1
|
Effect of Dietary Methionine Deficiency Followed by a Re-Feeding Phase on the Hepatic Antioxidant Activities of Lambs. Animals (Basel) 2020; 11:ani11010007. [PMID: 33374518 PMCID: PMC7822206 DOI: 10.3390/ani11010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Our objective was to investigate the effect of methionine restriction and resuming supply on liver antioxidant response in lambs. The concentrations of methionine and its metabolites and the expression of the nuclear factor erythroid 2-related factor 2 (Nrf2), a redox sensitive factor, were detected after methionine restriction treatment for 50 days and methionine supply recovery for 29 days. The expression of glutathione (GSH) S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were characterized at the level of transcription and translation. Methionine restriction can directly change the content of methionine and its metabolites in plasma and liver, and affect the redox state of lambs by activating the Nrf2 signaling pathway. Liver tissue can adapt to oxidative environment by upregulating the expression of antioxidant enzymes such as GSH-Px and SOD. Moreover, it was found that there was a lag effect in the recovery of metabolism after methionine supplementation.
Collapse
|
2
|
Caballero VJ, Mendieta JR, Lombardo D, Saceda M, Ferragut JA, Conde RD, Giudici AM. Liver damage and caspase-dependent apoptosis is related to protein malnutrition in mice: effect of methionine. Acta Histochem 2015; 117:126-35. [PMID: 25575574 DOI: 10.1016/j.acthis.2014.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 11/28/2014] [Accepted: 11/29/2014] [Indexed: 01/18/2023]
Abstract
This study aimed to determine whether the effects on the mouse liver caused by three periods of feeding a protein-free diet for 5 days followed by a normal complete diet for 5 days (3PFD-CD) are prevented by a constant methionine supply (3PFD+Met-CD). The expressions of carbonic anhydrase III (CAIII), fatty acid synthase (FAS), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and glutathione S-transferase P1 (GSTP1) were assessed by proteomics and reverse transcriptase-polymerase chain reactions. The liver redox status was examined by measuring the activities of superoxide dismutase (SOD) and catalase (CAT), as well as protein carbonylation. Because oxidative stress can result in apoptosis, the activity and content of caspase-3, as well as the x-linked inhibitor of the apoptosis protein (XIAP) and mitochondrial caspase-independent apoptosis inducing factor (AIF) contents were assessed. In addition, the liver histomorphology was examined. Compared to the controls fed a normal complete diet throughout, feeding with 3PFD-CD increased the FAS content, decreased the CAIII content, decreased both the SOD and CAT activities, and increased protein carbonylation. It also activated caspase-3, decreased the XIAP content, decreased the AIF content, increased the number of GSTP1-positive foci and caspase-3-positive cells, and caused fatty livers. Conversely, the changes were lessened to varying degrees in mice fed 3PFD+Met-CD. The present results indicate that a regular Met supply lessens the biochemical changes, damage, and caspase-dependent apoptosis provoked by recurrent dietary amino acid deprivation in the mouse liver.
Collapse
Affiliation(s)
- Verónica J Caballero
- Biological Research Institute, Faculty of Natural Sciences, National University of Mar del Plata - CONICET, CC 1245, CP 7600 Mar del Plata, Argentina
| | - Julieta R Mendieta
- Biological Research Institute, Faculty of Natural Sciences, National University of Mar del Plata - CONICET, CC 1245, CP 7600 Mar del Plata, Argentina
| | - Daniel Lombardo
- Institute of Research and Technology in Animal Reproduction (INITRA), Faculty of Veterinary Science. University of Buenos Aires, Av. Chorroarín 280, C1427CWO Buenos Aires, Argentina
| | - Miguel Saceda
- Institute of Molecular and Cellular Biology, University Miguel Hernandez, Building Torregaitán, Avda de la Universidad s/n, 03202, Elche, Spain
| | - José Antonio Ferragut
- Institute of Molecular and Cellular Biology, University Miguel Hernandez, Building Torregaitán, Avda de la Universidad s/n, 03202, Elche, Spain
| | - Rubén D Conde
- Biological Research Institute, Faculty of Natural Sciences, National University of Mar del Plata - CONICET, CC 1245, CP 7600 Mar del Plata, Argentina
| | - Ana M Giudici
- Biological Research Institute, Faculty of Natural Sciences, National University of Mar del Plata - CONICET, CC 1245, CP 7600 Mar del Plata, Argentina.
