1
|
Shafiei N, Stӓhli D, Burger D, Di Fabrizio M, van den Heuvel L, Daraspe J, Böing C, Shahmoradian SH, van de Berg WDJ, Genoud C, Stahlberg H, Lewis AJ. Correlative light and electron microscopy for human brain and other biological models. Nat Protoc 2025:10.1038/s41596-025-01153-9. [PMID: 40164750 DOI: 10.1038/s41596-025-01153-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/17/2025] [Indexed: 04/02/2025]
Abstract
Correlative light and electron microscopy (CLEM) combines light microscopy, for identifying a target via genetic labels, dyes, antibodies and morphological features, with electron microscopy, for analyzing high-resolution subcellular ultrastructures. Here, we describe step-by-step instructions to perform a CLEM experiment, optimized for the investigation of ultrastructural features in human brain tissue. The procedure is carried out at room temperature and can be adapted to other human and animal tissue samples. The procedure requires 8 d to complete and includes the stages of sample fixation for optimal ultrastructural preservation, immunofluorescence staining, image acquisition and multimodal image correlation and is executable within standard electron microscopy laboratories. Serving as a critical tool for characterizing human tissue and disease models, room-temperature CLEM facilitates the identification and quantification of subcellular morphological features across brain regions.
Collapse
Affiliation(s)
- Notash Shafiei
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Daniel Stӓhli
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Domenic Burger
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Marta Di Fabrizio
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lukas van den Heuvel
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jean Daraspe
- Electron Microscopy Facility, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Carolin Böing
- C-CINA, Biozentrum, University of Basel, Basel, Switzerland
| | - Sarah H Shahmoradian
- Brain Institute and Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Amsterdam University Medical Centre, Vrije University Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, program Neurodegeneration, Amsterdam University Medical Centre, Vrije University Amsterdam, Amsterdam, The Netherlands
| | - Christel Genoud
- Electron Microscopy Facility, Biophore, University of Lausanne, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Henning Stahlberg
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Amanda J Lewis
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Shalaby AMA, Abdel-Aziz Abul-Ela ES, Mohamed Moustafa A, Hafez Mohamed S. The ultrastructural changes in the adult rat ovary after administration of copper oxide nanoparticles and the possible ameliorative influence of selenium. Ultrastruct Pathol 2025; 49:109-129. [PMID: 39799400 DOI: 10.1080/01913123.2024.2449091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/06/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025]
Abstract
There is an important concern about the potential health and environmental risks that may develop due to exposure to copper oxide nanoparticles (CuO-NPs). Selenium is an essential trace element. It supports the expression of a variety of selenoproteins. The present study was designed to study the ultrastructural and biochemical changes in the adult rat ovary after oral administration of CuO-NPs and to assess the possible ameliorative influence of Selenium. Sixty adult female albino rats were divided in two major groups: Group I and Group II. Group I was further subdivided into three groups: Group IA (control), Group IB: received a single high dose of 2000 mg/kg CuO-NPs, Group IC: received selenium (0.5 mg/kg), five days before giving a single high dose of CuO-NPs (2000 mg/kg). Thereafter, given selenium for 14 days. Group II was subdivided into three groups: Group IIA (control), Group IIB: received a small dose of 300 mg/kg of CuO-NPs for 28 days, Group IIC: received selenium (0.5 mg/kg), five days before starting concomitant administration of CuO-NPs (300 mg/kg) and Selenium (0.5 mg/kg) for 28 days. Damage of the ovarian ultrastructural features, increased MDA levels, and decreased serum estrogen and progesterone hormones levels were detected in group IB and group IIB. Group IC and group IIC showed improvement of ovarian ultrastructural, decreased MDA levels, and increased serum estrogen and progesterone hormones levels as compared to group IB and group IIB indicating that Selenium could decrease the damage induced by CuO-NPs in the adult rat ovaries.
