1
|
Fernández-Fígares Jiménez MDC. Role of a Whole Plant Foods Diet in Breast Cancer Prevention and Survival. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2025:1-17. [PMID: 39784140 DOI: 10.1080/27697061.2024.2442631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
Breast cancer (BC) is one of the leading causes of death and morbidity among women worldwide. Epidemiologic evidence shows that the risk of BC and other chronic diseases decreases as the proportion of whole plant foods increases, while the proportion of animal foods (fish, meat, poultry, eggs, seafood, and dairy products) and non-whole plant foods (e.g., refined grains, added sugars, French fries) in the diet decreases. Whole plant foods include fruits, vegetables, roots, tubers, whole grains, legumes, nuts, and seeds from which no edible part has been removed and to which no non-whole food been added. A whole plant foods diet lowers insulin resistance, inflammation, excess body fat, cholesterol, and insulin-like growth factor 1 and sex hormone bioavailability; it also increases estrogen excretion, induces favorable changes in the gut microbiota, and may also favorably affect mammary microbiota composition and decrease the risk of early menarche, all contributing to reduced BC incidence, recurrence, and mortality. This review explores the connection between a whole plant foods diet and BC risk and mortality as well as the potential mechanisms involved. Additionally, this diet is compared with other dietary approaches recommended for BC. A whole plant foods diet seems the optimal dietary pattern for BC and overall disease prevention as it exclusively consists of whole plant foods which, based on existing evidence, lead to the best health outcomes.
Collapse
|
2
|
Olsen T, Vinknes KJ, Barvíková K, Stolt E, Lee-Ødegård S, Troensegaard H, Johannessen H, Elshorbagy A, Sokolová J, Krijt J, Křížková M, Ditrói T, Nagy P, Øvrebø B, Refsum H, Thoresen M, Retterstøl K, Kožich V. Dietary sulfur amino acid restriction in humans with overweight and obesity: Evidence of an altered plasma and urine sulfurome, and a novel metabolic signature that correlates with loss of fat mass and adipose tissue gene expression. Redox Biol 2024; 73:103192. [PMID: 38776754 PMCID: PMC11163171 DOI: 10.1016/j.redox.2024.103192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/03/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND In animals, dietary sulfur amino acid restriction (SAAR) improves metabolic health, possibly mediated by altering sulfur amino acid metabolism and enhanced anti-obesogenic processes in adipose tissue. AIM To assess the effects of SAAR over time on the plasma and urine SAA-related metabolites (sulfurome) in humans with overweight and obesity, and explore whether such changes were associated with body weight, body fat and adipose tissue gene expression. METHODS Fifty-nine subjects were randomly allocated to SAAR (∼2 g SAA, n = 31) or a control diet (∼5.6 g SAA, n = 28) consisting of plant-based whole-foods and supplemented with capsules to titrate contents of SAA. Sulfurome metabolites in plasma and urine at baseline, 4 and 8 weeks were measured using HPLC and LC-MS/MS. mRNA-sequencing of subcutaneous white adipose tissue (scWAT) was performed to assess changes in gene expression. Data were analyzed with mixed model regression. Principal component analyses (PCA) were performed on the sulfurome data to identify potential signatures characterizing the response to SAAR. RESULTS SAAR led to marked decrease of the main urinary excretion product sulfate (p < 0.001) and plasma and/or 24-h urine concentrations of cystathionine, sulfite, thiosulfate, H2S, hypotaurine and taurine. PCA revealed a distinct metabolic signature related to decreased transsulfuration and H2S catabolism that predicted greater weight loss and android fat mass loss in SAAR vs. controls (all pinteraction < 0.05). This signature correlated positively with scWAT expression of genes in the tricarboxylic acid cycle, electron transport and β-oxidation (FDR = 0.02). CONCLUSION SAAR leads to distinct alterations of the plasma and urine sulfurome in humans, and predicted increased loss of weight and android fat mass, and adipose tissue lipolytic gene expression in scWAT. Our data suggest that SAA are linked to obesogenic processes and that SAAR may be useful for obesity and related disorders. TRIAL IDENTIFIER: https://clinicaltrials.gov/study/NCT04701346.
