1
|
Abstract
The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers-actin filaments, microtubules, and intermediate filaments-are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher-order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton.This article describes application of rotary shadowing (or platinum replica ) EM (PREM) for visualization of the cytoskeleton . The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction (or mechanical "unroofing") of cells to expose their cytoskeleton , chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved and individual proteins can be identified by immunogold labeling. More importantly, PREM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high-resolution structural organization of the cytoskeleton in the same cell.
Collapse
Affiliation(s)
- Tatyana Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Morone N, Usukura E, Narita A, Usukura J. Improved unroofing protocols for cryo-electron microscopy, atomic force microscopy and freeze-etching electron microscopy and the associated mechanisms. Microscopy (Oxf) 2020; 69:350-359. [PMID: 32447402 DOI: 10.1093/jmicro/dfaa028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Abstract
Unroofing, which is the mechanical shearing of a cell to expose the cytoplasmic surface of the cell membrane, is a unique preparation method that allows membrane cytoskeletons to be observed by cryo-electron microscopy, atomic force microscopy, freeze-etching electron microscopy and other methods. Ultrasound and adhesion have been known to mechanically unroof cells. In this study, unroofing using these two means was denoted sonication unroofing and adhesion unroofing, respectively. We clarified the mechanisms by which cell membranes are removed in these unroofing procedures and established efficient protocols for each based on the mechanisms. In sonication unroofing, fine bubbles generated by sonication adhered electrostatically to apical cell surfaces and then removed the apical (dorsal) cell membrane with the assistance of buoyancy and water flow. The cytoplasmic surface of the ventral cell membrane remaining on the grids became observable by this method. In adhesion unroofing, grids charged positively by coating with Alcian blue were pressed onto the cells, thereby tightly adsorbing the dorsal cell membrane. Subsequently, a part of the cell membrane strongly adhered to the grids was peeled from the cells and transferred onto the grids when the grids were lifted. This method thus allowed the visualization of the cytoplasmic surface of the dorsal cell membrane. This paper describes robust, improved protocols for the two unroofing methods in detail. In addition, micro-unroofing (perforation) likely due to nanobubbles is introduced as a new method to make cells transparent to electron beams.
Collapse
Affiliation(s)
- Nobuhiro Morone
- Medical Research Council Toxicology Unit, University of Cambridge, Lancaster Road, Leicester LE1 9HN, UK
| | - Eiji Usukura
- Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Akihiro Narita
- Structural Biology Research Centre, Graduate School of Science, Nagoya University, Chikusa-ku,Nagoya,464-8601, Japan
| | - Jiro Usukura
- Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
3
|
Liang W, Shi H, Yang X, Wang J, Yang W, Zhang H, Liu L. Recent advances in AFM-based biological characterization and applications at multiple levels. SOFT MATTER 2020; 16:8962-8984. [PMID: 32996549 DOI: 10.1039/d0sm01106a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Atomic force microscopy (AFM) has found a wide range of bio-applications in the past few decades due to its ability to measure biological samples in natural environments at a high spatial resolution. AFM has become a key platform in biomedical, bioengineering and drug research fields, enabling mechanical and morphological characterization of live biological systems. Hence, we provide a comprehensive review on recent advances in the use of AFM for characterizing the biomechanical properties of multi-scale biological samples, ranging from molecule, cell to tissue levels. First, we present the fundamental principles of AFM and two AFM-based models for the characterization of biomechanical properties of biological samples, covering key AFM devices and AFM bioimaging as well as theoretical models for characterizing the elasticity and viscosity of biomaterials. Then, we elaborate on a series of new experimental findings through analysis of biomechanics. Finally, we discuss the future directions and challenges. It is envisioned that the AFM technique will enable many remarkable discoveries, and will have far-reaching impacts on bio-related studies and applications in the future.
Collapse
Affiliation(s)
- Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang, 110168, China.
| | - Haohao Shi
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang, 110168, China.
| | - Xieliu Yang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang, 110168, China.
| | - Junhai Wang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang, 110168, China.
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Hemin Zhang
- Department of Neurology, The People's Hospital of Liaoning Province, Shenyang 110016, China.
