1
|
Balali A, Fathzadeh K, Askari G, Sadeghi O. Dietary intake of tomato and lycopene, blood levels of lycopene, and risk of total and specific cancers in adults: a systematic review and dose-response meta-analysis of prospective cohort studies. Front Nutr 2025; 12:1516048. [PMID: 40013157 PMCID: PMC11860085 DOI: 10.3389/fnut.2025.1516048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/27/2025] [Indexed: 02/28/2025] Open
Abstract
Background The association between tomato/lycopene intake and blood levels of lycopene with the risk of specific cancers were assessed in previous meta-analyses; however, no study evaluated the risk of overall cancer incidence/mortality. Therefore, the present systematic review and dose-response meta-analysis aimed to summarize available findings from prospective studies to examine the association between tomato/lycopene intake and lycopene levels with the risk of total and specific cancers and cancer-related mortality. Methods A comprehensive literature search was done using Scopus, PubMed, ISI Web of Science, and Google Scholar until July 2023. Results In total, 121 prospective studies were included in the systematic review and 119 in the meta-analysis. During the follow-up period of 2-32 years, a total of 108,574 cancer cases and 10,375 deaths occurred. High intakes and high levels of lycopene compared to low amounts were, respectively, associated with 5% (Pooled RR: 0.95, 95% CI: 0.92-0.98, I2 = 26.4%, p = 0.002) and 11% (Pooled RR: 0.89, 95% CI: 0.84-0.95, I2 = 15.0%, p < 0.001) reduction in overall cancer risk. Also, each 10 μg/dL increase in blood levels of lycopene was associated with a 5% lower risk of overall cancer. Moreover, we found a linear inverse association between dietary lycopene intake and prostate cancer risk (Pooled RR 0.99, 95% CI 0.97-1.00, I2 = 0, p = 0.045). Regarding cancer mortality, negative relationships were found with total tomato intake (Pooled RR: 0.89, 95% CI: 0.85-0.93, I2 = 65.7%, p < 0.001), lycopene intake (Pooled RR: 0.84, 95% CI: 0.81-0.86, I2 = 86.5%, p < 0.001) and lycopene levels (Pooled RR 0.76, 95% CI: 0.60-0.98, I2 = 70.9%, p = 0.031). Also, an inverse association was observed between blood lycopene levels and lung cancer mortality (Pooled RR: 0.65, 95% CI: 0.45-0.94, I2 = 0, p = 0.022). Conclusion Our findings show that dietary intake and blood levels of lycopene are associated with a lower risk of cancer and death due to cancer. Clinical trial registration CRD42023432400.
Collapse
Affiliation(s)
- Arghavan Balali
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kimia Fathzadeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Sadeghi
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
2
|
Gaesser GA, Angadi SS, Paterson C, Jones JM. Bread Consumption and Cancer Risk: Systematic Review and Meta-Analysis of Prospective Cohort Studies. Curr Dev Nutr 2024; 8:104501. [PMID: 39668947 PMCID: PMC11634998 DOI: 10.1016/j.cdnut.2024.104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 12/14/2024] Open
Abstract
Because bread can contain potential carcinogens such as acrylamide, and is widely consumed, we conducted a systematic review and meta-analysis to determine whether bread consumption is associated with increased cancer risk. PubMed and Medline databases were searched up to 1 March 2024, for studies that provided hazard ratios (HRs) (or similar) for bread consumption and cancer incidence or mortality. Only prospective cohort studies were included. We used the Preferred Reporting Items of Systematic reviews and Meta-Analyses checklist. Meta-analysis was performed with Cochrane's RevMan 5.4.1 software using a DerSimonian-Laird random-effects model. Heterogeneity was assessed with Cochrane's Q (χ2) and I 2 statistics, and publication bias was assessed with Egger's test. Twenty-four publications met inclusion criteria, including 1,887,074 adults, and were included in the systematic review. Ten publications that provided HRs were included in the meta-analysis for highest compared with lowest intakes, and an additional 7 publications that provided mortality or incident rate ratios or relative risks were included in supplemental meta-analyses. Of 108 reported HRs (or similar), 97 (79%) were either not statistically significant (n = 86) or indicated lower cancer risk (n = 11) associated with the highest intakes of bread. The meta-analysis indicated that bread intake was not associated with site-specific cancer risk [HR: 1.01; 95% confidence interval (CI): 0.89, 1.14; P = 0.92; 8 publications] or total cancer mortality (HR: 0.90; 95% CI: 0.73, 1.11; P = 0.32; 2 publications). Supplemental meta-analyses using all risk estimates in addition to HRs confirmed these findings. Whole-grain bread was associated with a lower site-specific cancer risk, mainly because of reduced colorectal cancer risk. Results of the systematic review and meta-analysis indicate that bread consumption is not associated with increased site-specific cancer risk, whereas high whole-grain/nonwhite bread consumption is associated with lower total cancer mortality and colorectal cancer risk. This study was registered at Clinical Trials Registry of PROSPERO as registration number CRD42023414156.
