1
|
N'Guessan É, Raes F, Ahmadi M, Bacot S, Dumas L, Leenhardt J, Debiossat M, André C, Lenormand JL, Ghezzi C, Fagret D, Lombardi C, Broisat A. Enhancing theranostic potential of anti-mesothelin sdAb through site-specific labeling at a unique conserved lysine by molecular engineering. EJNMMI Radiopharm Chem 2025; 10:19. [PMID: 40293556 PMCID: PMC12037457 DOI: 10.1186/s41181-025-00340-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Mesothelin is a 40 kDa glycoprotein overexpressed in several cancers, including triple-negative breast cancer (TNBC). The anti-mesothelin single-domain antibody (sdAb, or nanobody) A1 can serve as a radio-theranostic agent, but random DOTA conjugation on lysines yields heterogeneous products. RESULTS We reengineered A1-His by directed mutagenesis to produce four single-lysine variants (A1K1-His, A1K2-His, A1K3-His, and A1K4-His). Each was site-specifically conjugated with p-SCN-Bn-DOTA, radiolabeled with 68Ga, and evaluated by PET imaging in mice bearing HCC70 TNBC xenografts, followed by ex vivo biodistribution at 1 h post-injection. All mutants were successfully produced and site-specifically conjugated. A1K1-His showed lower conjugation efficiency and increased liver/spleen retention, whereas A1K3-His exhibited reduced stability. A1K2-His and A1K4-His performed best overall. Removing the His-tag and administering gelofusin further lowered renal uptake. Notably, A1K2 displayed tumor-to-kidney and tumor-to-liver ratios 2.4 and 1.9 times higher, respectively, than A1K4 (p < 0.01). CONCLUSIONS For the first time, site-specific DOTA conjugation using sdAb derivatives containing a single lysine was achieved, avoiding the production of mixed final compounds. These findings identify 68Ga-DOTA-A1K2 as the leading candidate for mesothelin-expressing tumor imaging with minimal off-target uptake. Ongoing studies will assess its therapeutic utility with 177Lu-DOTA-A1K2. Since these four lysines are conserved in many sdAbs, this strategy may be broadly applicable for site-specific sdAb labeling.
Collapse
Affiliation(s)
| | - Florian Raes
- Univ. Grenoble Alpes, INSERM U1039, LRB, Grenoble, France
| | - Mitra Ahmadi
- Univ. Grenoble Alpes, INSERM U1039, LRB, Grenoble, France
| | - Sandrine Bacot
- Univ. Grenoble Alpes, INSERM U1039, LRB, Grenoble, France
| | - Laurent Dumas
- Univ. Grenoble Alpes, INSERM U1039, LRB, Grenoble, France
| | - Julien Leenhardt
- Univ. Grenoble Alpes, INSERM U1039, LRB, Grenoble, France
- Department of Nuclear Medicine, Univ. Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | | | - Clémence André
- Univ. Grenoble Alpes, INSERM U1039, LRB, Grenoble, France
| | | | | | - Daniel Fagret
- Univ. Grenoble Alpes, INSERM U1039, LRB, Grenoble, France
| | - Charlotte Lombardi
- Univ. Grenoble Alpes, INSERM U1039, LRB, Grenoble, France
- Univ. Grenoble Alpes, CNRS U5525, TIMC-Tree, La Tronche, France
| | - Alexis Broisat
- Univ. Grenoble Alpes, INSERM U1039, LRB, Grenoble, France.
| |
Collapse
|
2
|
Li Q, Tan L, Wang J. Single and combined toxic effects of nCu and nSiO 2 on Dunaliella salina. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30256-30268. [PMID: 38602639 DOI: 10.1007/s11356-024-33130-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
There are many studies on the toxic effects of single nanoparticles on microalgae; however, many types of nanoparticles are present in the ocean, and more studies on the combined toxic effects of multiple nanoparticles on microalgae are needed. The single and combined toxic effects of nCu and nSiO2 on Dunaliella salina were investigated through changes in instantaneous fluorescence rate (Ft) and antioxidant parameters during 96-h growth inhibition tests. It was found that the toxic effect of nCu on D. salina was greater than that of nSiO2, and both showed time and were dose-dependent with the greatest growth inhibition at 96 h. A total of 0.5 mg/L nCu somewhat promoted the growth of microalgae, but 4.5 and 5.5 mg/L nCu showed negative growth effects on microalgae. The Ft of D. salina was also inhibited by increasing concentrations of nanoparticles and exposure time. nCu suppressed the synthesis of TP and elevated the MDA content of D. salina, which indicated the lipid peroxidation of algal cells. The activities of SOD and CAT showed a trend of increasing and then decreasing with the increase of nCu concentration, suggesting that the enzyme activity first increased and then decreased. The toxic effect of a high concentration of nCu was reduced after the addition of nSiO2. SEM and EDS images showed that nSiO2 could adsorb nCu in seawater. nSiO2 also adsorbed Cu2+ in the cultures, thus reducing the toxic effect of nCu on D. salina to a certain extent. TEM image was used to observe the morphology of algal cells exposed to nCu.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Laoshan Campus, Qingdao, 266100, China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Laoshan Campus, Qingdao, 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Laoshan Campus, Qingdao, 266100, China.
