1
|
Glaviano A, Lau HSH, Carter LM, Lee EHC, Lam HY, Okina E, Tan DJJ, Tan W, Ang HL, Carbone D, Yee MYH, Shanmugam MK, Huang XZ, Sethi G, Tan TZ, Lim LHK, Huang RYJ, Ungefroren H, Giovannetti E, Tang DG, Bruno TC, Luo P, Andersen MH, Qian BZ, Ishihara J, Radisky DC, Elias S, Yadav S, Kim M, Robert C, Diana P, Schalper KA, Shi T, Merghoub T, Krebs S, Kusumbe AP, Davids MS, Brown JR, Kumar AP. Harnessing the tumor microenvironment: targeted cancer therapies through modulation of epithelial-mesenchymal transition. J Hematol Oncol 2025; 18:6. [PMID: 39806516 PMCID: PMC11733683 DOI: 10.1186/s13045-024-01634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges. A critical process induced by TME signaling is the epithelial-mesenchymal transition (EMT), wherein epithelial cells acquire mesenchymal traits, which enhance their motility and invasiveness and promote metastasis and cancer progression. By targeting various components of the TME, novel investigational strategies aim to disrupt the TME's contribution to the EMT, thereby improving treatment efficacy, addressing therapeutic resistance, and offering a nuanced approach to cancer therapy. This review scrutinizes the key players in the TME and the TME's contribution to the EMT, emphasizing avenues to therapeutically disrupt the interactions between the various TME components. Moreover, the article discusses the TME's implications for resistance mechanisms and highlights the current therapeutic strategies toward TME modulation along with potential caveats.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Hannah Si-Hui Lau
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Donavan Jia Jie Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Wency Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Michelle Yi-Hui Yee
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Lina H K Lim
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ruby Yun-Ju Huang
- School of Medicine and Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, 23538, Lübeck, Germany
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics (ET) Graduate Program, University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Tullia C Bruno
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Bin-Zhi Qian
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Salem Elias
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Saurabh Yadav
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Minah Kim
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Caroline Robert
- Department of Cancer Medicine, Inserm U981, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France
- Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, Paris, France
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tao Shi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironment Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
2
|
Strum S, Andersen MH, Svane IM, Siu LL, Weber JS. State-Of-The-Art Advancements on Cancer Vaccines and Biomarkers. Am Soc Clin Oncol Educ Book 2024; 44:e438592. [PMID: 38669611 DOI: 10.1200/edbk_438592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The origins of cancer vaccines date back to the 1800s. Since then, there have been significant efforts to generate vaccines against solid and hematologic malignancies using a variety of platforms. To date, these efforts have generally been met with minimal success. However, in the era of improved methods and technological advancements, supported by compelling preclinical and clinical data, a wave of renewed interest in the field offers the promise of discovering field-changing paradigms in the management of established and resected disease using cancer vaccines. These include novel approaches to personalized neoantigen vaccine development, as well as innovative immune-modulatory vaccines (IMVs) that facilitate activation of antiregulatory T cells to limit immunosuppression caused by regulatory immune cells. This article will introduce some of the limitations that have affected cancer vaccine development over the past several decades, followed by an introduction to the latest advancements in neoantigen vaccine and IMV therapy, and then conclude with a discussion of some of the newest technologies and progress that are occurring across the cancer vaccine space. Cancer vaccines are among the most promising frontiers for breakthrough innovations and strategies poised to make a measurable impact in the ongoing fight against cancer.