Collapse
Affiliation(s)
- Glenn A Gaesser
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Siddhartha S Angadi
- Department of Kinesiology, University of Virginia, Charlottesville, VA, United States
| | - Craig Paterson
- Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Julie Miller Jones
- Department of Family, Consumer, and Nutritional Science, St. Catherine University, Minneapolis, MN, United States
| |
Collapse
|
3
|
Jenkins DJA, Willett WC, Yusuf S, Hu FB, Glenn AJ, Liu S, Mente A, Miller V, Bangdiwala SI, Gerstein HC, Sieri S, Ferrari P, Patel AV, McCullough ML, Le Marchand L, Freedman ND, Loftfield E, Sinha R, Shu XO, Touvier M, Sawada N, Tsugane S, van den Brandt PA, Shuval K, Khan TA, Paquette M, Sahye-Pudaruth S, Patel D, Siu TFY, Srichaikul K, Kendall CWC, Sievenpiper JL. Association of glycaemic index and glycaemic load with type 2 diabetes, cardiovascular disease, cancer, and all-cause mortality: a meta-analysis of mega cohorts of more than 100 000 participants. Lancet Diabetes Endocrinol 2024; 12:107-118. [PMID: 38272606 DOI: 10.1016/s2213-8587(23)00344-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND There is debate over whether the glycaemic index of foods relates to chronic disease. We aimed to assess the associations between glycaemic index (GI) and glycaemic load (GL) and type 2 diabetes, cardiovascular disease, diabetes-related cancers, and all-cause mortality. METHODS We did a meta-analysis of large cohorts (≥100 000 participants) identified from the Richard Doll Consortium. We searched the Cochrane Library, MEDLINE, PubMed, Embase, Web of Science, and Scopus for cohorts that prospectively examined associations between GI or GL and chronic disease outcomes published from database inception to Aug 4, 2023. Full-article review and extraction of summary estimates data were conducted by three independent reviewers. Primary outcomes were incident type 2 diabetes, total cardiovascular disease (including mortality), diabetes-related cancers (ie, bladder, breast, colorectal, endometrial, hepatic, pancreatic, and non-Hodgkin lymphoma), and all-cause mortality. We assessed comparisons between the lowest and highest quantiles of GI and GL, adjusting for dietary factors, and pooling their most adjusted relative risk (RR) estimates using a fixed-effects model. We also assessed associations between diets high in fibre and whole grains and the four main outcomes. The study protocol is registered with PROSPERO, CRD42023394689. FINDINGS From ten prospective large cohorts (six from the USA, one from Europe, two from Asia, and one international), we identified a total of 48 studies reporting associations between GI or GL and the outcomes of interest: 34 (71%) on various cancers, nine (19%) on cardiovascular disease, five (10%) on type 2 diabetes, and three (6%) on all-cause mortality. Consumption of high GI foods was associated with an increased incidence of type 2 diabetes (RR 1·27 [95% CI 1·21-1·34]; p<0·0001), total cardiovascular disease (1·15 [1·11-1·19]; p<0·0001), diabetes-related cancer (1·05 [1·02-1·08]; p=0·0010), and all-cause mortality (1·08 [1·05-1·12]; p<0·0001). Similar associations were seen between high GL and diabetes (RR 1·15 [95% CI 1·09-1·21]; p<0·0001) and total cardiovascular disease (1·15 [1·10-1·20]; p<0·0001). Associations between diets high in fibre and whole grains and the four main outcomes were similar to those for low GI diets. INTERPRETATION Dietary recommendations to reduce GI and GL could have effects on health outcomes that are similar to outcomes of recommendations to increase intake of fibre and whole grain. FUNDING Banting and Best and the Karuna Foundation.
