZIKV strain (Asian lineage) and the MR766 ZIKV strain (African I lineage). Females were tested at 7, 14 and 21 days post-exposure (dpe) to infectious blood meals. An Ae. aegypti PAEA strain was used as a positive control. RESULTS Aedes caspius presented low susceptibility to ZIKV infection and the virus was only detected by RT-qPCR in body samples. Low viral loads were detected for the MR766 strain at 7 dpe and for the Suriname strain at 14 and 21 dpe. Aedes caspius was unable to produce a disseminated infection and virus transmission at any of the tested time points. Using Ae. aegypti PAEA strain, infection, dissemination and transmission rates were calculated for the Suriname ZIKV strain (Asian lineage) at each time point. For the MR766 ZIKV strain (African I lineage), while only infection rates were estimated at each time point, no dissemination or transmission were detected in either species. CONCLUSIONS The results of the present study reveal that the tested Ae. caspius population has a strong midgut escape barrier that limits the dissemination or transmission of the virus. As such, it seems unlikely that European Ae. caspius mosquitoes could be involved in ZIKV transmission if ZIKV was introduced into Europe. This information may help in designing a better strategy to European surveillance and control programmes for ZIKV.
Collapse
Affiliation(s)
- Ana I Núñez
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Sandra Talavera
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Carles Aranda
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193, Barcelona, Spain.,Servei de Control de Mosquits, Consell Comarcal del Baix Llobregat, Barcelona, Spain
| | - Lotty Birnberg
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Raquel Rivas
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Núria Pujol
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Marta Verdún
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Anna-Bella Failloux
- Department of Virology, Arboviruses and Insect Vectors Unit, Institut Pasteur, Paris, France
| | - Núria Busquets
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193, Barcelona, Spain.
| |
Collapse
|
2
|
Bombyx mori and Aedes aegypti form multi-functional immune complexes that integrate pattern recognition, melanization, coagulants, and hemocyte recruitment. PLoS One 2017; 12:e0171447. [PMID: 28199361 PMCID: PMC5310873 DOI: 10.1371/journal.pone.0171447] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/20/2017] [Indexed: 02/08/2023] Open
Abstract
The innate immune system of insects responds to wounding and pathogens by mobilizing multiple pathways that provide both systemic and localized protection. Key localized responses in hemolymph include melanization, coagulation, and hemocyte encapsulation, which synergistically seal wounds and envelop and destroy pathogens. To be effective, these pathways require a targeted deposition of their components to provide protection without compromising the host. Extensive research has identified a large number of the effectors that comprise these responses, but questions remain regarding their post-translational processing, function, and targeting. Here, we used mass spectrometry to demonstrate the integration of pathogen recognition proteins, coagulants, and melanization components into stable, high-mass, multi-functional Immune Complexes (ICs) in Bombyx mori and Aedes aegypti. Essential proteins common to both include phenoloxidases, apolipophorins, serine protease homologs, and a serine protease that promotes hemocyte recruitment through cytokine activation. Pattern recognition proteins included C-type Lectins in B. mori, while A. aegypti contained a protein homologous to Plasmodium-resistant LRIM1 from Anopheles gambiae. We also found that the B. mori IC is stabilized by extensive transglutaminase-catalyzed cross-linking of multiple components. The melanization inhibitor Egf1.0, from the parasitoid wasp Microplitis demolitor, blocked inclusion of specific components into the IC and also inhibited transglutaminase activity. Our results show how coagulants, melanization components, and hemocytes can be recruited to a wound surface or pathogen, provide insight into the mechanism by which a parasitoid evades this immune response, and suggest that insects as diverse as Lepidoptera and Diptera utilize similar defensive mechanisms.
Collapse
|