1
|
Xiong S, Zhao H, Sun Q, Li X, Qiu H, van Gestel CAM, Cao L, Wang S, Li J, Chen G. Maternal exposure to polystyrene nanoplastics during gestation and lactation impaired skeletal growth in progeny mice by inhibiting neutrophil extracellular trap formation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 299:118355. [PMID: 40424725 DOI: 10.1016/j.ecoenv.2025.118355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 05/10/2025] [Accepted: 05/18/2025] [Indexed: 05/29/2025]
Abstract
Microplastics and nanoplastics are widely distributed in the natural environment and shown to accumulate in living organisms. While their potential impact on human health has been investigated, significant uncertainties remain regarding their toxic effects and mechanisms of interaction with the human skeletal system. We examined the potential effects of polystyrene nanoplastics (PS-NPs, 100 nm) on skeletal health and the underlying molecular mechanisms using the human RAW264.7 and MC3T3-E1 cell lines as in-vitro models, along with a murine model. Maternal exposure to PS-NPs (10 mg/L) through drinking water during the prenatal and lactational periods led to an increase in osteoblasts, as well as a significant rise in bone mineral density (BMD) and bone content in offspring mice. Exposure to 100 mg/L PS-NPs resulted in a significant reduction in the thickness of the femoral growth plates. Multi-omics analysis revealed that both high (100 mg/L) and low (10 mg/L) maternal PS-NP exposure concentrations disrupted gene expression and metabolic regulation in the skeletal system of offspring mice. Regulatory analysis showed PS-NPs probably induced inflammation and abnormal immune infiltration levels by inhibiting the formation of neutrophil extracellular traps (NETs), especially in 100 mg/L exposure. In in-vitro tests, the PS-NPs dose-relatedly reduced the relative viability of RAW264.7 cells and promoted osteoclast differentiation, but did not affect MC3T3-E1 cells up to 500 mg/L. Our findings demonstrate that maternal exposure to PS-NPs has detrimental effects on skeletal development and function in progeny mice, providing new insights into their toxicological effects on the skeletal system.
Collapse
Affiliation(s)
- Shiyi Xiong
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Han Zhao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Qianqian Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Xing Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081 Hz, the Netherlands
| | - Liang Cao
- Department of Ophthalmology, Shanghai International Medical Center, Shanghai, China
| | - Shanshan Wang
- Department of Neonatology, Shanghai First Maternity and Infant Hospital, School of medicine, Tongji University, Shanghai 201204, China
| | - Jing Li
- Department of Neonatology, Shanghai First Maternity and Infant Hospital, School of medicine, Tongji University, Shanghai 201204, China.
| | - Guangquan Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China.
| |
Collapse
|
2
|
Pivonka P, Calvo-Gallego JL, Schmidt S, Martínez-Reina J. Advances in mechanobiological pharmacokinetic-pharmacodynamic models of osteoporosis treatment - Pathways to optimise and exploit existing therapies. Bone 2024; 186:117140. [PMID: 38838799 DOI: 10.1016/j.bone.2024.117140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Osteoporosis (OP) is a chronic progressive bone disease which is characterised by reduction of bone matrix volume and changes in the bone matrix properties which can ultimately lead to bone fracture. The two major forms of OP are related to aging and/or menopause. With the worldwide increase of the elderly population, particularly age-related OP poses a serious health issue which puts large pressure on health care systems. A major challenge for development of new drug treatments for OP and comparison of drug efficacy with existing treatments is due to current regulatory requirements which demand testing of drugs based on bone mineral density (BMD) in phase 2 trials and fracture risk in phase 3 trials. This requires large clinical trials to be conducted and to be run for long time periods, which is very costly. This, together with the fact that there are already many drugs available for treatment of OP, makes the development of new drugs inhibitive. Furthermore, an increased trend of the use of different sequential drug therapies has been observed in OP management, such as sequential anabolic-anticatabolic drug treatment or switching from one anticatabolic drug to another. Running clinical trials for concurrent and sequential therapies is neither feasible nor practical due to large number of combinatorial possibilities. In silico mechanobiological pharmacokinetic-pharmacodynamic (PK-PD) models of OP treatments allow predictions beyond BMD, i.e. bone microdamage and degree of mineralisation can also be monitored. This will help to inform clinical drug usage and development by identifying the most promising scenarios to be tested clinically (confirmatory trials rather than exploratory only trials), optimise trial design and identify subgroups of the population that show benefit-risk profiles (both good and bad) that are different from the average patient. In this review, we provide examples of the predictive capabilities of mechanobiological PK-PD models. These include simulation results of PMO treatment with denosumab, implications of denosumab drug holidays and coupling of bone remodelling models with calcium and phosphate systems models that allows to investigate the effects of co-morbidities such as hyperparathyroidism and chronic kidney disease together with calcium and vitamin D status on drug efficacy.