Collapse
Affiliation(s)
- David J A Jenkins
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada; Clinical Nutrition & Risk Factor Modification Centre, St Michael's Hospital, Toronto, ON, Canada; Division of Endocrinology and Metabolism, St Michael's Hospital, Toronto, ON, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Toronto, ON, Canada.
| | - Walter C Willett
- Department of Epidemiology, Harvard T H Chan School of Public Health, Boston, MA, USA; Department of Nutrition, Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Salim Yusuf
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada; Department of Medicine, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Frank B Hu
- Department of Epidemiology, Harvard T H Chan School of Public Health, Boston, MA, USA; Department of Nutrition, Harvard T H Chan School of Public Health, Boston, MA, USA; Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrea J Glenn
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Toronto, ON, Canada; Department of Nutrition, Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Simin Liu
- Center for Global Cardiometabolic Health, Department of Epidemiology, Department of Medicine, and Department of Surgery, Brown University, Providence, RI, USA
| | - Andrew Mente
- Department of Medicine, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada; Department of Health Research Methods, Evidence, and Impact, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Victoria Miller
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada; Department of Medicine, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Shrikant I Bangdiwala
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada; Department of Health Research Methods, Evidence, and Impact, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Hertzel C Gerstein
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Pietro Ferrari
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Alpa V Patel
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | | | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erikka Loftfield
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rashmi Sinha
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiao-Ou Shu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mathilde Touvier
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and Statistics, Nutritional Epidemiology Research Team, Bobigny, France; French Network for Nutrition and Cancer Research, Jouy-en-Josas, France
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Shoichiro Tsugane
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan; International University of Health and Welfare Graduate School of Public Health, Tokyo, Japan
| | - Piet A van den Brandt
- GROW School for Oncology and Developmental Biology, and Department of Epidemiology, Care and Public Health Research Institute-School for Public Health and Primary Care, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | - Tauseef Ahmad Khan
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Toronto, ON, Canada
| | - Melanie Paquette
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Clinical Nutrition & Risk Factor Modification Centre, St Michael's Hospital, Toronto, ON, Canada
| | - Sandhya Sahye-Pudaruth
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Clinical Nutrition & Risk Factor Modification Centre, St Michael's Hospital, Toronto, ON, Canada
| | - Darshna Patel
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Clinical Nutrition & Risk Factor Modification Centre, St Michael's Hospital, Toronto, ON, Canada
| | - Teenie Fei Yi Siu
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Clinical Nutrition & Risk Factor Modification Centre, St Michael's Hospital, Toronto, ON, Canada
| | - Korbua Srichaikul
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Clinical Nutrition & Risk Factor Modification Centre, St Michael's Hospital, Toronto, ON, Canada
| | - Cyril W C Kendall
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Toronto, ON, Canada; College of Pharmacy and Nutrition, University of Saskatchewan, SK, Canada
| | - John L Sievenpiper
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada; Clinical Nutrition & Risk Factor Modification Centre, St Michael's Hospital, Toronto, ON, Canada; Division of Endocrinology and Metabolism, St Michael's Hospital, Toronto, ON, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Toronto, ON, Canada
| |
Collapse
|
4
|
Lan T, Park Y, Colditz GA, Liu J, Wang M, Wu K, Giovannucci E, Sutcliffe S. Adolescent dietary patterns in relation to later prostate cancer risk and mortality in the NIH-AARP Diet and Health Study. Br J Cancer 2023; 128:57-62. [PMID: 36316560 PMCID: PMC9814153 DOI: 10.1038/s41416-022-02035-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Although adolescent diet has been proposed to contribute to prostate cancer (PCa) development, no studies have investigated the relation between adolescent dietary patterns and PCa risk or mortality. METHODS Using data from 164,079 men in the NIH-AARP Diet and Health Study, we performed factor analysis to identify dietary patterns at ages 12-13 years and then used Cox proportional hazards regression to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) of total (n = 17,861), non-advanced (n = 15,499), advanced (n = 2362), and fatal PCa (n = 832). RESULTS Although not entirely consistent across analyses, a higher adolescent plant-based pattern (characterised by vegetables, fruits, and dark bread) score was associated with slightly reduced risks of total (fully adjusted HRQ5vs.Q1 = 0.93, 95% CI: 0.89-0.98, p trend=0.003) and non-advanced PCa (HR = 0.91, 95% CI: 0.87-0.96, p trend<0.001), whereas no associations were observed for advanced or fatal PCa, or for Western modern (characterised by sweets, processed meat, beef, cheese, and pizza) or Western traditional (characterised gravy, eggs, potatoes and white bread) patterns. CONCLUSION We found evidence to support a modest, protective role for a plant-based dietary pattern during adolescence on PCa risk. If confirmed in future studies, our findings may help to inform the development of new, primary prevention strategies for PCa.
Collapse
Affiliation(s)
- Tuo Lan
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, IA, USA
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Yikyung Park
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Graham A Colditz
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Jingxia Liu
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Molin Wang
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Kana Wu
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Edward Giovannucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Siobhan Sutcliffe
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA.