| |
Collapse
|
3
|
Lin AH, Chen HW, Liu CT, Tsai CW, Lii CK. Activation of Nrf2 is required for up-regulation of the π class of glutathione S-transferase in rat primary hepatocytes with L-methionine starvation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:6537-6545. [PMID: 22676582 DOI: 10.1021/jf301567m] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Numerous genes expression is regulated in response to amino acid shortage, which helps organisms adapt to amino acid limitation. The expression of the π class of glutathione (GSH) S-transferase (GSTP), a highly inducible phase II detoxification enzyme, is regulated mainly by activates activating protein 1 (AP-1) binding to the enhancer I of GSTP (GPEI). Here we show the critical role of nuclear factor erythroid-2-related factor 2 (Nrf2) in up-regulating GSTP gene transcription. Primary rat hepatocytes were cultured in a methionine-restricted medium, and immunoblotting and RT-PCR analyses showed that methionine restriction time-dependently increased GSTP protein and mRNA expression over a 48 h period. Nrf2 translocation to the nucleus, nuclear proteins binding to GPEI, and antioxidant response element (ARE) luciferase reporter activity were increased by methionine restriction as well as by l-buthionine sulfoximine (BSO), a GSH synthesis inhibitor. Transfection with Nrf2 siRNA knocked down Nrf2 expression and reversed the methionine-induced GSTP expression and GPEI binding activity. Chromatin immunoprecipitation assay confirmed the binding of Nrf2 to the GPEI. Phosphorylation of extracellular signal-regulated kinase 2 (ERK2) was increased in methionine-restricted and BSO-treated cells. ERK2 siRNA abolished methionine restriction-induced Nrf2 nuclear translocation, GPEI binding activity, ARE-luciferase reporter activity, and GSTP expression. Our results suggest that the up-regulation of GSTP gene transcription in response to methionine restriction likely occurs via the ERK-Nrf2-GPEI signaling pathway.
Collapse
Affiliation(s)
- Ai-Hsuan Lin
- School of Nutrition, Chung Shan Medical University, Taichung 402, Taiwan
| | | | | | | | | |
Collapse
|
4
|
Lu CY, Li CC, Lii CK, Yao HT, Liu KL, Tsai CW, Chen HW. Andrographolide-induced pi class of glutathione S-transferase gene expression via PI3K/Akt pathway in rat primary hepatocytes. Food Chem Toxicol 2010; 49:281-9. [PMID: 21056613 DOI: 10.1016/j.fct.2010.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 10/08/2010] [Accepted: 10/31/2010] [Indexed: 01/18/2023]
Abstract
Andrographis paniculata is an herb widely used in China, Korea, and India for its anti-hepatotoxic, anti-viral, and anti-inflammatory effects. Andrographolide is the major bioactive diterpene lactone in A. paniculata. The pi class of glutathione S-transferase (GSTP) is one of the phase II biotransformation enzymes. Our previous study indicated that andrographolide upregulates the expression of GSTP. The aim of this study was to investigate the mechanism by which andrographolide induces GSTP gene expression in rat primary hepatocytes. In hepatocytes treated with 40 μM andrographolide, immunoblots showed maximal Akt phosphorylation at 0.5 h and maximal c-jun phosphorylation at 3 h. However, pretreatment with PI3K inhibitors, wortmannin and LY294002, or siPI3K inhibited the andrographolide-induced phosphorylation of c-jun and GSTP protein expression. EMSA showed that pretreatment with wortmannin, LY294002, or siPI3K attenuated the AP-1-DNA-binding activity caused by andrographolide. Results of immunoprecipitation indicated that nuclear c-fos/c-jun heterodimer increases with andrographolide treatment. Addition of antibodies against c-jun and c-fos decreased nuclear protein bound to the AP-1 consensus DNA sequence. In summary, andrographolide induces GSTP gene expression in rat primary hepatocytes through activation of the PI3K/Akt, phosphorylation of c-jun, nuclear accumulation of AP-1, and subsequent binding to the response element in the gene promoter region.
