1
|
Hong R, Xie A, Jiang C, Guo Y, Zhang Y, Chen J, Shen X, Li M, Yue X. A review of the biological activities of lactoferrin: mechanisms and potential applications. Food Funct 2024; 15:8182-8199. [PMID: 39027924 DOI: 10.1039/d4fo02083a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Lactoferrin, a multifunctional iron-binding protein found in milk and other body fluids, possesses numerous biological activities. The functional activity of lactoferrin lies not only in its iron-binding capacity but also in the molecular mechanisms by which it can affect important chemical components in the host. However, the molecular mechanisms underlying these activities remain unelucidated. In this paper, we review the structure, properties, and contents of different lactoferrin milk sources. The different biological activities, namely antibacterial, antiviral, immunomodulatory, anti-inflammatory, bone regeneration, and improved metabolic disorder bioactivities, and the associated potential mechanisms of lactoferrin are summarized with the aim of providing a reference for the development of lactoferrin-related products.
Collapse
Affiliation(s)
- Ruiyao Hong
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Aijun Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 119077, Singapore
| | - Chengxi Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Yangze Guo
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Yumeng Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Jiali Chen
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Xinyu Shen
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
2
|
Liu Y, Aimutis WR, Drake M. Dairy, Plant, and Novel Proteins: Scientific and Technological Aspects. Foods 2024; 13:1010. [PMID: 38611316 PMCID: PMC11011482 DOI: 10.3390/foods13071010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Alternative proteins have gained popularity as consumers look for foods that are healthy, nutritious, and sustainable. Plant proteins, precision fermentation-derived proteins, cell-cultured proteins, algal proteins, and mycoproteins are the major types of alternative proteins that have emerged in recent years. This review addresses the major alternative-protein categories and reviews their definitions, current market statuses, production methods, and regulations in different countries, safety assessments, nutrition statuses, functionalities and applications, and, finally, sensory properties and consumer perception. Knowledge relative to traditional dairy proteins is also addressed. Opportunities and challenges associated with these proteins are also discussed. Future research directions are proposed to better understand these technologies and to develop consumer-acceptable final products.
Collapse
Affiliation(s)
- Yaozheng Liu
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
| | - William R. Aimutis
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
- North Carolina Food Innovation Lab, North Carolina State University, Kannapolis, NC 28081, USA
| | - MaryAnne Drake
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
| |
Collapse
|
3
|
Tian M, Han YB, Yang GY, Li JL, Shi CS, Tian D. The role of lactoferrin in bone remodeling: evaluation of its potential in targeted delivery and treatment of metabolic bone diseases and orthopedic conditions. Front Endocrinol (Lausanne) 2023; 14:1218148. [PMID: 37680888 PMCID: PMC10482240 DOI: 10.3389/fendo.2023.1218148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/28/2023] [Indexed: 09/09/2023] Open
Abstract
Lactoferrin (Lf) is a multifunctional protein that is synthesized endogenously and has various biological roles including immunological regulation, antibacterial, antiviral, and anticancer properties. Recently, research has uncovered Lf's critical functions in bone remodeling, where it regulates the function of osteoblasts, chondrocytes, osteoclasts, and mesenchymal stem cells. The signaling pathways involved in Lf's signaling in osteoblasts include (low density lipoprotein receptor-related protein - 1 (LRP-1), transforming growth factor β (TGF-β), and insulin-like growth factor - 1 (IGF-1), which activate downstream pathways such as ERK, PI3K/Akt, and NF-κB. These pathways collectively stimulate osteoblast proliferation, differentiation, and mineralization while inhibiting osteoclast differentiation and activity. Additionally, Lf's inhibitory effect on nuclear factor kappa B (NF-κB) suppresses the formation and activity of osteoclasts directly. Lf also promotes chondroprogenitor proliferation and differentiation to chondrocytes by activating the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and phosphoinositide 3-kinase/protein kinase B(PI3K/Akt)signaling pathways while inhibiting the expression of matrix-degrading enzymes through the suppression of the NF-κB pathway. Lf's ability to stimulate osteoblast and chondrocyte activity and inhibit osteoclast function accelerates fracture repair, as demonstrated by its effectiveness in animal models of critical-sized long bone defects. Moreover, studies have indicated that Lf can rescue dysregulated bone remodeling in osteoporotic conditions by stimulating bone formation and suppressing bone resorption. These beneficial effects of Lf on bone health have led to its exploration in nutraceutical and pharmaceutical applications. However, due to the large size of Lf, small bioactive peptides are preferred for pharmaceutical applications. These peptides have been shown to promote bone fracture repair and reverse osteoporosis in animal studies, indicating their potential as therapeutic agents for bone-related diseases. Nonetheless, the active concentration of Lf in serum may not be sufficient at the site requiring bone regeneration, necessitating the development of various delivery strategies to enhance Lf's bioavailability and target its active concentration to the site requiring bone regeneration. This review provides a critical discussion of the issues mentioned above, providing insight into the roles of Lf in bone remodeling and the potential use of Lf as a therapeutic target for bone disorders.
