1
|
Mätlik K, Govek EE, Hatten ME. Histone bivalency in CNS development. Genes Dev 2025; 39:428-444. [PMID: 39880657 PMCID: PMC11960699 DOI: 10.1101/gad.352306.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Neuronal maturation is guided by changes in the chromatin landscape that control developmental gene expression programs. Histone bivalency, the co-occurrence of activating and repressive histone modifications, has emerged as an epigenetic feature of developmentally regulated genes during neuronal maturation. Although initially associated with early embryonic development, recent studies have shown that histone bivalency also exists in differentiated and mature neurons. In this review, we discuss methods to study bivalency in specific populations of neurons and summarize emerging studies on the function of bivalency in central nervous system neuronal maturation and in adult neurons.
Collapse
Affiliation(s)
- Kärt Mätlik
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10065, USA;
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Eve-Ellen Govek
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10065, USA
| | - Mary E Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10065, USA;
| |
Collapse
|
2
|
Sato Y, Takenoshita M, Ueoka M, Ueda J, Yamagata K, Kimura H. Visualizing histone H4K20me1 in knock-in mice expressing the mCherry-tagged modification-specific intracellular antibody. Histochem Cell Biol 2024; 162:41-52. [PMID: 38762823 PMCID: PMC11227479 DOI: 10.1007/s00418-024-02296-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
During development and differentiation, histone modifications dynamically change locally and globally, associated with transcriptional regulation, DNA replication and repair, and chromosome condensation. The level of histone H4 Lys20 monomethylation (H4K20me1) increases during the G2 to M phases of the cell cycle and is enriched in facultative heterochromatin, such as inactive X chromosomes in cycling cells. To track the dynamic changes of H4K20me1 in living cells, we have developed a genetically encoded modification-specific intracellular antibody (mintbody) probe that specifically binds to the modification. Here, we report the generation of knock-in mice in which the coding sequence of the mCherry-tagged version of the H4K20me1-mintbody is inserted into the Rosa26 locus. The knock-in mice, which ubiquitously expressed the H4K20me1-mintbody, developed normally and were fertile, indicating that the expression of the probe does not disturb the cell growth, development, or differentiation. Various tissues isolated from the knock-in mice exhibited nuclear fluorescence without the need for fixation. The H4K20me1-mintbody was enriched in inactive X chromosomes in developing embryos and in XY bodies during spermatogenesis. The knock-in mice will be useful for the histochemical analysis of H4K20me1 in any cell types.
Collapse
Affiliation(s)
- Yuko Sato
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8501, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8501, Japan
| | - Maoko Takenoshita
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8501, Japan
| | - Miku Ueoka
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8501, Japan
| | - Jun Ueda
- Center for Genetic Analysis of Biological Responses, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Advanced Medical Science, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Kazuo Yamagata
- Center for Genetic Analysis of Biological Responses, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, 649-6493, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8501, Japan.
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
3
|
Swiatlowska P, Iskratsch T. Cardiovascular Mechano-Epigenetics: Force-Dependent Regulation of Histone Modifications and Gene Regulation. Cardiovasc Drugs Ther 2024; 38:215-222. [PMID: 36653625 PMCID: PMC10959834 DOI: 10.1007/s10557-022-07422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2022] [Indexed: 01/19/2023]
Abstract
The local mechanical microenvironment impacts on the cell behavior. In the cardiovascular system, cells in both the heart and the vessels are exposed to continuous blood flow, blood pressure, stretching forces, and changing extracellular matrix stiffness. The force-induced signals travel all the way to the nucleus regulating epigenetic changes such as chromatin dynamics and gene expression. Mechanical cues are needed at the very early stage for a faultless embryological development, while later in life, aberrant mechanical signaling can lead to a range of pathologies, including diverse cardiovascular diseases. Hence, an investigation of force-generated epigenetic alteration at different time scales is needed to understand fully the phenotypic changes in disease onset and progression. That being so, cardiovascular mechano-epigenetics emerges as an attractive field of study. Given the rapid advances in this emergent field of research, this short review aims to provide an analysis of the state of knowledge of force-induced epigenetic changes in the cardiovascular field.