Collapse
Affiliation(s)
- Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, QLD 4000, Australia.
| | - José Luis Calvo-Gallego
- Departmento de Ingeniería Mecánica y Fabricación, Universidad de Sevilla, Seville 41092, Spain
| | - Stephan Schmidt
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA
| | - Javier Martínez-Reina
- Departmento de Ingeniería Mecánica y Fabricación, Universidad de Sevilla, Seville 41092, Spain
| |
Collapse
|
3
|
Liu Y, Jiang Z, Tong S, Sun Y, Zhang Y, Zhang J, Zhao D, Su Y, Ding J, Chen X. Acidity-Triggered Transformable Polypeptide Self-Assembly to Initiate Tumor-Specific Biomineralization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203291. [PMID: 36326058 DOI: 10.1002/adma.202203291] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Biomineralization is a normal physiological process that includes nucleation, crystal growth, phase transformation, and orientation evolution. Notably, artificially induced biomineralization in the tumor tissue has emerged as an unconventional yet promising modality for malignancy therapy. However, the modest ion-chelating capabilities of carboxyl-containing biomineralization initiators lead to a deficient blockade, thus compromising antitumor efficacy. Herein, a biomineralization-inducing nanoparticle (BINP) is developed for blockade therapy of osteosarcoma. BINP is composed of dodecylamine-poly((γ-dodecyl-l-glutamate)-co-(l-histidine))-block-poly(l-glutamate-graft-alendronate) and combines a cytomembrane-insertion moiety, a tumor-microenvironment (TME)-responsive component, and an ion-chelating motif. After intravenous injection into osteosarcoma-bearing mice, BINP responds to the acidic TME to expose the dodecyl group on the surface of the expanded nanoparticles, facilitating their cytomembrane insertion. Subsequently, the protruding bisphosphonic acid group triggers continuous ion deposition to construct a mineralized barrier around the tumor, which blocks substance exchange between the tumor and surrounding normal tissues. The BINP-mediated blockade therapy displays tumor inhibition rates of 59.3% and 52.1% for subcutaneous and orthotopic osteosarcomas, respectively, compared with the Control group. In addition, the suppression of osteoclasts by the alendronate moiety alleviates bone dissolution and further inhibits pulmonary metastases. Hence, the BINP-initiated selective biomineralization provides a promising alternative for clinical osteosarcoma therapy.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
| | - Zhongyu Jiang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
| | - Shizheng Tong
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, 4 Chongshan East Road, Shenyang, 110032, P. R. China
| | - Yifu Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China
| | - Yu Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Jiayuan Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130022, P. R. China
| | - Duoyi Zhao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, 4 Chongshan East Road, Shenyang, 110032, P. R. China
| | - Yuanzhen Su
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| |
Collapse
|
4
|
Calvo-Gallego JL, Manchado-Morales P, Pivonka P, Martínez-Reina J. Spatio-temporal simulations of bone remodelling using a bone cell population model based on cell availability. Front Bioeng Biotechnol 2023; 11:1060158. [PMID: 36959906 PMCID: PMC10027742 DOI: 10.3389/fbioe.2023.1060158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Here we developed a spatio-temporal bone remodeling model to simulate the action of Basic Multicelluar Units (BMUs). This model is based on two major extensions of a temporal-only bone cell population model (BCPM). First, the differentiation into mature resorbing osteoclasts and mature forming osteoblasts from their respective precursor cells was modelled as an intermittent process based on precursor cells availability. Second, the interaction between neighbouring BMUs was considered based on a "metabolic cost" argument which warrants that no new BMU will be activated in the neighbourhood of an existing BMU. With the proposed model we have simulated the phases of the remodelling process obtaining average periods similar to those found in the literature: resorption ( ∼ 22 days)-reversal (∼8 days)-formation (∼65 days)-quiescence (560-600 days) and an average BMU activation frequency of ∼1.6 BMUs/year/mm3. We further show here that the resorption and formation phases of the BMU become coordinated only by the presence of TGF-β (transforming growth factor β), i.e., a major coupling factor stored in the bone matrix. TGF-β is released through resorption so upregulating osteoclast apoptosis and accumulation of osteoblast precursors, i.e., facilitating the transition from the resorption to the formation phase at a given remodelling site. Finally, we demonstrate that this model can explain targeted bone remodelling as the BMUs are steered towards damaged bone areas in order to commence bone matrix repair.