Collapse
Affiliation(s)
- Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine University of Oslo, Postboks 1046 Blindern, 0317 Oslo, Norway.
| | - Kathrine J Vinknes
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine University of Oslo, Postboks 1046 Blindern, 0317 Oslo, Norway
| | - Kristýna Barvíková
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital, Ke Karlovu 2, 128 00 Prague, Czech Republic
| | - Emma Stolt
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine University of Oslo, Postboks 1046 Blindern, 0317 Oslo, Norway
| | - Sindre Lee-Ødegård
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Postboks 4959 Nydalen, OUS HF Aker sykehus, 0424 Oslo, Norway
| | - Hannibal Troensegaard
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine University of Oslo, Postboks 1046 Blindern, 0317 Oslo, Norway
| | - Hanna Johannessen
- Department of Pathology, Oslo University Hospital, Rikshospitalet, Postboks 45980 Nydalen, OUS HF Rikshospitalet, 0424 Oslo, Norway
| | - Amany Elshorbagy
- Department of Physiology, Faculty of Medicine, University of Alexandria, Chamblion street, Qesm Al Attarin, Alexandria 5372066, Egypt; Department of Pharmacology, University of Oxford, Mansfield Rd, Oxford OX1 3QT, UK
| | - Jitka Sokolová
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital, Ke Karlovu 2, 128 00 Prague, Czech Republic
| | - Jakub Krijt
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital, Ke Karlovu 2, 128 00 Prague, Czech Republic
| | - Michaela Křížková
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital, Ke Karlovu 2, 128 00 Prague, Czech Republic
| | - Tamás Ditrói
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Ráth György u. 7-9, 1122 Budapest, Hungary
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Ráth György u. 7-9, 1122 Budapest, Hungary; Department of Anatomy and Histology, HUN-REN-UVMB Laboratory of Redox Biology Research Group, University of Veterinary Medicine, 1078 Budapest, Hungary; Chemistry Institute, University of Debrecen, 4012 Debrecen, Hungary
| | - Bente Øvrebø
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine University of Oslo, Postboks 1046 Blindern, 0317 Oslo, Norway; Department of Food Safety, Norwegian Institute of Public Health, Postboks 222 Skøyen, 0213 Oslo, Norway
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine University of Oslo, Postboks 1046 Blindern, 0317 Oslo, Norway; Department of Pharmacology, University of Oxford, Mansfield Rd, Oxford OX1 3QT, UK
| | - Magne Thoresen
- Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Postboks 1122 Blindern, 0317 Oslo, Norway
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine University of Oslo, Postboks 1046 Blindern, 0317 Oslo, Norway; The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Postboks 4959 Nydalen, OUS HF Aker sykehus, 0424 Oslo, Norway
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital, Ke Karlovu 2, 128 00 Prague, Czech Republic.
| |
Collapse
|
3
|
Napiórkowska-Baran K, Treichel P, Czarnowska M, Drozd M, Koperska K, Węglarz A, Schmidt O, Darwish S, Szymczak B, Bartuzi Z. Immunomodulation through Nutrition Should Be a Key Trend in Type 2 Diabetes Treatment. Int J Mol Sci 2024; 25:3769. [PMID: 38612580 PMCID: PMC11011461 DOI: 10.3390/ijms25073769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
An organism's ability to function properly depends not solely on its diet but also on the intake of nutrients and non-nutritive bioactive compounds that exert immunomodulatory effects. This principle applies both to healthy individuals and, in particular, to those with concomitant chronic conditions, such as type 2 diabetes. However, the current food industry and the widespread use of highly processed foods often lead to nutritional deficiencies. Numerous studies have confirmed the occurrence of immune system dysfunction in patients with type 2 diabetes. This article elucidates the impact of specific nutrients on the immune system function, which maintains homeostasis of the organism, with a particular emphasis on type 2 diabetes. The role of macronutrients, micronutrients, vitamins, and selected substances, such as omega-3 fatty acids, coenzyme Q10, and alpha-lipoic acid, was taken into consideration, which outlined the minimum range of tests that ought to be performed on patients in order to either directly or indirectly determine the severity of malnutrition in this group of patients.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland;
| | - Paweł Treichel
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Marta Czarnowska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Magdalena Drozd
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Kinga Koperska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Agata Węglarz
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Oskar Schmidt
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Samira Darwish
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland;
| |
Collapse
|
4
|
Olsen T, Stolt E, Øvrebø B, Elshorbagy A, Tore EC, Lee-Ødegård S, Troensegaard H, Johannessen H, Doeland B, Vo AAD, Dahl AF, Svendsen K, Thoresen M, Refsum H, Rising R, Barvíková K, van Greevenbroek M, Kožich V, Retterstøl K, Vinknes KJ. Dietary sulfur amino acid restriction in humans with overweight and obesity: a translational randomized controlled trial. J Transl Med 2024; 22:40. [PMID: 38195568 PMCID: PMC10775517 DOI: 10.1186/s12967-023-04833-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Dietary sulfur amino acid restriction (SAAR) improves metabolic health in animals. In this study, we investigated the effect of dietary SAAR on body weight, body composition, resting metabolic rate, gene expression profiles in white adipose tissue (WAT), and an extensive blood biomarker profile in humans with overweight or obesity. METHODS N = 59 participants with overweight or obesity (73% women) were randomized stratified by sex to an 8-week plant-based dietary intervention low (~ 2 g/day, SAAR) or high (~ 5.6 g/day, control group) in sulfur amino acids. The diets were provided in full to the participants, and both investigators and participants were blinded to the intervention. Outcome analyses were performed using linear mixed model regression adjusted for baseline values of the outcome and sex. RESULTS SAAR led to a ~ 20% greater weight loss compared to controls (β 95% CI - 1.14 (- 2.04, - 0.25) kg, p = 0.013). Despite greater weight loss, resting metabolic rate remained similar between groups. Furthermore, SAAR decreased serum leptin, and increased ketone bodies compared to controls. In WAT, 20 genes were upregulated whereas 24 genes were downregulated (FDR < 5%) in the SAAR group compared to controls. Generally applicable gene set enrichment analyses revealed that processes associated with ribosomes were upregulated, whereas processes related to structural components were downregulated. CONCLUSION Our study shows that SAAR leads to greater weight loss, decreased leptin and increased ketone bodies compared to controls. Further research on SAAR is needed to investigate the therapeutic potential for metabolic conditions in humans. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT04701346, registered Jan 8th 2021, https://www. CLINICALTRIALS gov/study/NCT04701346.