Collapse
Affiliation(s)
- Abeer Mohamed Ali Shalaby
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Amal Mohamed Moustafa
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Shehab Hafez Mohamed
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Karimbayova GN, Gasimov EK, Mahmudov FR, Rzayev FH, Khalilov R, Eftekhari A, Baran A. Ultrastructural characteristics of leishmania (L.)tropica (Wright, 1903) and cell-parasite relationships in cutaneous leishmaniasis. Light and electron microscopic study. Exp Parasitol 2025; 269:108887. [PMID: 39743192 DOI: 10.1016/j.exppara.2024.108887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/11/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
A light and electron microscopic study of skin biopsies taken from 9 patients with ulcerative leishmaniasis of both sexes aged from 14 to 26 years in the territory of the Republic of Azerbaijan was carried out. Based on clinical, morphological and electron microscopic parameters, all patients were diagnosed with ulcerative cutaneous anthroponotic leishmaniasis (Leishmania (L.) tropica). Stained and unstained ultrathin (50-70 nm) sections were viewed and photographed using a JEM-1400 transmission electron microscope at an accelerating voltage of 80-120 kV. Analysis of data from light and electron microscopic studies at the ultrastructural level made it possible to describe the structure and identify the morphometric parameters of the amastigote form of the intracellular parasite. Besides, it was found that the distance between the plasmalemmas of the parasitophorous vacuoles and the parasite L. (L.) tropica is only 1 nm. This facilitates the passage of the necessary nutrients for the survival of this parasite. One of the important factors in the chronic course and relapse of leishmaniasis caused by L.(L.) tropica is the penetration of the amastigote stage into the cytoplasm along with macrophages, and also into fibroblasts with low phagocytic activity. Pathological changes (deformed nucleus, damage to plasmalemma, focal destruction of the cytoplasm structures, vacuolization, etc.) in the parasite L. (L.) tropica, localized in macrophages, were identified and described.
Collapse
Affiliation(s)
| | - Eldar K Gasimov
- Department of Cytology, Embryology and Histology, Azerbaijan Medical University, Baku, Azerbaijan.
| | - Farid R Mahmudov
- Department of Dermatovenereology, Azerbaijan Medical University, Baku, Azerbaijan
| | - Fuad H Rzayev
- Department of Electron Microscopy, Scientific Research Center, Azerbaijan Medical University, Baku, Azerbaijan; Laboratory of Parasitology, Institute of Zoology, Ministry of Science and Education, Baku, Azerbaijan; Western Caspian University, Istiglaliyyat Street 31, AZ1001, Baku, Azerbaijan
| | - Rovshan Khalilov
- Department of Biophysics and Biochemistry, Baku State University, Baku, Azerbaijan
| | - Aziz Eftekhari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Science, Ege University, Izmir 35040, Turkey; Engineered Biomaterials Research Center, Department of Life Sciences, Khazar University, Baku, Azerbaijan.
| | - Ayşe Baran
- Department of Biology, Graduate Education Institute, Mardin Artuklu University, Mardin, Türkiye
| |
Collapse
|
4
|
Nilsson G, Mottahedin A, Zelco A, Lauschke VM, Ek CJ, Song J, Ardalan M, Hua S, Zhang X, Mallard C, Hagberg H, Leavenworth JW, Wang X. Two different isoforms of osteopontin modulate myelination and axonal integrity. FASEB Bioadv 2023; 5:336-353. [PMID: 37554545 PMCID: PMC10405251 DOI: 10.1096/fba.2023-00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 08/10/2023] Open
Abstract
Abnormal myelination underlies the pathology of white matter diseases such as preterm white matter injury and multiple sclerosis. Osteopontin (OPN) has been suggested to play a role in myelination. Murine OPN mRNA is translated into a secreted isoform (sOPN) or an intracellular isoform (iOPN). Whether there is an isoform-specific involvement of OPN in myelination is unknown. Here we generated mouse models that either lacked both OPN isoforms in all cells (OPN-KO) or lacked sOPN systemically but expressed iOPN specifically in oligodendrocytes (OLs-iOPN-KI). Transcriptome analysis of isolated oligodendrocytes from the neonatal brain showed that genes and pathways related to increase of myelination and altered cell cycle control were enriched in the absence of the two OPN isoforms in OPN-KO mice compared to control mice. Accordingly, adult OPN-KO mice showed an increased axonal myelination, as revealed by transmission electron microscopy imaging, and increased expression of myelin-related proteins. In contrast, neonatal oligodendrocytes from OLs-iOPN-KI mice compared to control mice showed differential regulation of genes and pathways related to the increase of cell adhesion, motility, and vasculature development, and the decrease of axonal/neuronal development. OLs-iOPN-KI mice showed abnormal myelin formation in the early phase of myelination in young mice and signs of axonal degeneration in adulthood. These results suggest an OPN isoform-specific involvement, and a possible interplay between the isoforms, in myelination, and axonal integrity. Thus, the two isoforms of OPN need to be separately considered in therapeutic strategies targeting OPN in white matter injury and diseases.