Collapse
Affiliation(s)
- Pamela Swiatlowska
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Thomas Iskratsch
- School of Engineering and Materials Science, Queen Mary University of London, London, UK.
| |
Collapse
|
4
|
Saxton MN, Morisaki T, Krapf D, Kimura H, Stasevich TJ. Live-cell imaging uncovers the relationship between histone acetylation, transcription initiation, and nucleosome mobility. SCIENCE ADVANCES 2023; 9:eadh4819. [PMID: 37792937 PMCID: PMC10550241 DOI: 10.1126/sciadv.adh4819] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023]
Abstract
Histone acetylation and RNA polymerase II phosphorylation are associated with transcriptionally active chromatin, but their spatiotemporal relationship in live cells remains poorly understood. To address this problem, we combine Fab-based labeling of endogenous protein modifications with single-molecule tracking to quantify the dynamics of chromatin enriched with histone H3 lysine-27 acetylation (H3K27ac) and RNA polymerase II serine-5 phosphorylation (RNAP2-Ser5ph). Our analysis reveals that chromatin enriched with these two modifications is generally separate. In these separated sites, we show that the two modifications are inversely correlated with one another on the minutes time scale and that single nucleosomes within each region display distinct and opposing dynamics on the subsecond time scale. While nucleosomes diffuse ~15% faster in chromatin enriched with H3K27ac, they diffuse ~15% slower in chromatin enriched with RNAP2-Ser5ph. These results argue that high levels of H3K27ac and RNAP2-Ser5ph are not often present together at the same place and time, but rather each marks distinct transcriptionally poised or active sites, respectively.
Collapse
Affiliation(s)
- Matthew N. Saxton
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Tatsuya Morisaki
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Diego Krapf
- Department of Electrical and Computer Engineering, and School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Hiroshi Kimura
- Cell Biology Center and World Research Hub Initiative, Tokyo Institute of Technology, Yokohama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Timothy J. Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
- Cell Biology Center and World Research Hub Initiative, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
5
|
Kuba M, Khoroshyy P, Lepšík M, Kužmová E, Kodr D, Kraus T, Hocek M. Real-time Imaging of Nascent DNA in Live Cells by Monitoring the Fluorescence Lifetime of DNA-Incorporated Thiazole Orange-Modified Nucleotides. Angew Chem Int Ed Engl 2023; 62:e202307548. [PMID: 37498132 DOI: 10.1002/anie.202307548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 07/28/2023]
Abstract
A modified 2'-deoxycytidine triphosphate derivative (dCTO TP) bearing a thiazole orange moiety tethered via an oligoethylene glycol linker was designed and synthesized. The nucleotide was incorporated into DNA by DNA polymerases in vitro as well as in live cells. Upon incorporation of dCTO TP into DNA, the thiazole orange moiety exhibited a fluorescence lifetime that differed significantly from the non-incorporated (i.e. free and non-covalently intercalated) forms of dCTO TP. When dCTO TP was delivered into live U-2 OS cells using a synthetic nucleoside triphosphate transporter, it allowed us to distinguish and monitor cells that were actively synthesizing DNA in real time, from the very first moments after the treatment. We anticipate that this probe could be used to study chromatin organization and dynamics.
Collapse
Affiliation(s)
- Miroslav Kuba
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Petro Khoroshyy
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Erika Kužmová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - David Kodr
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Tomáš Kraus
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843, Prague 2, Czech Republic
| |
Collapse
|
6
|
Otsuka S, Qin XY, Wang W, Ito T, Nansai H, Abe K, Fujibuchi W, Nakao Y, Sone H. iGEM as a human iPS cell-based global epigenetic modulation detection assay provides throughput characterization of chemicals affecting DNA methylation. Sci Rep 2023; 13:6663. [PMID: 37095195 PMCID: PMC10125974 DOI: 10.1038/s41598-023-33729-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 04/18/2023] [Indexed: 04/26/2023] Open
Abstract
Chemical-induced dysregulation of DNA methylation during the fetal period is known to contribute to developmental disorders or increase the risk of certain diseases later in life. In this study, we developed an iGEM (iPS cell-based global epigenetic modulation) detection assay using human induced pluripotent stem (hiPS) cells that express a fluorescently labeled methyl-CpG-binding domain (MBD), which enables a high-throughput screening of epigenetic teratogens/mutagens. 135 chemicals with known cardiotoxicity and carcinogenicity were categorized according to the MBD signal intensity, which reflects the degree of nuclear spatial distribution/concentration of DNA methylation. Further biological characterization through machine-learning analysis that integrated genome-wide DNA methylation, gene expression profiling, and knowledge-based pathway analysis revealed that chemicals with hyperactive MBD signals strongly associated their effects on DNA methylation and expression of genes involved in cell cycle and development. These results demonstrated that our MBD-based integrated analytical system is a powerful framework for detecting epigenetic compounds and providing mechanism insights of pharmaceutical development for sustainable human health.