Collapse
Affiliation(s)
- Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - Emma Stolt
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Bente Øvrebø
- Department of Food Safety, Norwegian Institute of Public Health, Oslo, Norway
| | - Amany Elshorbagy
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Elena C Tore
- Department of Internal Medicine and CARIM School of Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Sindre Lee-Ødegård
- Department of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hannibal Troensegaard
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Hanna Johannessen
- Department of Paedriatic Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Beate Doeland
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Anna A D Vo
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Anja F Dahl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Karianne Svendsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Magne Thoresen
- Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Kristýna Barvíková
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marleen van Greevenbroek
- Department of Internal Medicine and CARIM School of Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Kathrine J Vinknes
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Tore EC, Eussen SJPM, Bastani NE, Dagnelie PC, Elshorbagy AK, Grootswagers P, Kožich V, Olsen T, Refsum H, Retterstøl K, Stehouwer CDA, Stolt ETK, Vinknes KJ, van Greevenbroek MMJ. The Associations of Habitual Intake of Sulfur Amino Acids, Proteins and Diet Quality with Plasma Sulfur Amino Acid Concentrations: The Maastricht Study. J Nutr 2023; 153:2027-2040. [PMID: 37164267 DOI: 10.1016/j.tjnut.2023.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/12/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Plasma sulfur amino acids (SAAs), i.e., methionine, total cysteine (tCys), total homocysteine (tHcy), cystathionine, total glutathione (tGSH), and taurine, are potential risk factors for obesity and cardiometabolic disorders. However, except for plasma tHcy, little is known about how dietary intake modifies plasma SAA concentrations. OBJECTIVE To investigate whether the intake of SAAs and proteins or diet quality is associated with plasma SAAs. METHODS Data from a cross-sectional subset of The Maastricht Study (n = 1145, 50.5% men, 61 interquartile range: [55, 66] y, 22.5% with prediabetes and 34.3% with type 2 diabetes) were investigated. Dietary intake was assessed using a validated food frequency questionnaire. The intake of SAAs (total, methionine, and cysteine) and proteins (total, animal, and plant) was estimated from the Dutch and Danish food composition tables. Diet quality was assessed using the Dutch Healthy Diet Index, the Mediterranean Diet Score, and the Dietary Approaches to Stop Hypertension score. Fasting plasma SAAs were measured by liquid chromatography (LC) tandem mass spectrometry (MS) (LC/MS-MS). Associations were investigated with multiple linear regressions with tertiles of dietary intake measures (main exposures) and z-standardized plasma SAAs (outcomes). RESULTS Intake of total SAAs and total proteins was positively associated with plasma tCys and cystathionine. Associations were stronger in women and in those with normal body weight. Higher intake of cysteine and plant proteins was associated with lower plasma tHcy and higher cystathionine. Higher methionine intake was associated with lower plasma tGSH, whereas cysteine intake was positively associated with tGSH. Higher intake of methionine and animal proteins was associated with higher plasma taurine. Better diet quality was consistently related to lower plasma tHcy concentrations, but it was not associated with the other SAAs. CONCLUSION Targeted dietary modifications might be effective in modifying plasma concentrations of tCys, tHcy, and cystathionine, which have been associated with obesity and cardiometabolic disorders.
Collapse
Affiliation(s)
- Elena C Tore
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands; CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands.
| | - Simone J P M Eussen
- CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands; Department of Epidemiology, Maastricht University, Maastricht, the Netherlands; CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Nasser E Bastani
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Pieter C Dagnelie
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands; CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
| | - Amany K Elshorbagy
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom; Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Pol Grootswagers
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, and General University Hospital in Prague, Czech Republic
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Coen DA Stehouwer
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands; CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
| | - Emma T K Stolt
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kathrine J Vinknes
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Marleen M J van Greevenbroek
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands; CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|