Collapse
Affiliation(s)
- Scott Strum
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Lillian L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | - Jeffrey S Weber
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY
| |
Collapse
|
3
|
Lorentzen CL, Kjeldsen JW, Ehrnrooth E, Andersen MH, Marie Svane I. Long-term follow-up of anti-PD-1 naïve patients with metastatic melanoma treated with IDO/PD-L1 targeting peptide vaccine and nivolumab. J Immunother Cancer 2023; 11:e006755. [PMID: 37217243 PMCID: PMC10230976 DOI: 10.1136/jitc-2023-006755] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND We have previously published initial efficacy of the indoleamine 2,3-dioxygenase (IDO)/anti-programmed death ligand 1 (PD-L1) vaccine in combination with nivolumab in 30 anti-PD-1 therapy naïve patients with metastatic melanoma (cohort A). We now report long-term follow-up of patients in cohort A. Further, we report results from cohort B, where the peptide vaccine was added to anti-PD-1 therapy for patients with progressive disease during anti-PD-1 treatment. METHODS All patients were treated with a therapeutic peptide vaccine in Montanide targeting IDO and PD-L1 combined with nivolumab (NCT03047928). A long-term follow-up of safety, response rates, and survival rates were performed in cohort A including patient subgroup analyses. Safety and clinical responses were analyzed for cohort B. RESULTS Cohort A: At data cut-off, January 5, 2023, the overall response rate (ORR) was 80%, and 50% of the 30 patients obtained a complete response (CR). The median progression-free survival (mPFS) was 25.5 months (95% CI 8.8 to 39), and median overall survival (mOS) was not reached (NR) (95% CI 36.4 to NR). The minimum follow-up time was 29.8 months, and the median follow-up was 45.3 months (IQR 34.8-59.2). A subgroup evaluation further revealed that cohort A patients with unfavorable baseline characteristics, including either PD-L1 negative tumors (n=13), elevated lactate dehydrogenase (LDH) levels (n=11), or M1c (n=17) obtained both favorable response rates and durable responses. The ORR was 61.5%, 79%, and 88% for patients with PD-L1- tumors, elevated LDH, and M1c, respectively. The mPFS was 7.1 months for patients with PD-L1- tumors, 30.9 months for patients with elevated LDH, and 27.9 months for M1c patients. Cohort B: At data cut-off, the best overall response was stable disease for 2 of the 10 evaluable patients. The mPFS was 2.4 months (95% CI 1.38 to 2.52), and the mOS was 16.7 months (95% CI 4.13 to NR). CONCLUSION This long-term follow-up confirms the promising and durable responses in cohort A. Subgroup analyses of patients with unfavorable baseline characteristics revealed that high response rates and survival rates were also found in patients with either PD-L1 negative tumors, elevated LDH levels, or M1c. No meaningful clinical effect was demonstrated in cohort B patients. TRIAL REGISTRATION NUMBER NCT03047928.
Collapse
|
4
|
Weis-Banke SE, Lisle TL, Perez-Penco M, Schina A, Hübbe ML, Siersbæk M, Holmström MO, Jørgensen MA, Marie Svane I, Met Ö, Ødum N, Madsen DH, Donia M, Grøntved L, Andersen MH. Arginase-2-specific cytotoxic T cells specifically recognize functional regulatory T cells. J Immunother Cancer 2022; 10:jitc-2022-005326. [PMID: 36316062 PMCID: PMC9628693 DOI: 10.1136/jitc-2022-005326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/05/2022] Open
Abstract
Background High expression of the metabolic enzyme arginase-2 (ARG2) by cancer cells, regulatory immune cells, or cells of the tumor stroma can reduce the availability of arginine (L-Arg) in the tumor microenvironment (TME). Depletion of L-Arg has detrimental consequences for T cells and leads to T-cell dysfunction and suppression of anticancer immune responses. Previous work from our group has demonstrated the presence of proinflammatory ARG2-specific CD4 T cells that inhibited tumor growth in murine models on activation with ARG2-derived peptides. In this study, we investigated the natural occurrence of ARG2-specific CD8 T cells in both healthy donors (HDs) and patients with cancer, along with their immunomodulatory capabilities in the context of the TME. Materials and methods A library of 15 major histocompatibility complex (MHC) class I-restricted ARG2-derived peptides were screened in HD peripheral blood mononuclear cells using interferon gamma (IFN-γ) ELISPOT. ARG2-specific CD8 T-cell responses were identified using intracellular cytokine staining and ARG2-specific CD8 T-cell cultures were established by enrichment and rapid expansion following in vitro peptide stimulation. The reactivity of the cultures toward ARG2-expressing cells, including cancer cell lines and activated regulatory T cells (Tregs), was assessed using IFN-γ ELISPOT and a chromium release assay. The Treg signature was validated based on proliferation suppression assays, flow cytometry and quantitative reverse transcription PCR (RT-qPCR). In addition, vaccinations with ARG2-derived epitopes were performed in the murine Pan02 tumor model, and induction of ARG2-specific T-cell responses was evaluated with IFN-γ ELISPOT. RNAseq and subsequent GO-term and ImmuCC analysis was performed on the tumor tissue. Results We describe the existence of ARG2-specific CD8+ T cells and demonstrate these CD8+ T-cell responses in both HDs and patients with cancer. ARG2-specific T cells recognize and react to an ARG2-derived peptide presented in the context of HLA-B8 and exert their cytotoxic function against cancer cells with endogenous ARG2 expression. We demonstrate that ARG2-specific T cells can specifically recognize and react to activated Tregs with high ARG2 expression. Finally, we observe tumor growth suppression and antitumorigenic immunomodulation following ARG2 vaccination in an in vivo setting. Conclusion These findings highlight the ability of ARG2-specific T cells to modulate the immunosuppressive TME and suggest that ARG2-based immunomodulatory vaccines may be an interesting option for cancer immunotherapy.