Collapse
Affiliation(s)
- Miao Tian
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Ying-bo Han
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Gui-yun Yang
- Department of Operating Room, The Second Hospital of Jilin University, Changchun, China
| | - Jin-long Li
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Chang-sai Shi
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Dan Tian
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Coccolini C, Berselli E, Blanco-Llamero C, Fathi F, Oliveira MBPP, Krambeck K, Souto EB. Biomedical and Nutritional Applications of Lactoferrin. Int J Pept Res Ther 2023; 29:71. [DOI: 10.1007/s10989-023-10541-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 01/05/2025]
Abstract
AbstractLactoferrin (Lf) is a glycoprotein belonging to the transferrin family, which can be found in mammalian milk. It was first isolated from bovine milk in the 1930s, and later in the 1960s, it was determined from human milk. This multifunctional protein has the specific ability to bind iron. It plays various biological roles, such as antibacterial, antiviral, antifungal, anti-tumour, anti-obesity, antioxidant, anti-inflammatory and immunomodulatory activities. There are several studies describing its use against in various cancer cell lines (e.g., liver, lung and breast) and the glycoprotein has even been reported to inhibit the development of experimental metastases in mice. Previous studies also suggest Lf-mediated neuroprotection against age-related neurodegenerative diseases and it is also expected to attenuate aging. More recently, Lf has been proposed as a potential approach in COVID-19 prophylaxis. In this review, we discuss the recent developments about the biological activities of this pleiotropic glycoprotein that will reason the exploitation of its biomedical and supplementary nutritional value.
Collapse
|
5
|
Nagashima D, Ishibashi Y, Kawaguchi S, Furukawa M, Toho M, Ohno M, Nitto T, Izumo N. Human Recombinant Lactoferrin Promotes Differentiation and Calcification on MC3T3-E1 Cells. Pharmaceutics 2022; 15:pharmaceutics15010060. [PMID: 36678689 PMCID: PMC9861834 DOI: 10.3390/pharmaceutics15010060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Lactoferrin (LF), known to be present in mammalian milk, has been reported to promote the proliferation of osteoblasts and suppress bone resorption by affecting osteoclasts. However, the mechanisms underlying the effects of human sources LF on osteoblast differentiation have not yet been elucidated, and almost studies have used LF from bovine sources. The presented study aimed to characterize the molecular mechanisms of bovine lactoferrin (IF-I) and human recombinant lactoferrin (LF-II) on MC3T3-E1 pre-osteoblast cells. MC3T3-E1 cells were treated with LF, ascorbic acid, and β-glycerophosphate (β-GP). Cell proliferation was analyzed using the MTT assay. Alkaline phosphatase activation and osteopontin expression levels were evaluated via cell staining and immunocytochemistry. The differentiation markers were examined using quantitative real-time PCR. The cell viability assay showed the treatment of 100 μg/mL LF significantly increased; however, it was suppressed by the simultaneous treatment of ascorbic acid and β-GP. Alizarin red staining showed that the 100 μg/mL treatment of LF enhanced calcification. Quantitative real-time PCR showed a significant increase in osterix expression. The results suggest that treatment with both LFs enhanced MC3T3-E1 cell differentiation and promoted calcification. The mechanisms of calcification suggest that LFs are affected by an increase in osterix and osteocalcin mRNA levels.