Collapse
Affiliation(s)
- José Luis Calvo-Gallego
- Departamento de Ingeniería Mecánica y Fabricación, Universidad de Sevilla, Seville, Spain
- *Correspondence: José Luis Calvo-Gallego,
| | - Pablo Manchado-Morales
- Departamento de Ingeniería Mecánica y Fabricación, Universidad de Sevilla, Seville, Spain
| | - Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Javier Martínez-Reina
- Departamento de Ingeniería Mecánica y Fabricación, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
5
|
Calvo-Gallego JL, Pivonka P, Ruiz-Lozano R, Martínez-Reina J. Mechanistic PK-PD model of alendronate treatment of postmenopausal osteoporosis predicts bone site-specific response. Front Bioeng Biotechnol 2022; 10:940620. [PMID: 36061434 PMCID: PMC9428150 DOI: 10.3389/fbioe.2022.940620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Alendronate is the most widely used drug for postmenopausal osteoporosis (PMO). It inhibits bone resorption, affecting osteoclasts. Pharmacokinetics (PK) and pharmacodynamics (PD) of alendronate have been widely studied, but few mathematical models exist to simulate its effect. In this work, we have developed a PK model for alendronate, valid for short- and long-term treatments, and a mechanistic PK-PD model for the treatment of PMO to predict bone density gain (BDG) at the hip and lumbar spine. According to our results, at least three compartments are required in the PK model to predict the effect of alendronate in both the short and long terms. Clinical data of a 2-year treatment of alendronate, reproduced by our PK-PD model, demonstrate that bone response is site specific (hip: 7% BDG, lumbar spine: 4% BDG). We identified that this BDG is mainly due to an increase in tissue mineralization and a decrease in porosity. The difference in BDG between sites is linked to the different loading and dependence of the released alendronate on the bone-specific surface and porosity. Osteoclast population diminishes quickly within the first month of alendronate treatment. Osteoblast population lags behind but also falls due to coupling of resorption and formation. Two dosing regimens were studied (70 mg weekly and 10 mg daily), and both showed very similar BDG evolution, indicating that alendronate accumulates quickly in bone and saturates. The proposed PK-PD model could provide a valuable tool to analyze the effect of alendronate and to design patient-specific treatments, including drug combinations.
Collapse
Affiliation(s)
- José L. Calvo-Gallego
- Departamento de Ingeniería Mecánica y Fabricación, Universidad de Sevilla, Seville, Spain
- *Correspondence: José L. Calvo-Gallego,
| | - Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rocío Ruiz-Lozano
- Departamento de Ingeniería Mecánica y Fabricación, Universidad de Sevilla, Seville, Spain
| | - Javier Martínez-Reina
- Departamento de Ingeniería Mecánica y Fabricación, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
6
|
Bolamperti S, Villa I, Rubinacci A. Bone remodeling: an operational process ensuring survival and bone mechanical competence. Bone Res 2022; 10:48. [PMID: 35851054 PMCID: PMC9293977 DOI: 10.1038/s41413-022-00219-8] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 05/02/2022] [Accepted: 05/15/2022] [Indexed: 12/12/2022] Open
Abstract
Bone remodeling replaces old and damaged bone with new bone through a sequence of cellular events occurring on the same surface without any change in bone shape. It was initially thought that the basic multicellular unit (BMU) responsible for bone remodeling consists of osteoclasts and osteoblasts functioning through a hierarchical sequence of events organized into distinct stages. However, recent discoveries have indicated that all bone cells participate in BMU formation by interacting both simultaneously and at different differentiation stages with their progenitors, other cells, and bone matrix constituents. Therefore, bone remodeling is currently considered a physiological outcome of continuous cellular operational processes optimized to confer a survival advantage. Bone remodeling defines the primary activities that BMUs need to perform to renew successfully bone structural units. Hence, this review summarizes the current understanding of bone remodeling and future research directions with the aim of providing a clinically relevant biological background with which to identify targets for therapeutic strategies in osteoporosis.
Collapse
Affiliation(s)
- Simona Bolamperti
- Osteoporosis and Bone and Mineral Metabolism Unit, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milano, Italy
| | - Isabella Villa
- Osteoporosis and Bone and Mineral Metabolism Unit, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milano, Italy
| | - Alessandro Rubinacci
- Osteoporosis and Bone and Mineral Metabolism Unit, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milano, Italy.