Collapse
Affiliation(s)
- Satoshi Otsuka
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-Ku, Tokyo, 169-8555, Japan
- Department of Cellular and Tissue Communication, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8555, Japan
| | - Xian-Yang Qin
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Wenlong Wang
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo-Ku, Kyoto, 615-8540, Japan
| | - Tomohiro Ito
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Hiroko Nansai
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Kuniya Abe
- Technology and Development Team for Mammalian Cellular Dynamics, BioResource Center, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Wataru Fujibuchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-Cho, Sho-Goin, Sakyo-Ku, Kyoto, 606-8507, Japan
- Department of Cellular and Tissue Communication, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8555, Japan
| | - Yoichi Nakao
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-Ku, Tokyo, 169-8555, Japan
| | - Hideko Sone
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.
- Environmental Health and Prevention Research Unit, Department of Environmental Health and Preventive Medicine, Yokohama University of Pharmacy, 601 Matano, Totsuka, Yokohama, 245-0066, Japan.
| |
Collapse
|
7
|
Ohishi H, Shimada S, Uchino S, Li J, Sato Y, Shintani M, Owada H, Ohkawa Y, Pertsinidis A, Yamamoto T, Kimura H, Ochiai H. STREAMING-tag system reveals spatiotemporal relationships between transcriptional regulatory factors and transcriptional activity. Nat Commun 2022; 13:7672. [PMID: 36539402 PMCID: PMC9768169 DOI: 10.1038/s41467-022-35286-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Transcription is a dynamic process. To detect the dynamic relationship among protein clusters of RNA polymerase II and coactivators, gene loci, and transcriptional activity, we insert an MS2 repeat, a TetO repeat, and inteins with a selection marker just downstream of the transcription start site. By optimizing the individual elements, we develop the Spliced TetO REpeAt, MS2 repeat, and INtein sandwiched reporter Gene tag (STREAMING-tag) system. Clusters of RNA polymerase II and BRD4 are observed proximal to the transcription start site of Nanog when the gene is transcribed in mouse embryonic stem cells. In contrast, clusters of MED19 and MED22 tend to be located near the transcription start site, even without transcription activity. Thus, the STREAMING-tag system reveals the spatiotemporal relationships between transcriptional activity and protein clusters near the gene. This powerful tool is useful for quantitatively understanding transcriptional regulation in living cells.
Collapse
Affiliation(s)
- Hiroaki Ohishi
- grid.257022.00000 0000 8711 3200Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-0046 Japan
| | - Seiru Shimada
- grid.257022.00000 0000 8711 3200Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-0046 Japan
| | - Satoshi Uchino
- grid.32197.3e0000 0001 2179 2105School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Jieru Li
- grid.51462.340000 0001 2171 9952Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Yuko Sato
- grid.32197.3e0000 0001 2179 2105School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan ,grid.32197.3e0000 0001 2179 2105Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503 Japan
| | - Manabu Shintani
- grid.257022.00000 0000 8711 3200Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-0046 Japan
| | - Hitoshi Owada
- grid.257022.00000 0000 8711 3200Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-0046 Japan
| | - Yasuyuki Ohkawa
- grid.177174.30000 0001 2242 4849Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582 Japan
| | - Alexandros Pertsinidis
- grid.51462.340000 0001 2171 9952Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Takashi Yamamoto
- grid.257022.00000 0000 8711 3200Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-0046 Japan
| | - Hiroshi Kimura
- grid.32197.3e0000 0001 2179 2105School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan ,grid.32197.3e0000 0001 2179 2105Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503 Japan
| | - Hiroshi Ochiai
- grid.257022.00000 0000 8711 3200Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-0046 Japan
| |
Collapse
|
8
|
Stepanov AI, Besedovskaia ZV, Moshareva MA, Lukyanov KA, Putlyaeva LV. Studying Chromatin Epigenetics with Fluorescence Microscopy. Int J Mol Sci 2022; 23:ijms23168988. [PMID: 36012253 PMCID: PMC9409072 DOI: 10.3390/ijms23168988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Epigenetic modifications of histones (methylation, acetylation, phosphorylation, etc.) are of great importance in determining the functional state of chromatin. Changes in epigenome underlay all basic biological processes, such as cell division, differentiation, aging, and cancerous transformation. Post-translational histone modifications are mainly studied by immunoprecipitation with high-throughput sequencing (ChIP-Seq). It enables an accurate profiling of target modifications along the genome, but suffers from the high cost of analysis and the inability to work with living cells. Fluorescence microscopy represents an attractive complementary approach to characterize epigenetics. It can be applied to both live and fixed cells, easily compatible with high-throughput screening, and provide access to rich spatial information down to the single cell level. In this review, we discuss various fluorescent probes for histone modification detection. Various types of live-cell imaging epigenetic sensors suitable for conventional as well as super-resolution fluorescence microscopy are described. We also focus on problems and future perspectives in the development of fluorescent probes for epigenetics.