Collapse
Affiliation(s)
- Stine Emilie Weis-Banke
- Department of Oncology, Herlev Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Herlev, Denmark
| | - Thomas Landkildehus Lisle
- Department of Oncology, Herlev Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Herlev, Denmark
| | - Maria Perez-Penco
- Department of Oncology, Herlev Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Herlev, Denmark
| | - Aimilia Schina
- Department of Oncology, Herlev Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Herlev, Denmark
| | - Mie Linder Hübbe
- Department of Oncology, Herlev Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Herlev, Denmark
| | - Majken Siersbæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Morten Orebo Holmström
- Department of Oncology, Herlev Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Herlev, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mia Aaboe Jørgensen
- Department of Oncology, Herlev Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Herlev, Denmark
| | - Inge Marie Svane
- Department of Oncology, Herlev Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Herlev, Denmark
| | - Özcan Met
- Department of Oncology, Herlev Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Herlev, Denmark
| | - Niels Ødum
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Hargbøl Madsen
- Department of Oncology, Herlev Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Herlev, Denmark
| | - Marco Donia
- Department of Oncology, Herlev Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Herlev, Denmark
| | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mads Hald Andersen
- Department of Oncology, Herlev Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Herlev, Denmark .,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Abstract
The identification and characterization of tumor antigens are central objectives in developing anti-cancer immunotherapy. Traditionally, tumor-associated antigens (TAAs) are considered relatively restricted to tumor cells (i.e., overexpressed proteins in tumor cells), whereas tumor-specific antigens (TSAs) are considered unique to tumor cells. Recent studies have focused on identifying patient-specific neoantigens, which might be highly immunogenic because they are not expressed in normal tissues. The opposite strategy has emerged with the discovery of anti-regulatory T cells (anti-Tregs) that recognize and attack many cell types in the tumor microenvironment, such as regulatory immune cells, in addition to tumor cells. The term proposed in this review is "tumor microenvironment antigens" (TMAs) to describe the antigens that draw this attack. As therapeutic targets, TMAs offer several advantages that differentiate them from more traditional tumor antigens. Targeting TMAs leads not only to a direct attack on tumor cells but also to modulation of the tumor microenvironment, rendering it immunocompetent and tumor-hostile. Of note, in contrast to TAAs and TSAs, TMAs also are expressed in non-transformed cells with consistent human leukocyte antigen (HLA) expression. Inflammation often induces HLA expression in malignant cells, so that targeting TMAs could additionally affect tumors with no or very low levels of surface HLA expression. This review defines the characteristics, differences, and advantages of TMAs compared with traditional tumor antigens and discusses the use of these antigens in immune modulatory vaccines as an attractive approach to immunotherapy. Different TMAs are expressed by different cells and could be combined in anti-cancer immunotherapies to attack tumor cells directly and modulate local immune cells to create a tumor-hostile microenvironment and inhibit tumor angiogenesis. Immune modulatory vaccines offer an approach for combinatorial therapy with additional immunotherapy including checkpoint blockade, cellular therapy, or traditional cancer vaccines. These combinations would increase the number of patients who can benefit from such therapeutic measures, which all have optimal efficiency in inflamed tumors.
Collapse
Affiliation(s)
- Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 5th floor, DK-2730, Herlev, Denmark.