| |
Collapse
|
7
|
Li Z, Wang H, Zhang K, Yang B, Xie X, Yang Z, Kong L, Shi P, Zhang Y, Ho YP, Zhang ZY, Li G, Bian L. Bisphosphonate-based hydrogel mediates biomimetic negative feedback regulation of osteoclastic activity to promote bone regeneration. Bioact Mater 2022; 13:9-22. [PMID: 35224288 PMCID: PMC8844702 DOI: 10.1016/j.bioactmat.2021.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
The intricate dynamic feedback mechanisms involved in bone homeostasis provide valuable inspiration for the design of smart biomaterial scaffolds to enhance in situ bone regeneration. In this work, we assembled a biomimetic hyaluronic acid nanocomposite hydrogel (HA-BP hydrogel) by coordination bonds with bisphosphonates (BPs), which are antiosteoclastic drugs. The HA-BP hydrogel exhibited expedited release of the loaded BP in response to an acidic environment. Our in vitro studies showed that the HA-BP hydrogel inhibits mature osteoclastic differentiation of macrophage-like RAW264.7 cells via the released BP. Furthermore, the HA-BP hydrogel can support the initial differentiation of primary macrophages to preosteoclasts, which are considered essential during bone regeneration, whereas further differentiation to mature osteoclasts is effectively inhibited by the HA-BP hydrogel via the released BP. The in vivo evaluation showed that the HA-BP hydrogel can enhance the in situ regeneration of bone. Our work demonstrates a promising strategy to design biomimetic biomaterial scaffolds capable of regulating bone homeostasis to promote bone regeneration. HA-BP hydrogel can mediate the expedited release of BP in response to the acidic microenvironment created by osteoclasts. HA-BP hydrogel supports preosteoclastic differentiation, but inhibits the further osteoclastic maturation. The implantation of HA-BP hydrogel in critical-sized bone defects significantly promotes in situ bone regeneration in vivo.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories, 999077, Hong Kong, China
| | - Haixing Wang
- Department of Orthopaedic and Traumatology, The Chinese University of Hong Kong, Sha Tin, New Territories, 999077, Hong Kong, China
| | - Kunyu Zhang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Boguang Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories, 999077, Hong Kong, China
| | - Xian Xie
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories, 999077, Hong Kong, China
| | - Zhengmeng Yang
- Department of Orthopaedic and Traumatology, The Chinese University of Hong Kong, Sha Tin, New Territories, 999077, Hong Kong, China
| | - Lingchi Kong
- Department of Orthopaedic Surgery, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Peng Shi
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Yuan Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories, 999077, Hong Kong, China
| | - Zhi-Yong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province, 510150, China
- Corresponding author.
| | - Gang Li
- Department of Orthopaedic and Traumatology, The Chinese University of Hong Kong, Sha Tin, New Territories, 999077, Hong Kong, China
- Corresponding author.
| | - Liming Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Corresponding author. School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Martínez-Reina J, Calvo-Gallego JL, Martin M, Pivonka P. Assessment of Strategies for Safe Drug Discontinuation and Transition of Denosumab Treatment in PMO—Insights From a Mechanistic PK/PD Model of Bone Turnover. Front Bioeng Biotechnol 2022; 10:886579. [PMID: 35966026 PMCID: PMC9367195 DOI: 10.3389/fbioe.2022.886579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Denosumab (Dmab) treatment against postmenopausal osteoporosis (PMO) has proven very efficient in increasing bone mineral density (BMD) and reducing the risk of bone fractures. However, concerns have been recently raised regarding safety when drug treatment is discontinued. Mechanistic pharmacokinetic-pharmacodynamic (PK-PD) models are the most sophisticated tools to develop patient specific drug treatments of PMO to restore bone mass. However, only a few PK-PD models have addressed the effect of Dmab drug holidays on changes in BMD. We showed that using a standard bone cell population model (BCPM) of bone remodelling it is not possible to account for the spike in osteoclast numbers observed after Dmab discontinuation. We show that inclusion of a variable osteoclast precursor pool in BCPMs is essential to predict the experimentally observed rapid rise in osteoclast numbers and the associated increases in bone resorption. This new model also showed that Dmab withdrawal leads to a rapid increase of damage in the bone matrix, which in turn decreases the local safety factor for fatigue failure. Our simulation results show that changes in BMD strongly depend on Dmab concentration in the central compartment. Consequently, bone weight (BW) might play an important factor in calculating effective Dmab doses. The currently clinically prescribed constant Dmab dose of 60 mg injected every 6 months is less effective in increasing BMD for patients with high BW (2.5% for 80 kg in contrast to 8% for 60 kg after 6 years of treatment). However, bone loss observed 24 months after Dmab withdrawal is less pronounced in patients with high BW (3.5% for 80kg and 8.5% for 60 kg). Finally, we studied how to safely discontinue Dmab treatment by exploring several transitional and combined drug treatment strategies. Our simulation results indicate that using transitional reduced Dmab doses are not effective in reducing rapid bone loss. However, we identify that use of a bisphosphonate (BP) is highly effective in avoiding rapid bone loss and increase in bone tissue damage compared to abrupt withdrawal of Dmab. Furthermore, the final values of BMD and damage were not sensitive to the time of administration of the BP.
Collapse
Affiliation(s)
- Javier Martínez-Reina
- Departmento de Ingeniería Mecánica y Fabricación, Universidad de Sevilla, Seville, Spain
- *Correspondence: Javier Martínez-Reina,
| | | | - Madge Martin
- CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, MSME, Créteil, France
| | - Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|