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Alzahrani MA, Shakil Ahmad M, Alkhamees M, Aljuhayman A, Binsaleh S, Tiwari R, Almannie R. Dietary protein intake and prostate cancer risk in adults: A systematic review and dose-response meta-analysis of prospective cohort studies. Complement Ther Med 2022; 70:102851. [PMID: 35820576 DOI: 10.1016/j.ctim.2022.102851] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE This study aimed to conduct a comprehensive systematic review and dose-response meta-analysis to summarize available findings on the associations between dietary protein intake and prostate cancer risk as well as the dose-response associations of total, animal, plant, and dairy protein intake with prostate cancer risk. METHODS This study followed the 2020 PRISMA guideline. We conducted a systematic search in the online databases of PubMed, Scopus, ISI Web of Science, and Google Scholar to detect eligible prospective studies published to October 2021 that assessed total, animal, plant, and dairy protein intake in relation to prostate cancer risk. RESULTS Overall, 12 articles containing prospective studies with a total sample size of 388,062 individuals and 30,165 cases of prostate cancer were included. The overall relative risks (RRs) of prostate cancer, comparing the highest and lowest intakes of total, animal, plant, and dairy protein intake, were 0.99 (95% CI: 92-1.07, I2 =12.8%), 0.99 (95% CI: 95-1.04, I2 =0), 1.01 (95% CI: 96-1.06, I2 =0), and 1.08 (95% CI: 1.00-1.16, I2 =38.1%), respectively, indicating a significant positive association for dairy protein intake (P = 0.04) and non-significant associations for other protein types. However, this positive association was seen among men who consumed ≥ 30 gr/day of dairy protein, such that a 20 g/d increase in dairy protein intake (equal to 2.5 cups milk or yogurt) was associated with a 10% higher risk of prostate cancer (Pooled RR: 1.10, 95% CI: 1.02-1.20, I2 = 42.5%). Such dose-response association was not seen for total, animal, and plant protein intake. CONCLUSION Overall, dairy protein intake may increase the risk of prostate cancer in men who consumed > 30 gr/day of dairy protein. Larger, well-designed studies are still required to further evaluation of this association.
Collapse
Affiliation(s)
- Meshari A Alzahrani
- Department of Urology, College of Medicine, Majmaah University, Al-Majmaah, Saudi Arabia.
| | - Mohammad Shakil Ahmad
- Department of Community Medicine and Public Health, College of Medicine, Majmaah University, Al Majmaah, Saudi Arabia
| | - Mohammad Alkhamees
- Department of Urology, College of Medicine, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Ahmed Aljuhayman
- Department of Urology, College of Medicine, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Saleh Binsaleh
- Section of Urology, Department of Surgery, King Saud University, College of Medicine, King Saud University Medical City, Saudi Arabia
| | - Rahul Tiwari
- Consultant Urologist in Kailash Hospital, Noida, India
| | - Raed Almannie
- Section of Urology, Department of Surgery, King Saud University, College of Medicine, King Saud University Medical City, Saudi Arabia
| |
Collapse
|
6
|
Moran NE, Thomas-Ahner JM, Wan L, Zuniga KE, Erdman JW, Clinton SK. Tomatoes, Lycopene, and Prostate Cancer: What Have We Learned from Experimental Models? J Nutr 2022; 152:1381-1403. [PMID: 35278075 PMCID: PMC9178968 DOI: 10.1093/jn/nxac066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/04/2022] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Human epidemiology suggests a protective effect of tomatoes or tomato phytochemicals, such as lycopene, on prostate cancer risk. However, human epidemiology alone cannot reveal causal relations. Laboratory animal models of prostate cancer provide opportunities to investigate hypotheses regarding dietary components in precisely controlled, experimental systems, contributing to our understanding of diet and cancer risk relations. We review the published studies evaluating the impact of tomatoes and/or lycopene in preclinical models of prostate carcinogenesis and tumorigenesis. The feeding of tomatoes or tomato components demonstrates anti-prostate cancer activity in both transplantable xenograft models of tumorigenesis and models of chemically- and genetically-driven carcinogenesis. Feeding pure lycopene shows anticancer activity in most studies, although outcomes vary by model system, suggesting that the impact of pure lycopene can depend on dose, duration, and specific carcinogenic processes represented in different models. Nonetheless, studies with the transgenic adenocarcinoma of the mouse prostate (TRAMP) model of carcinogenesis typically demonstrate similar bioactivity to that of tomato feeding. In general, interventions that commence earlier in carcinogenesis and are sustained tend to be more efficacious. Accumulated data suggest that lycopene is one, but perhaps not the only, anticancer bioactive compound in tomatoes. Although it is clear that tomatoes and lycopene have anti-prostate cancer activity in rodent models, major knowledge gaps remain in understanding dose-response relations and molecular mechanisms of action. Published and future findings from rodent studies can provide guidance for translational scientists to design and execute informative human clinical trials of prostate cancer prevention or in support of therapy.