Collapse
Affiliation(s)
- Gisela Nilsson
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Amin Mottahedin
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Aura Zelco
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Volker M. Lauschke
- Department of Physiology and PharmacologyKarolinska InstituteStockholmSweden
- Dr Margarete Fischer‐Bosch Institute of Clinical PharmacologyStuttgartGermany
- University of TübingenTübingenGermany
| | - C. Joakim Ek
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Juan Song
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Henan Key Laboratory of Child Brain InjuryInstitute of Neuroscience and Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Maryam Ardalan
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Sha Hua
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Cardiology, Ruijin Hospital/Luwan Branch, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoli Zhang
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Henan Key Laboratory of Child Brain InjuryInstitute of Neuroscience and Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Carina Mallard
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine & Health, Department of Obstetrics and Gynaecology, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Jianmei W. Leavenworth
- Department of NeurosurgeryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Xiaoyang Wang
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Henan Key Laboratory of Child Brain InjuryInstitute of Neuroscience and Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Centre of Perinatal Medicine & Health, Department of Obstetrics and Gynaecology, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
5
|
Kennard AS, Sathe M, Labuz EC, Prinz CK, Theriot JA. Post-injury hydraulic fracturing drives fissure formation in the zebrafish basal epidermal cell layer. Curr Biol 2023:S0960-9822(23)00616-4. [PMID: 37290442 DOI: 10.1016/j.cub.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/05/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023]
Abstract
The skin epithelium acts as the barrier between an organism's internal and external environments. In zebrafish and other freshwater organisms, this barrier function requires withstanding a large osmotic gradient across the epidermis. Wounds breach this epithelium, causing a large disruption to the tissue microenvironment due to the mixing of isotonic interstitial fluid with the external hypotonic fresh water. Here, we show that, following acute injury, the larval zebrafish epidermis undergoes a dramatic fissuring process that resembles hydraulic fracturing, driven by the influx of external fluid. After the wound has sealed-preventing efflux of this external fluid-fissuring starts in the basal epidermal layer at the location nearest to the wound and then propagates at a constant rate through the tissue, spanning over 100 μm. During this process, the outermost superficial epidermal layer remains intact. Fissuring is completely inhibited when larvae are wounded in isotonic external media, suggesting that osmotic gradients are required for fissure formation. Additionally, fissuring partially depends on myosin II activity, as myosin II inhibition reduces the distance of fissure propagation away from the wound. During and after fissuring, the basal layer forms large macropinosomes (with cross-sectional areas ranging from 1 to 10 μm2). We conclude that excess external fluid entry through the wound and subsequent closure of the wound through actomyosin purse-string contraction in the superficial cell layer causes fluid pressure buildup in the extracellular space of the zebrafish epidermis. This excess fluid pressure causes tissue to fissure, and eventually the fluid is cleared through macropinocytosis.