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Klausen U, Grønne Dahlager Jørgensen N, Grauslund JH, Munir Ahmad S, Gang AO, Martinenaite E, Weis-Banke SE, Breinholt MF, Novotny GW, Kjeldsen JW, Orebo Holmström M, Pedersen LB, Poulsen CB, Hansen PB, Met Ö, Svane IM, Niemann CU, Pedersen LM, Andersen MH. An immunogenic first-in-human immune modulatory vaccine with PD-L1 and PD-L2 peptides is feasible and shows early signs of efficacy in follicular lymphoma. Oncoimmunology 2021; 10:1975889. [PMID: 38283034 PMCID: PMC10813564 DOI: 10.1080/2162402x.2021.1975889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022] Open
Abstract
Cells in the tumor microenvironment of Follicular lymphoma (FL) express checkpoint molecules such as programmed death ligands 1 and 2 (PD-L1 and PD-L2) and are suppressing anti-tumor immune activity. Stimulation of peripheral blood mononuclear cells (PBMC) with PD-L1 (IO103) or PD-L2 (IO120) peptides can activate specific T cells inducing anti-regulatory functions including cytotoxicity against PD-L1/PD-L2-expressing cells. In this study, we vaccinated eight FL patients with PD-L1 and PD-L2 peptides following treatment with standard chemotherapy. Patients experienced grade 1-2 injection site reaction (5/8) and mild flu-like symptoms (6/8). One patient experienced neutropenia and thrombocytopenia during pseudo-progression. Enzyme-linked immunospot detected vaccine-specific immune responses in PBMC from all patients, predominately toward PD-L1. The circulating immune composition was stable during treatment; however, we observed a reduction regulatory T cells, however, not significant. One patient achieved a complete remission during vaccination and two patients had pseudo-progression followed by long-term disease regression. Further examination of these early signs of clinical efficacy of the dual-epitope vaccine in a larger study is warranted.
Collapse
Affiliation(s)
- Uffe Klausen
- Dept. Of Hematology, Herlev Hospital, Herlev, Denmark
- Dept. Of Hematology, Rigshospitalet, Copenhagen, Denmark
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology Herlev Hospital, Herlev, Denmark
- Institute for Immunology and Microbiology, Copenhagen University, Copenhagen K, Denmark
| | - Nicolai Grønne Dahlager Jørgensen
- Dept. Of Hematology, Herlev Hospital, Herlev, Denmark
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology Herlev Hospital, Herlev, Denmark
| | - Jacob Handlos Grauslund
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology Herlev Hospital, Herlev, Denmark
- Institute for Immunology and Microbiology, Copenhagen University, Copenhagen K, Denmark
| | - Shamaila Munir Ahmad
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology Herlev Hospital, Herlev, Denmark
| | | | - Evelina Martinenaite
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology Herlev Hospital, Herlev, Denmark
| | - Stine Emilie Weis-Banke
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology Herlev Hospital, Herlev, Denmark
| | | | - Guy Wayne Novotny
- Dept. Of Hematology, Herlev Hospital, Herlev, Denmark
- Dept. Of Pathology, Herlev Hospital, Herlev, Denmark
| | - Julie Westerlin Kjeldsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology Herlev Hospital, Herlev, Denmark
- Institute for Immunology and Microbiology, Copenhagen University, Copenhagen K, Denmark
| | - Morten Orebo Holmström
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology Herlev Hospital, Herlev, Denmark
- Institute for Immunology and Microbiology, Copenhagen University, Copenhagen K, Denmark
| | | | | | - Per Boye Hansen
- Dept. Of Hematology, Zealand University Hospital, Roskilde, Rosklide, Denmark
| | - Özcan Met
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology Herlev Hospital, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology Herlev Hospital, Herlev, Denmark
- Institute for Immunology and Microbiology, Copenhagen University, Copenhagen K, Denmark
| | - Carsten Utoft Niemann
- Dept. Of Hematology, Rigshospitalet, Copenhagen, Denmark
- Institute for Immunology and Microbiology, Copenhagen University, Copenhagen K, Denmark
| | - Lars Møller Pedersen
- Dept. Of Hematology, Herlev Hospital, Herlev, Denmark
- Dept. Of Hematology, Rigshospitalet, Copenhagen, Denmark
- Dept. Of Hematology, Zealand University Hospital, Roskilde, Rosklide, Denmark
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology Herlev Hospital, Herlev, Denmark
- Institute for Immunology and Microbiology, Copenhagen University, Copenhagen K, Denmark
| |
Collapse
|
7
|
Dey S, Sutanto-Ward E, Kopp KL, DuHadaway J, Mondal A, Ghaban D, Lecoq I, Zocca MB, Merlo LMF, Mandik-Nayak L, Andersen MH, Pedersen AW, Muller AJ. Peptide vaccination directed against IDO1-expressing immune cells elicits CD8 + and CD4 + T-cell-mediated antitumor immunity and enhanced anti-PD1 responses. J Immunother Cancer 2021; 8:jitc-2020-000605. [PMID: 32690770 PMCID: PMC7373332 DOI: 10.1136/jitc-2020-000605] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Background The tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1), which subverts T-cell immunity at multiple levels, is itself subject to inherent T-cell reactivity. This intriguing deviation from central tolerance has been interpreted as counterbalancing IDO1-mediated immunosuppression. Based on this hypothesis, clinical studies employing an