Collapse
Affiliation(s)
- Daichi Nagashima
- General Health Medical Research Center, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
- Pharmaceutical Education Center, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
| | - Yukiko Ishibashi
- Department of Biochemistry, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
| | - Sachiko Kawaguchi
- Laboratory of Pharmacotherapy, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
| | - Megumi Furukawa
- Pharmaceutical Education Center, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
| | - Masahiro Toho
- Laboratory of Pharmacotherapy, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
| | | | - Takeaki Nitto
- Laboratory of Pharmacotherapy, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
| | - Nobuo Izumo
- General Health Medical Research Center, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
- Laboratory of Pharmacotherapy, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
- Correspondence: ; Tel.: +81-45-859-1300
| |
Collapse
|
6
|
Li W, Liu B, Lin Y, Xue P, Lu Y, Song S, Li Y, Szeto IMY, Ren F, Guo H. The application of lactoferrin in infant formula: The past, present and future. Crit Rev Food Sci Nutr 2022; 64:5748-5767. [PMID: 36533432 DOI: 10.1080/10408398.2022.2157792] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human milk is universally regarded as the gold standard to fulfill nutrition needs of infants. Lactoferrin (LF) is a major multiple bioactive glycoprotein in human milk but little is presented in infant formula. LF can resist digestion in the infant gastrointestinal tract and is absorbed into the bloodstream in an intact form to perform physiological functions. Evidence suggest that LF prevents pathogen infection, promotes immune system development, intestinal development, brain development and bone health, as well as ameliorates iron deficiency anemia. However, more clinical studies of LF need to be further elucidated to determine an appropriate dosage for application in infant formula. LF is sensitive to denaturation induced by processing of infant formula such as heat treatments and spay drying. Thus, further studies should be focus on maximizing the retention of LF activity in the infant formula process. This review summarizes the structural features of LF. Then the digestion, absorption and metabolism of LF in infants are discussed, followed by the function of LF for infants. Further, we summarize LF in infant formula and effects of processing of infant formula on bioactivities of LF, as well as future perspectives of LF research.
Collapse
Affiliation(s)
- Wusun Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Biao Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, PR China
| | - Yingying Lin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| | - Peng Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Yao Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Sijia Song
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Yixuan Li
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| | - Ignatius Man-Yau Szeto
- Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, PR China
- National Center of Technology Innovation for Dairy, Hohhot, PR China
| | - Fazheng Ren
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| | - Huiyuan Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| |
Collapse
|
7
|
Cipriano M, Ruberti E, Tovani-Palone MR. Combined use of lactoferrin and vitamin D as a preventive and therapeutic supplement for SARS-CoV-2 infection: Current evidence. World J Clin Cases 2022; 10:11665-11670. [PMID: 36405280 PMCID: PMC9669848 DOI: 10.12998/wjcc.v10.i32.11665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/10/2022] [Accepted: 08/30/2022] [Indexed: 02/05/2023] Open
Abstract
Lactoferrin is a multifunctional protein that exhibits anti-inflammatory, immune regulating and anti-infective properties. One of its receptor sites is located on severe acute respiratory syndrome coronavirus 2. The binding of lactoferrin with heparin sulfate proteoglycans may prevent the first contact between the virus and host cells, thus preventing subsequent infection. Given that lactoferrin may act as a natural mucosal barrier, an intranasal treatment together with its oral intake can be hypothesized to prevent the spread, infection and inflammation caused by coronavirus disease 2019 (COVID-19). Moreover, the literature reports that vitamin D plays an essential role in promoting immune response. With its anti-inflammatory and immunoregulatory properties, vitamin D is critical for activating the immune system’s defenses, improving immune cell function. Different studies also demonstrate that lactoferrin is a potential activator of the vitamin D receptor. In this sense, the combined use of lactoferrin (through an association of oral intake and a nasal spray formulation) and vitamin D could represent a valuable therapy for COVID-19 treatment and prevention. However, further randomized clinical trials are needed before recommending/prescribing them.