Collapse
Affiliation(s)
- Andrew S Kennard
- Biophysics Program, Stanford University, Stanford, CA 94305, USA; Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Mugdha Sathe
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Ellen C Labuz
- Biophysics Program, Stanford University, Stanford, CA 94305, USA; Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Christopher K Prinz
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
6
|
Osteopontin mediates the formation of corpora amylacea-like structures from degenerating neurons in the CA1 region of the rat hippocampus after ischemia. Cell Tissue Res 2022; 389:443-463. [PMID: 35688947 DOI: 10.1007/s00441-022-03645-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
Abstract
We previously demonstrated that osteopontin (OPN) is closely associated with calcium precipitation in response to ischemic brain insults. The present study was designed to elucidate the possible association between deposition of OPN and progressive neurodegeneration in the ischemic hippocampus. To address this, we analyzed the OPN deposits in the rat hippocampus after global cerebral ischemia in the chronic phase (4 to 12 weeks) after reperfusion using immunoelectron microscopy and correlative light and electron microscopy. We identified three different types of OPN deposits based on their morphological characteristics, numbered according to the order in which they evolved. Dark degenerative cells that retained cellular morphology were frequently observed in the pyramidal cell layer, and type I OPN deposits were degenerative mitochondria that accumulated among these cells. Type II deposits evolved into more complex amorphous structures with prominent OPN deposits within their periphery and within degenerative mitochondria-like structures. Finally, type III had large concentric laminated structures with irregularly shaped bodies in the center of the deposits. In all types, OPN expression was closely correlated with calcification, as confirmed by calcium fixation and Alizarin Red staining. Notably, type II and III deposits were highly reminiscent of corpora amylacea, glycoprotein-rich aggregates found in aged brains, or neurodegenerative disease, which was further confirmed by ubiquitin expression and periodic acid-Schiff staining. Overall, our data provide a novel link between ongoing neurodegeneration and the formation of corpora amylacea-like structures and calcium deposits in the ischemic hippocampus, suggesting that OPN may play an important role in such processes.
Collapse
|
7
|
An ultrastructural 3D reconstruction method for observing the arrangement of collagen fibrils and proteoglycans in the human aortic wall under mechanical load. Acta Biomater 2022; 141:300-314. [PMID: 35065266 DOI: 10.1016/j.actbio.2022.01.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/31/2022]
Abstract
An insight into changes of soft biological tissue ultrastructures under loading conditions is essential to understand their response to mechanical stimuli. Therefore, this study offers an approach to investigate the arrangement of collagen fibrils and proteoglycans (PGs), which are located within the mechanically loaded aortic wall. The human aortic samples were either fixed directly with glutaraldehyde in the load-free state or subjected to a planar biaxial extension test prior to fixation. The aortic ultrastructure was recorded using electron tomography. Collagen fibrils and PGs were segmented using convolutional neural networks, particularly the ESPNet model. The 3D ultrastructural reconstructions revealed a complex organization of collagen fibrils and PGs. In particular, we observed that not all PGs are attached to the collagen fibrils, but some fill the spaces between the fibrils with a clear distance to the collagen. The complex organization cannot be fully captured or can be severely misinterpreted in 2D. The approach developed opens up practical possibilities, including the quantification of the spatial relationship between collagen fibrils and PGs as a function of the mechanical load. Such quantification can also be used to compare tissues under different conditions, e.g., healthy and diseased, to improve or develop new material models. STATEMENT OF SIGNIFICANCE: The developed approach enables the 3D reconstruction of collagen fibrils and proteoglycans as they are embedded in the loaded human aortic wall. This methodological pipeline comprises the knowledge of arterial mechanics, imaging with transmission electron microscopy and electron tomography, segmentation of 3D image data sets with convolutional neural networks and finally offers a unique insight into the ultrastructural changes in the aortic tissue caused by mechanical stimuli.