IDO1 peptide-based vaccine approach for cancer treatment have been initiated, but there remains a pressing need to further investigate the immunological ramifications of stimulating the anti-IDO1 T-cell response in this manner. Methods CT26 colon carcinoma tumors were evaluated for expression of IDO1 protein by western blot analysis, immunofluorescence microscopy and flow cytometry. Mouse IDO1-derived peptides, predicted to bind either major histocompatibility complex (MHC) class I or II of the H2d BALB/c strain, were emulsified in 50% Montanide for prophylactic or therapeutic vaccine treatment of CT26 tumor-bearing mice initiated either 7 days prior to or following tumor cell injection, respectively. In some therapeutic treatment experiments, administration of programmed cell death protein 1-binding antibody (anti-PD1 antibody) or epacadostat was concurrently initiated. Tumor size was determined by caliper measurements and comparative tumor growth suppression was assessed by longitudinal analyses of tumor growth data. For adoptive transfer, T cells from complete responder animals were isolated using paramagnetic beads and fluorescence-activated cell sorting. Results This study identifies mouse MHC class I-directed and II-directed, IDO1-derived peptides capable of eliciting antitumor responses, despite finding IDO1 expressed exclusively in tumor-infiltrating immune cells. Treatment of established tumors with anti-PD1 antibody and class I-directed but not class II-directed IDO1 peptide vaccines produced an enhanced antitumor response. Likewise, class I-directed and II-directed IDO1 peptides elicited an enhanced combinatorial response, suggesting distinct mechanisms of action. Consistent with this interpretation, adoptive transfer of isolated CD8+ T cells from class I and CD4+ T cells from class II peptide-vaccinated responder mice delayed tumor growth. The class II-directed response was completely IDO1-dependent while the class I-directed response included an IDO1-independent component consistent with antigen spread. Conclusions The in vivo antitumor effects demonstrated with IDO1-based vaccines via targeting of the tumor microenvironment highlight the utility of mouse models for further exploration and refinement of this novel vaccine-based approach to IDO1-directed cancer therapy and its potential to improve patient response rates to anti-PD1 therapy.
Collapse
Affiliation(s)
- Souvik Dey
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
| | | | | | - James DuHadaway
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
| | - Arpita Mondal
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
| | - Dema Ghaban
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA.,Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | - Lauren M F Merlo
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
| | | | - Mads Hald Andersen
- IO Biotech ApS, Copenhagen, Denmark.,National Center for Cancer Immune Therapy, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
8
|
Aaboe Jørgensen M, Ugel S, Linder Hübbe M, Carretta M, Perez-Penco M, Weis-Banke SE, Martinenaite E, Kopp K, Chapellier M, Adamo A, De Sanctis F, Frusteri C, Iezzi M, Zocca MB, Hargbøll Madsen D, Wakatsuki Pedersen A, Bronte V, Andersen MH. Arginase 1-Based Immune Modulatory Vaccines Induce Anticancer Immunity and Synergize with Anti-PD-1 Checkpoint Blockade. Cancer Immunol Res 2021; 9:1316-1326. [PMID: 34518197 DOI: 10.1158/2326-6066.cir-21-0280] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/14/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022]
Abstract
Expression of the L-arginine catabolizing enzyme arginase 1 (ARG1) is a central immunosuppressive mechanism mediated by tumor-educated myeloid cells. Increased activity of ARG1 promotes the formation of an immunosuppressive microenvironment and leads to a more aggressive phenotype in many cancers. Intrinsic T-cell immunity against ARG1-derived epitopes in the peripheral blood of cancer patients and healthy subjects has previously been demonstrated. To evaluate the antitumor efficacy of ARG1-derived peptide vaccines as a monotherapy and as a combinational therapy with checkpoint blockade, different in vivo syngeneic mouse tumor models were utilized. To evaluate the antitumor effects, flow cytometry analysis and IHC were performed on tumors, and ELISPOT assays were performed to characterize immune responses. We show that ARG1-targeting therapeutic vaccines were able to activate endogenous antitumor immunity in several in vivo syngeneic mouse tumor models and to modulate the cell composition of the tumor microenvironment without causing any associated side effects or systemic toxicity. ARG1-targeting vaccines in combination with anti-PD-1 also resulted in increased T-cell infiltration, decreased ARG1 expression, reduced suppressive function of tumor-educated myeloid cells, and a shift in the M1/M2 ratio of tumor-infiltrating macrophages. These results indicated that the induced shift toward a more proinflammatory microenvironment by ARG1-targeting immunotherapy favors effective tumor control when combined with anti-PD-1 checkpoint blockade. Our data illustrate the ability of ARG1-based immune modulatory vaccination to elicit antigen-specific immunosurveillance and imply the feasibility of this novel immunotherapeutic approach for clinical translation.