Collapse
Affiliation(s)
- Chia-Yang Lu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
5
|
Tsai CW, Lin AH, Wang TS, Liu KL, Chen HW, Lii CK. Methionine restriction up-regulates the expression of the pi class of glutathione S
-transferase partially via
the extracellular signal-regulated kinase-activator protein-1 signaling pathway initiated by glutathione depletion. Mol Nutr Food Res 2009; 54:841-50. [DOI: 10.1002/mnfr.200900083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
6
|
Chang KT, Lii CK, Tsai CW, Yang AJ, Chen HW. Modulation of the expression of the pi class of glutathione S-transferase by Andrographis paniculata extracts and andrographolide. Food Chem Toxicol 2007; 46:1079-88. [PMID: 18082303 DOI: 10.1016/j.fct.2007.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Revised: 10/28/2007] [Accepted: 11/05/2007] [Indexed: 12/17/2022]
Abstract
Andrographis paniculata (Ap) is a commonly used herb for traditional medicine in many Southeast Asian countries. In the present study, we investigated the effect of Ap on the expression of the pi class of glutathione S-transferase (GSTP) in rat primary hepatocytes. Hepatocytes were treated with 25 or 50 microg/mL of ethanol or ethyl acetate extracts of Ap (ApEE or ApEAE) or 10 or 20 microM andrographolide, which is the major active diterpene lactone of Ap, for 48 h. ApEE, ApEAE, and andrographolide dose-dependently induced GSTP protein and mRNA expression. In a GST activity assay, GST activity was significantly higher in cells treated with the maximum concentrations of ApEE, ApEAE, and andrographolide than in control cells (P<0.05). The pTA-2713 luciferase reporter construct containing rat GSTP enhancer 1 (GPE1) was transiently transfected into Clone 9 liver cells. Cells treated with ApEE, ApEAE, and andrographolide showed a dose-dependent increase in luciferase activity. GPE1 deletion abolished the induction efficiency of Ap. Also, the induction of GSTP expression by Ap was inhibited by wortmannin, which is an inhibitor of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. These results indicate that ApEE, ApEAE, and andrographolide induce GSTP expression. This induction is likely related to the PI3K/Akt pathway, and GPE1, an enhancer element in GSTP promoter, is essential for the induction.
Collapse
Affiliation(s)
- Kuei-Ting Chang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
7
|
Tsai CW, Yang JJ, Chen HW, Sheen LY, Lii CK. Garlic organosulfur compounds upregulate the expression of the pi class of glutathione S-transferase in rat primary hepatocytes. J Nutr 2005; 135:2560-5. [PMID: 16251611 DOI: 10.1093/jn/135.11.2560] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The chemopreventive property of garlic is related in part to its induction of phase II detoxification enzymes. In the present study, we investigated the modulatory effect of 3 garlic organosulfur compounds, i.e., diallyl sulfide (DAS), diallyl disulfide (DADS), and diallyl trisulfide (DATS), which differ in their number of sulfur atoms, on the gene expression of the pi class of glutathione S-transferase (GSTP). Hepatocytes isolated from male Sprague-Dawley rats were cultured with 50-200 micromol/L of DAS, DADS, or DATS for 24 h. DADS and DATS increased GST activity toward ethacrynic acid by 40 and 66%, respectively (P < 0.05). Moreover, both garlic allyl sulfides dose dependently induced GSTP mRNA and protein expression. DATS increased the protein level more than DADS (P < 0.05). In contrast, DAS did not affect the activity or the protein or mRNA levels of this phase II drug-metabolizing enzyme. In Clone 9 liver cells, the pTA-luciferase reporter assay showed that luciferase activity in DADS- and DATS-treated cells was 2.8- and 3.9-fold higher than that in control cells, respectively (P < 0.05). Again, luciferase activity was not affected by treatment with DAS. Deletion of -2.7 to -2.6 kb in the GSTP promoter region, which contains the GSTP enhancer (GPE) I element, abolished the upregulation of GSTP transcription by DADS and DATS. Deletion of GPE II, however, did not affect the induction of reporter activity. In conclusion, the effectiveness of 3 garlic allyl sulfides on GSTP expression was related to the number of sulfur atoms in the molecules, and GPE I was responsible for this upregulation.
Collapse
Affiliation(s)
- Chia-Wen Tsai
- Department of Nutrition, Chung Shan Medical University, Taichung 402, Taiwan
| | | | | | | | | |
Collapse
|