Collapse
Affiliation(s)
- Massimiliano Cipriano
- Department of Laparoscopic Surgery, Umberto I General Hospital, Medical School Sapienza University, Rome 161, Italy
| | - Enzo Ruberti
- Department of Human Neuroscience, Sapienza University of Rome, Rome 00185, Italy
| | - Marcos Roberto Tovani-Palone
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India
| |
Collapse
|
8
|
Effects of heat treatment and simulated digestion on the properties and osteogenic activity of bovine lactoferrin. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Kowalczyk P, Kaczyńska K, Kleczkowska P, Bukowska-Ośko I, Kramkowski K, Sulejczak D. The Lactoferrin Phenomenon-A Miracle Molecule. Molecules 2022; 27:2941. [PMID: 35566292 PMCID: PMC9104648 DOI: 10.3390/molecules27092941] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 01/11/2023] Open
Abstract
Numerous harmful factors that affect the human body from birth to old age cause many disturbances, e.g., in the structure of the genome, inducing cell apoptosis and their degeneration, which leads to the development of many diseases, including cancer. Among the factors leading to pathological processes, microbes, viruses, gene dysregulation and immune system disorders have been described. The function of a protective agent may be played by lactoferrin as a "miracle molecule", an endogenous protein with a number of favorable antimicrobial, antiviral, antioxidant, immunostimulatory and binding DNA properties. The purpose of this article is to present the broad spectrum of properties and the role that lactoferrin plays in protecting human cells at all stages of life.
Collapse
Affiliation(s)
- Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland;
| | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland;
| | - Patrycja Kleczkowska
- Maria Sklodowska-Curie, Medical Academy in Warsaw, Solidarności 12 St., 03-411 Warsaw, Poland
- Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163 Warsaw, Poland
| | - Iwona Bukowska-Ośko
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Pawinskiego 3c St., 02-106 Warsaw, Poland;
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, Kilińskiego 1 St., 15-089 Bialystok, Poland;
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
10
|
Ke D, Wang X, Lin Y, Wei S. Lactoferrin promotes the autophagy activity during osteoblast formation via BCL2-Beclin1 signaling. Mol Biol Rep 2021; 49:259-266. [PMID: 34716503 DOI: 10.1007/s11033-021-06866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/20/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lactoferrin, as the main component of milk, can maintain osteoblast formation, which is conducive to the prevention and treatment of osteoporosis. Lactoferrin also serves as an autophagy regulator, especially in osteoblasts. This study aimed to explore the significance of autophagy in osteoblast formation regulated by lactoferrin and the internal mechanism. METHODS AND RESULTS In this study, we firstly explored the roles of lactoferrin in the autophagy activity of primary osteoblasts (LC3 transformation rate, autophagosome formation). Subsequently, we further investigated the effects of lactoferrin on the BCL2 expression and BCL2-Beclin1 complex. Ultimately, the significance of BCL2 overexpression and Beclin1 silencing on lactoferrin-regulated osteoblast autophagy and osteogenic parameters (ALP activity and mRNA expression of PCNA, Col1, BGLAP and OPN) was observed by gene processing, respectively. Our results showed that lactoferrin enhanced the autophagy activity of osteoblasts. Importantly, lactoferrin inhibited BCL2 expression and the co-immunoprecipitation of BCL2 and Beclin1 in osteoblasts. Moreover, lactoferrin-promoted autophagy and osteogenic parameters was reversed by BCL2 overexpression or Beclin1 silencing in osteoblasts. CONCLUSIONS In conclusion, lactoferrin can inhibit BCL2 expression in osteoblasts, further enhancing Beclin1-dependent autophagy activation.
Collapse
Affiliation(s)
- Dianshan Ke
- Department of Orthopedics, The People's Hospital of JiangMen, No. 172 Gaodi Li, Pengjiang District, Jiangmen, 529000, Guangdong, China
- Academy of Orthopedics in Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Xinwen Wang
- Department of Orthopedics, The People's Hospital of JiangMen, No. 172 Gaodi Li, Pengjiang District, Jiangmen, 529000, Guangdong, China
| | - Yinquan Lin
- Department of Orthopedics, The People's Hospital of JiangMen, No. 172 Gaodi Li, Pengjiang District, Jiangmen, 529000, Guangdong, China.
| | - Shengwang Wei
- Department of Orthopedics, Liuzhou Workers Hospital, No.47, Zone 4, Hongyan Road, Liunan District, Liuzhou, 545005, Guangxi, China.
| |
Collapse
|