| |
Collapse
|
3
|
Chen L, Xu N, Wang P, Zhu H, Zhang Z, Yang Z, Zhang W, Guo H, Lin J. Nanoalbumin-prodrug conjugates prepared via a thiolation-and-conjugation method improve cancer chemotherapy and immune checkpoint blockade therapy by promoting CD8 + T-cell infiltration. Bioeng Transl Med 2023; 8:e10377. [PMID: 36684090 PMCID: PMC9842047 DOI: 10.1002/btm2.10377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/07/2022] [Accepted: 07/16/2022] [Indexed: 01/25/2023] Open
Abstract
Protein-drug conjugates are emerging tools to combat cancers. Here, we adopted an indirect thiolation-and-conjugation method as a general strategy to prepare protein-drug conjugates. We found for the first time that this method led to the formation of nanometric conjugates, probably due to the formation of intermolecular disulfide bonds, which facilitated enhanced uptake by cancer cells. As a proof-of-concept application in cancer therapy, a nanometric albumin-doxorubicin prodrug conjugate (NanoAlb-proDOX) was prepared. The nanometric size promoted its uptake by cancer cells, and the prodrug characteristic defined its selective cytotoxicity toward cancer cells in vitro and reduced side effects in vivo. In multiple tumor xenograft models, nanometric NanoAlb-proDOX showed superior antitumor activity and synergy with immune checkpoint blockade, probably due to the synergistically enhanced tumor CD8+ T-cell infiltration and activation. Hence, the thiolation-and-conjugation strategy may serve as a generally applicable method for preparing drug conjugates, and the proof-of-concept nanometric albumin-doxorubicin conjugate may be a good choice for antitumor therapy with the ability to co-stimulate the efficacy of immune checkpoint blockade.
Collapse
Affiliation(s)
- Long Chen
- Department of PharmacyPeking University Third Hospital, College of Chemistry and Molecular Engineering, Peking UniversityBeijingChina
| | - Nuo Xu
- Department of PharmacyPeking University Third Hospital, College of Chemistry and Molecular Engineering, Peking UniversityBeijingChina
| | - Pan Wang
- Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
| | - Haichuan Zhu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and TechnologyWuhanChina
| | - Zijian Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and TechnologyWuhanChina
| | - Zhanqun Yang
- Department of PharmacyPeking University Third Hospital, College of Chemistry and Molecular Engineering, Peking UniversityBeijingChina
| | - Wenyuan Zhang
- Department of PharmacyPeking University Third Hospital, College of Chemistry and Molecular Engineering, Peking UniversityBeijingChina
| | - Hongyan Guo
- Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
| | - Jian Lin
- Department of PharmacyPeking University Third Hospital, College of Chemistry and Molecular Engineering, Peking UniversityBeijingChina
| |
Collapse
|
4
|
Tang J, Yu C, Loredo A, Chen Y, Xiao H. Site-Specific Incorporation of a Photoactivatable Fluorescent Amino Acid. Chembiochem 2020; 22:501-504. [PMID: 32961013 DOI: 10.1002/cbic.202000602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Photoactivatable fluorophores are emerging optical probes for biological applications. Most photoactivatable fluorophores are relatively large in size and need to be activated by ultraviolet light; this dramatically limits their applications. To introduce photoactivatable fluorophores into proteins, recent investigations have explored several protein-labeling technologies, including fluorescein arsenical hairpin (FlAsH) Tag, HaloTag labeling, SNAPTag labeling, and other bioorthogonal chemistry-based methods. However, these technologies require a multistep labeling process. Here, by using genetic code expansion and a single sulfur-for-oxygen atom replacement within an existing fluorescent amino acid, we have site-specifically incorporated the photoactivatable fluorescent amino acid thioacridonylalanine (SAcd) into proteins in a single step. Moreover, upon exposure to visible light, SAcd can be efficiently desulfurized to its oxo derivatives, thus restoring the strong fluorescence of labeled proteins.
Collapse
Affiliation(s)
- Juan Tang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Chenfei Yu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Axel Loredo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Yuda Chen
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| |
Collapse
|