Collapse
|
8
|
Jasien JV, Read AT, van Batenburg-Sherwood J, Perkumas KM, Ethier CR, Stamer WD, Samuels BC. Anterior Segment Anatomy and Conventional Outflow Physiology of the Tree Shrew (Tupaia belangeri). Invest Ophthalmol Vis Sci 2022; 63:21. [PMID: 35040876 PMCID: PMC8764208 DOI: 10.1167/iovs.63.1.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 10/26/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose Rodent and primate models are commonly used in glaucoma research; however, both have their limitations. The tree shrew (Tupaia belangeri) is an emerging animal model for glaucoma research owing in part to having a human-like optic nerve head anatomy, specifically a collagenous load-bearing lamina. However, the anterior segment anatomy and function have not been extensively studied in the tree shrew. Thus, the purpose of this study was to provide the first detailed examination of the anterior segment anatomy and aqueous outflow facility in the tree shrew. Methods Aqueous outflow dynamics were measured in five ostensibly normal eyes from three tree shrews using the iPerfusion system over a range of pressures. Gross histological assessment and immunohistochemistry were performed to characterize anterior segment anatomy and to localize several key molecules related to aqueous outflow. Results Anterior segment anatomy in tree shrews is similar to humans, demonstrating a scleral spur, a multilayered trabecular meshwork and a circular Schlemm's canal with a single lumen. Average outflow facility was 0.193 µL/min/mm Hg (95% confidence interval, 0.153-0.244), and was stable over time. Outflow facility was more similar between contralateral eyes (approximately 5% average difference) than between eyes of different animals. No significant dependence of outflow facility on time or pressure was detected (pressure-flow nonlinearity parameter of 0.01 (95% % confidence interval, -0.29 to 0.31 CI µL/min/mm Hg). Conclusions These studies lend support to the usefulness of the tree shrew as a novel animal model in anterior segment glaucoma and pharmacology research. The tree shrew's cost, load-bearing collagenous lamina cribrosa, and lack of washout or anterior chamber deepening provides a distinct experimental and anatomic advantage over the current rodent and nonhuman primate models used for translational research.
Collapse
Affiliation(s)
- Jessica V. Jasien
- Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - A. Thomas Read
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| | | | - Kristin M. Perkumas
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
| | - C. Ross Ethier
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
| | - Brian C. Samuels
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
9
|
Zakariah M, Molele RA, Mahdy MAA, Ibrahim MIA, McGaw LJ. Structural observations on spermatogenic cells of Japanese quail (Coturnix coturnix japonica) pre-pubertally exposed to dibutyl phthalate: A light and transmission electron microscopy study. Micron 2021; 152:103163. [PMID: 34700152 DOI: 10.1016/j.micron.2021.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 11/19/2022]
Abstract
Exposure to dibutyl phthalate (DBP) induces testicular damage in mammals. However, studies on the effects of DBP on spermatogenic cells in birds are grossly lacking. Therefore, this study was designed to determine the effects of the pre-pubertal exposure to DBP on the histology and ultrastructure of spermatogenic cells in the testis of adult Japanese quail (Coturnix coturnix japonica). The birds were randomly divided into five dosage groups at the age of 4 weeks. The control group received a corn oil vehicle only (a dose of 1 mL/kg body weight), while the other four experimental groups received a daily dosage of 10, 50, 200, 400 mg/kg body weight of DBP (dissolved in corn oil), respectively with the aid of gastric lavage, for 30 days. Testicular samples were processed and examined by light microscopy and transmission electron microscopy. Histopathological evaluation revealed vacuole formation, germ cell degenerations, and the absence of spermatogenic cell series. Ultrastructurally, chromatin clumps in spermatocyte and degenerated spermatogonia with ruptured nuclear membranes resting on the distorted basement membranes were observed. Others were intracytoplasmic vacuoles in round spermatids and fragments of dense apoptotic bodies. In conclusion, the findings of the present study reveal that spermatogenic cells of Japanese quails seem to be more sensitive to DBP-induced degeneration compared to mammalian species studied. The Japanese quail could be used to monitor environmental contamination with low doses of DBP.