Collapse
Affiliation(s)
- Afanasii I. Stepanov
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205 Moscow, Russia
| | - Zlata V. Besedovskaia
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205 Moscow, Russia
| | - Maria A. Moshareva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklay St. 16/10, 117997 Moscow, Russia
| | - Konstantin A. Lukyanov
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205 Moscow, Russia
- Correspondence: (K.A.L.); (L.V.P.)
| | - Lidia V. Putlyaeva
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205 Moscow, Russia
- Correspondence: (K.A.L.); (L.V.P.)
| |
Collapse
|
9
|
Rang FJ, de Luca KL, de Vries SS, Valdes-Quezada C, Boele E, Nguyen PD, Guerreiro I, Sato Y, Kimura H, Bakkers J, Kind J. Single-cell profiling of transcriptome and histone modifications with EpiDamID. Mol Cell 2022; 82:1956-1970.e14. [PMID: 35366395 PMCID: PMC9153956 DOI: 10.1016/j.molcel.2022.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/24/2021] [Accepted: 03/02/2022] [Indexed: 12/25/2022]
Abstract
Recent advances in single-cell sequencing technologies have enabled simultaneous measurement of multiple cellular modalities, but the combined detection of histone post-translational modifications and transcription at single-cell resolution has remained limited. Here, we introduce EpiDamID, an experimental approach to target a diverse set of chromatin types by leveraging the binding specificities of single-chain variable fragment antibodies, engineered chromatin reader domains, and endogenous chromatin-binding proteins. Using these, we render the DamID technology compatible with the genome-wide identification of histone post-translational modifications. Importantly, this includes the possibility to jointly measure chromatin marks and transcription at the single-cell level. We use EpiDamID to profile single-cell Polycomb occupancy in mouse embryoid bodies and provide evidence for hierarchical gene regulatory networks. In addition, we map H3K9me3 in early zebrafish embryogenesis, and detect striking heterochromatic regions specific to notochord. Overall, EpiDamID is a new addition to a vast toolbox to study chromatin states during dynamic cellular processes.
Collapse
Affiliation(s)
- Franka J Rang
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands; Oncode Institute, the Netherlands
| | - Kim L de Luca
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands; Oncode Institute, the Netherlands
| | - Sandra S de Vries
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands; Oncode Institute, the Netherlands
| | - Christian Valdes-Quezada
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands; Oncode Institute, the Netherlands
| | - Ellen Boele
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands; Oncode Institute, the Netherlands
| | - Phong D Nguyen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Isabel Guerreiro
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands; Oncode Institute, the Netherlands
| | - Yuko Sato
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Jeroen Bakkers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands; Department of Pediatric Cardiology, Division of Pediatrics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jop Kind
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands; Oncode Institute, the Netherlands; Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, the Netherlands.
| |
Collapse
|
10
|
Shindo Y, Brown MG, Amodeo AA. Versatile roles for histones in early development. Curr Opin Cell Biol 2022; 75:102069. [PMID: 35279563 PMCID: PMC9064922 DOI: 10.1016/j.ceb.2022.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022]
Abstract
The nuclear environment changes dramatically over the course of early development. Histones are core chromatin components that play critical roles in regulating gene expression and nuclear architecture. Additionally, the embryos of many species, including Drosophila, Zebrafish, and Xenopus use the availability of maternally deposited histones to time critical early embryonic events including cell cycle slowing and zygotic genome activation. Here, we review recent insights into how histones control early development. We first discuss the regulation of chromatin functions through interaction of histones and transcription factors, incorporation of variant histones, and histone post-translational modifications. We also highlight emerging roles for histones as developmental regulators independent of chromatin association.
Collapse
Affiliation(s)
- Yuki Shindo
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| | - Madeleine G Brown
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Amanda A Amodeo
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
11
|
Kimura H, Sato Y. Imaging transcription elongation dynamics by new technologies unveils the organization of initiation and elongation in transcription factories. Curr Opin Cell Biol 2022; 74:71-79. [DOI: 10.1016/j.ceb.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/27/2022]
|