Collapse
Affiliation(s)
- Mia Aaboe Jørgensen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Stefano Ugel
- Immunology Section, Department of Medicine, University of Verona, Verona, Italy
| | - Mie Linder Hübbe
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Marco Carretta
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Maria Perez-Penco
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Stine Emilie Weis-Banke
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Evelina Martinenaite
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark.,IO Biotech ApS, Copenhagen, Denmark
| | | | | | - Annalisa Adamo
- Immunology Section, Department of Medicine, University of Verona, Verona, Italy
| | | | - Cristina Frusteri
- Immunology Section, Department of Medicine, University of Verona, Verona, Italy
| | - Manuela Iezzi
- Center for Advanced Studies and Technology (CAST), Department of Neurosciences Imaging and Clinical Sciences, University of G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | | | - Daniel Hargbøll Madsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Vincenzo Bronte
- Immunology Section, Department of Medicine, University of Verona, Verona, Italy
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark. .,IO Biotech ApS, Copenhagen, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Jou J, Harrington KJ, Zocca MB, Ehrnrooth E, Cohen EEW. The Changing Landscape of Therapeutic Cancer Vaccines-Novel Platforms and Neoantigen Identification. Clin Cancer Res 2020; 27:689-703. [PMID: 33122346 DOI: 10.1158/1078-0432.ccr-20-0245] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/12/2020] [Accepted: 10/26/2020] [Indexed: 12/30/2022]
Abstract
Therapeutic cancer vaccines, an exciting development in cancer immunotherapy, share the goal of creating and amplifying tumor-specific T-cell responses, but significant obstacles still remain to their success. Here, we briefly outline the principles underlying cancer vaccine therapy with a focus on novel vaccine platforms and antigens, underscoring the renewed optimism. Numerous strategies have been investigated to overcome immunosuppressive mechanisms of the tumor microenvironment (TME) and counteract tumor escape, including improving antigen selection, refining delivery platforms, and use of combination therapies. Several new cancer vaccine platforms and antigen targets are under development. In an effort to amplify tumor-specific T-cell responses, a heterologous prime-boost antigen delivery strategy is increasingly used for virus-based vaccines. Viruses have also been engineered to express targeted antigens and immunomodulatory molecules simultaneously, to favorably modify the TME. Nanoparticle systems have shown promise as delivery vectors for cancer vaccines in preclinical research. T-win is another platform targeting both tumor cells and the TME, using peptide-based vaccines that engage and activate T cells to target immunoregulatory molecules expressed on immunosuppressive and malignant cells. With the availability of next-generation sequencing, algorithms for neoantigen selection are emerging, and several bioinformatic platforms are available to select therapeutically relevant neoantigen targets for developing personalized therapies. However, more research is needed before the use of neoepitope prediction and personalized immunotherapy becomes commonplace. Taken together, the field of therapeutic cancer vaccines is fast evolving, with the promise of potential synergy with existing immunotherapies for long-term cancer treatment.