Collapse
Affiliation(s)
- Musa Zakariah
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa; Department of Veterinary Anatomy, Faculty of Veterinary Medicine, PMB 1069 University of Maiduguri, Maiduguri, Nigeria.
| | - Reneilwe A Molele
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - Mohammed A A Mahdy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Mohammed I A Ibrahim
- Department of Basic Science, University of West Kordofan, West Kordofan State, Sudan
| | - Lyndy J McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, Pretoria, South Africa
| |
Collapse
|
10
|
Snider EJ, Hardie BA, Li Y, Gao K, Splaine F, Kim RK, Vannatta RT, Read AT, Ethier CR. A Porcine Organ-Culture Glaucoma Model Mimicking Trabecular Meshwork Damage Using Oxidative Stress. Invest Ophthalmol Vis Sci 2021; 62:18. [PMID: 33704361 PMCID: PMC7960799 DOI: 10.1167/iovs.62.3.18] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose Re-cellularization of the trabecular meshwork (TM) using stem cells is a potential novel treatment for ocular hypertension associated with glaucoma. To assess the therapeutic efficacy of this approach, improved in vivo and ex vivo models of TM pathophysiology are needed. Here, we investigate whether oxidative stress, induced by hydrogen peroxide (H2O2), can model glaucomatous ocular hypertension in the readily available porcine anterior segment organ culture model. Methods The impact of H2O2 on TM cell viability and function was first evaluated in vitro using primary porcine TM cells. Oxidative stress was then induced by H2O2 infusion into perfused porcine anterior segments. Trabecular meshwork function was assessed by tracking matrix metalloproteinase (MMP) activity and the ability of the preparation to maintain intraocular pressure (IOP) homeostasis after a flow challenge (doubled fluid infusion rate). Finally, the TM was evaluated histologically. Results H2O2 treatment resulted in a titratable reduction in cellularity across multiple primary TM cell donor strains. In organ culture preparations, H2O2-treated eyes showed impaired IOP homeostasis (i.e., IOPs stabilized at higher levels after a flow challenge vs. control eyes). This result was consistent with reduced MMP activity and TM cellularity; however, damage to the TM microstructure was not histologically evident in anterior segments receiving H2O2. Conclusions Titrated H2O2 infusion resulted in TM cellular dysfunction without destruction of TM structure. Thus, this porcine organ culture model offers a useful platform for assessing trabecular meshwork therapies to treat ocular hypertension associated with glaucoma.
Collapse
Affiliation(s)
- Eric J Snider
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| | - Becky A Hardie
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| | - Yinglin Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| | - Kristin Gao
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| | - Fiona Splaine
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| | - R Kijoon Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| | - R Taylor Vannatta
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| | - A Thomas Read
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| | - C Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| |
Collapse
|
11
|
In focus in HCB. Histochem Cell Biol 2020; 153:71-75. [PMID: 31993752 DOI: 10.1007/s00418-020-01843-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Manskikh VN, Sheval EV. An adaptation of Twort's method for polychromatic staining of epoxy-embedded semithin sections. Histochem Cell Biol 2019; 153:121-127. [PMID: 31848702 DOI: 10.1007/s00418-019-01836-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2019] [Indexed: 11/26/2022]
Abstract
Epoxy-embedded semithin sections are useful for the analysis of cell and tissue organization, as well as for the processing of samples for transmission electron microscopy. Because only a very limited number of staining protocols have been developed for epoxy-embedded sections; semithin sections are used infrequently compared to conventional paraffin sections. Here, we describe a simple and reproducible polychromatic protocol for the routine staining of epoxy-embedded semithin sections by adapting Twort's staining method (mixture of neutral red and fast green FCF). The method can be used for the visualization of cellular organization as well as for the detection of elastic and collagen fibers. The proposed protocol demonstrated the best results for samples fixed for transmission electron microscopy, which suggests, as we demonstrated here, that this staining protocol can also be used for correlative light and electron microscopy.
Collapse
Affiliation(s)
- Vasiliy N Manskikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Eugene V Sheval
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, Villejuif, France.
| |
Collapse
|