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
4
|
Ultrastructure and dynamics of the actin-myosin II cytoskeleton during mitochondrial fission. Nat Cell Biol 2019; 21:603-613. [PMID: 30988424 PMCID: PMC6499663 DOI: 10.1038/s41556-019-0313-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 03/14/2019] [Indexed: 02/05/2023]
Abstract
Mitochondrial fission involves the preconstriction of an organelle followed by scission by dynamin-related protein Drp1. Preconstriction is facilitated by actin and non-muscle myosin II through a mechanism that remains unclear, largely due to the unknown cytoskeletal ultrastructure at mitochondrial constrictions. Here, using platinum replica electron microscopy, we show that mitochondria in cells are embedded in an interstitial cytoskeletal network that contains abundant unbranched actin filaments. Both spontaneous and induced mitochondrial constrictions typically associate with a criss-cross array of long actin filaments that comprise part of this interstitial network. Non-muscle myosin II is found adjacent to mitochondria but is not specifically enriched at the constriction sites. During ionomycin-induced mitochondrial fission, F-actin clouds colocalize with mitochondrial constriction sites, whereas dynamic myosin II clouds are present in the vicinity of constrictions. We propose that myosin II promotes mitochondrial constriction by inducing stochastic deformations of the interstitial actin network, which applies pressure on the mitochondrial surface and thus initiates curvature-sensing mechanisms that complete mitochondrial constriction.
Collapse
|
5
|
Galvanetto N. Single-cell unroofing: probing topology and nanomechanics of native membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2532-2538. [DOI: 10.1016/j.bbamem.2018.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/19/2018] [Accepted: 09/26/2018] [Indexed: 10/28/2022]
|
6
|
A Cryosectioning Technique for the Observation of Intracellular Structures and Immunocytochemistry of Tissues in Atomic Force Microscopy (AFM). Sci Rep 2017; 7:6462. [PMID: 28743939 PMCID: PMC5526917 DOI: 10.1038/s41598-017-06942-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023] Open
Abstract
The use of cryosectioning facilitates the morphological analysis and immunocytochemistry of cells in tissues in atomic force microscopy (AFM). The cantilever can access all parts of a tissue sample in cryosections after the embedding medium (sucrose) has been replaced with phosphate-buffered saline (PBS), and this approach has enabled the production of a type of high-resolution image. The images resembled those obtained from freeze-etching replica electron microscopy (EM) rather than from thin-section EM. The AFM images showed disks stacked and enveloped by the cell membrane in rod photoreceptor outer segments (ROS) at EM resolution. In addition, ciliary necklaces on the surface of connecting cilium, three-dimensional architecture of synaptic ribbons, and the surface of the post-synaptic membrane facing the active site were revealed, which were not apparent using thin-section EM. AFM could depict the molecular binding of anti-opsin antibodies conjugated to a secondary fluorescent antibody bound to the disk membrane. The specific localization of the anti-opsin binding sites was verified through correlation with immunofluorescence signals in AFM combined with confocal fluorescence microscope. To prove reproducibility in other tissues besides retina, cryosectioning-AFM was also applied to elucidate molecular organization of sarcomere in a rabbit psoas muscle.
Collapse
|
7
|
Janel S, Werkmeister E, Bongiovanni A, Lafont F, Barois N. CLAFEM: Correlative light atomic force electron microscopy. Methods Cell Biol 2017; 140:165-185. [PMID: 28528632 DOI: 10.1016/bs.mcb.2017.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Atomic force microscopy (AFM) is becoming increasingly used in the biology field. It can give highly accurate topography and biomechanical quantitative data, such as adhesion, elasticity, and viscosity, on living samples. Nowadays, correlative light electron microscopy is a must-have tool in the biology field that combines different microscopy techniques to spatially and temporally analyze the structure and function of a single sample. Here, we describe the combination of AFM with superresolution light microscopy and electron microscopy. We named this technique correlative light atomic force electron microscopy (CLAFEM) in which AFM can be used on fixed and living cells in association with superresolution light microscopy and further processed for transmission or scanning electron microscopy. We herein illustrate this approach to observe cellular bacterial infection and cytoskeleton. We show that CLAFEM brings complementary information at the cellular level, from on the one hand protein distribution and topography at the nanometer scale and on the other hand elasticity at the piconewton scales to fine ultrastructural details.
Collapse
Affiliation(s)
- Sébastien Janel
- Univ. Lille, CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Elisabeth Werkmeister
- Univ. Lille, CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Antonino Bongiovanni
- Univ. Lille, CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Frank Lafont
- Univ. Lille, CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Nicolas Barois
- Univ. Lille, CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|