Collapse
Affiliation(s)
- Jessica Jou
- Moores Cancer Center, University of California, San Diego Health, La Jolla, California
| | - Kevin J Harrington
- The Institute of Cancer Research/Royal Marsden National Institute for Health Research Biomedical Research Centre, London, United Kingdom
| | | | | | - Ezra E W Cohen
- Moores Cancer Center, University of California, San Diego Health, La Jolla, California.
| |
Collapse
|
10
|
Weis-Banke SE, Hübbe ML, Holmström MO, Jørgensen MA, Bendtsen SK, Martinenaite E, Carretta M, Svane IM, Ødum N, Pedersen AW, Met Ö, Madsen DH, Andersen MH. The metabolic enzyme arginase-2 is a potential target for novel immune modulatory vaccines. Oncoimmunology 2020; 9:1771142. [PMID: 32923127 PMCID: PMC7458644 DOI: 10.1080/2162402x.2020.1771142] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
One way that tumors evade immune destruction is through tumor and stromal cell expression of arginine-degrading enzyme arginase-2 (ARG2). Here we describe the existence of pro-inflammatory effector T-cells that recognize ARG2 and can directly target tumor and tumor-infiltrating cells. Using a library of 34 peptides covering the entire ARG2 sequence, we examined reactivity toward these peptides in peripheral blood mononuclear cells from cancer patients and healthy individuals. Interferon-γ ELISPOT revealed frequent immune responses against several of the peptides, indicating that ARG2–specific self-reactive T-cells are natural components of the human T-cell repertoire. Based on this, the most immunogenic ARG2 protein region was further characterized. By identifying conditions in the microenvironment that induce ARG2 expression in myeloid cells, we showed that ARG2-specific CD4T-cells isolated and expanded from a peripheral pool from a prostate cancer patient could recognize target cells in an ARG2-dependent manner. In the ‘cold’ in vivo tumor model Lewis lung carcinoma, we found that activation of ARG2-specific T-cells by vaccination significantly inhibited tumor growth. Immune-modulatory vaccines targeting ARG2 thus are a candidate strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Stine Emilie Weis-Banke
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Copenhagen, Denmark
| | - Mie Linder Hübbe
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Copenhagen, Denmark
| | - Morten Orebo Holmström
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Copenhagen, Denmark
| | - Mia Aaboe Jørgensen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Copenhagen, Denmark
| | - Simone Kloch Bendtsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Copenhagen, Denmark
| | - Evelina Martinenaite
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Copenhagen, Denmark.,IO Biotech ApS, Copenhagen, Denmark
| | - Marco Carretta
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Copenhagen, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Copenhagen, Denmark
| | - Niels Ødum
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Özcan Met
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Copenhagen, Denmark
| | - Daniel Hargbøl Madsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Copenhagen, Denmark
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Copenhagen, Denmark.,IO Biotech ApS, Copenhagen, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Imai J, Ohashi S, Sakai T. Endoplasmic Reticulum-Associated Degradation-Dependent Processing in Cross-Presentation and Its Potential for Dendritic Cell Vaccinations: A Review. Pharmaceutics 2020; 12:pharmaceutics12020153. [PMID: 32070016 PMCID: PMC7076524 DOI: 10.3390/pharmaceutics12020153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 01/14/2023] Open
Abstract
While the success of dendritic cell (DC) vaccination largely depends on cross-presentation (CP) efficiency, the precise molecular mechanism of CP is not yet characterized. Recent research revealed that endoplasmic reticulum (ER)-associated degradation (ERAD), which was first identified as part of the protein quality control system in the ER, plays a pivotal role in the processing of extracellular proteins in CP. The discovery of ERAD-dependent processing strongly suggests that the properties of extracellular antigens are one of the keys to effective DC vaccination, in addition to DC subsets and the maturation of these cells. In this review, we address recent advances in CP, focusing on the molecular mechanisms of the ERAD-dependent processing of extracellular proteins. As ERAD itself and the ERAD-dependent processing in CP share cellular machinery, enhancing the recognition of extracellular proteins, such as the ERAD substrate, by ex vivo methods may serve to improve the efficacy of DC vaccination.