Collapse
Affiliation(s)
- Nancy E Moran
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jennifer M Thomas-Ahner
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Lei Wan
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Interdisciplinary Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Krystle E Zuniga
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA.,Livestrong Cancer Institutes, Dell Medical School, University of Texas, Austin, TX, USA
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Steven K Clinton
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH, USA
| |
Collapse
|
7
|
Moran NE, Thomas-Ahner JM, Smith JW, Silva C, Hason NA, Erdman JW, Clinton SK. β-Carotene Oxygenase 2 Genotype Modulates the Impact of Dietary Lycopene on Gene Expression during Early TRAMP Prostate Carcinogenesis. J Nutr 2021; 152:950-960. [PMID: 34964896 PMCID: PMC8971008 DOI: 10.1093/jn/nxab445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/22/2021] [Accepted: 12/24/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Epidemiologic studies suggest lycopene and tomato intake are inversely associated with human prostate cancer incidence. In the genetically driven murine prostate carcinogenesis model transgenic adenocarcinoma of the mouse prostate (TRAMP), prostate cancer is inhibited by feeding of lycopene or tomatoes, and these effects are modulated by the β-carotene oxygenase 2 (Bco2) genotype. OBJECTIVE We sought insight into this interaction through evaluation of prostate gene expression patterns during early TRAMP carcinogenesis. METHODS Three-week-old TRAMP/+ or TRAMP/- × Bco2+/+ or Bco2-/- mice were fed a control, lycopene beadlet, or 10% tomato powder-containing semipurified diet (providing 0, 384 and 462 mg lycopene/kg diet, respectively) for 5 wk. Gene expression patterns were evaluated by prostate cancer- and cholesterol and lipoprotein metabolism-focused arrays at age 8 wk. RESULTS The TRAMP genotype profoundly alters gene expression patterns, specifically inducing pathways associated with cell survival [z-score = 2.09, -log(P value) = 29.2, p53 signaling (z-score 1.13, -log(P value) = 13.5], and phosphatidylinositol-3 kinase (PI3K)/protein kinase B (AKT) signaling [z-score = 0.302, -log(P value) = 12.1], while repressing phosphatase and tensin homolog (PTEN) signaling [(z-score = -0.905, -log(P value) = 12.3], cholesterol synthesis [z-score = -1.941, -log(P-value) = 26.2], and LXR/RXR pathway activation [z-score = -1.941, -log(P value) = 23.1]. In comparison, lycopene- and tomato-feeding modestly modulate strong procarcinogenic TRAMP signaling. Lycopene decreased gene expression related to carcinogenesis [ Nkx3-1(NK3 homeobox 1)], tomato feeding increased expression of a gene involved in circadian regulation [Arntl (aryl hydrocarbon receptor nuclear translocator like)], and tomato and/or lycopene increased expression of genes involved in lipid metabolism [Fasn (fatty acid synthase), Acaca(acetyl-CoA carboxylase alpha), Srebf1 (sterol regulatory element binding transcription factor 1), Hmgcr (3-hydroxy-3-methylglutaryl-coA reductase), and Ptgs1 (prostaglandin-endoperoxide synthase 1)] (all P < 0.05). The impact of Bco2 genotype was limited to a subset of lycopene-impacted genes [Apc (adenomatous polyposis coli), Mto1 (mitochondrial TRNA translation optimization 1), Nfkb1 (nuclear factor kappa B subunit 1), andRbm39 (RNA binding motif protein 39)]. CONCLUSIONS The TRAMP genotype strongly impacts procarcinogenic gene expression prior to emergence of histopathologic disease. Dietary tomato and lycopene modestly temper these processes, while Bco2 genotype has a limited impact at this early stage. These observed patterns provide insight into the complex interactions between a dietary variable, here tomatoes and lycopene, genes impacting nutrient metabolism, and their modulating influences on oncogene-driven prostate carcinogenesis. These findings provide further mechanistic support, consistent with cancer outcomes in rodents experiments and human epidemiologic studies.
Collapse
Affiliation(s)
| | - Jennifer M Thomas-Ahner
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Joshua W Smith
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Ceasar Silva
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Noor A Hason
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Steven K Clinton
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|