Collapse
Affiliation(s)
- Jun Imai
- Correspondence: ; Tel.: +81-27-352-1180
| | | | | |
Collapse
|
12
|
Malachowski T, Hassel A. Engineering nanoparticles to overcome immunological barriers for enhanced drug delivery. ENGINEERED REGENERATION 2020. [DOI: 10.1016/j.engreg.2020.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
13
|
Martinenaite E, Ahmad SM, Bendtsen SK, Jørgensen MA, Weis-Banke SE, Svane IM, Andersen MH. Arginase-1-based vaccination against the tumor microenvironment: the identification of an optimal T-cell epitope. Cancer Immunol Immunother 2019; 68:1901-1907. [PMID: 31690955 DOI: 10.1007/s00262-019-02425-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023]
Abstract
L-arginine depletion by regulatory cells and cancer cells expressing arginase-1 (Arg-1) is a vital contributor to the immunosuppressive tumor microenvironment in patients with cancer. We have recently described the existence of pro-inflammatory effector T cells that recognize Arg-1. Hence, Arg-1-specific self-reactive T cells are a naturally occurring part of the memory T-cell repertoire of the human immune system. Here, we further characterize a highly immunogenic epitope from Arg-1. We describe frequent T-cell-based immune responses against this epitope in patients with cancer, as well as in healthy donors. Furthermore, we show that Arg-1-specific T cells expand in response to the TH2 cytokine interleukin (IL)-4 without any specific stimulation. Arg-1-specific memory TH1 cells that respond to increased IL-4 concentration may, therefore, drive the immune response back into the TH1 pathway. Arg-1-specific T cells thus appear to have an important function in immune regulation. Because Arg-1 plays an important role in the immunosuppressive microenvironment in most cancers, an immune modulatory vaccination approach can readily be employed to tilt the balance away from immune suppression in these settings.
Collapse
Affiliation(s)
- Evelina Martinenaite
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 2730, Herlev, Denmark
- IO Biotech ApS, 2200, Copenhagen, Denmark
| | - Shamaila Munir Ahmad
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 2730, Herlev, Denmark
| | - Simone Kloch Bendtsen
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 2730, Herlev, Denmark
| | - Mia Aaboe Jørgensen
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 2730, Herlev, Denmark
| | - Stine Emilie Weis-Banke
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 2730, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 2730, Herlev, Denmark
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 2730, Herlev, Denmark.
- IO Biotech ApS, 2200, Copenhagen, Denmark.
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
Ødum N. Anti-regulatory T cells are natural regulatory effector T cells. Cell Stress 2019; 3:310-311. [PMID: 31680691 PMCID: PMC6789433 DOI: 10.15698/cst2019.10.199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 01/13/2023] Open
Affiliation(s)
- Niels Ødum
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| |
Collapse
|
15
|
Christofi T, Baritaki S, Falzone L, Libra M, Zaravinos A. Current Perspectives in Cancer Immunotherapy. Cancers (Basel) 2019; 11:1472. [PMID: 31575023 PMCID: PMC6826426 DOI: 10.3390/cancers11101472] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
Different immunotherapeutic approaches have proved to be of significant clinical value to many patients with different types of advanced cancer. However, we need more precise immunotherapies and predictive biomarkers to increase the successful response rates. The advent of next generation sequencing technologies and their applications in immuno-oncology has helped us tremendously towards this aim. We are now moving towards the realization of personalized medicine, thus, significantly increasing our expectations for a more successful management of the disease. Here, we discuss the current immunotherapeutic approaches against cancer, including immune checkpoint blockade with an emphasis on anti-PD-L1 and anti-CTLA-4 monoclonal antibodies. We also analyze a growing list of other co-inhibitory and co-stimulatory markers and emphasize the mechanism of action of the principal pathway for each of these, as well as on drugs that either have been FDA-approved or are under clinical investigation. We further discuss recent advances in other immunotherapies, including cytokine therapy, adoptive cell transfer therapy and therapeutic vaccines. We finally discuss the modulation of gut microbiota composition and response to immunotherapy, as well as how tumor-intrinsic factors and immunological processes influence the mutational and epigenetic landscape of progressing tumors and response to immunotherapy but also how immunotherapeutic intervention influences the landscape of cancer neoepitopes and tumor immunoediting.
Collapse
Affiliation(s)
- Theodoulakis Christofi
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus.
| | - Stavroula Baritaki
- Division of Surgery, School of Medicine, University of Crete, P.O. Box 2208, Voutes, 71003 Heraklion, Crete, Greece.
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinic and General Pathology Section, University of Catania, 95123 Catania, Italy.
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinic and General Pathology Section, University of Catania, 95123 Catania, Italy.
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus.
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy.
| |
Collapse
|
16
|
Munir S, Lundsager MT, Jørgensen MA, Hansen M, Petersen TH, Bonefeld CM, Friese C, Met Ö, Straten PT, Andersen MH. Inflammation induced PD-L1-specific T cells. Cell Stress 2019; 3:319-327. [PMID: 31656949 PMCID: PMC6789434 DOI: 10.15698/cst2019.10.201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PD-L1-specific T cells are a natural part of the T-cell repertoire in humans. Hence, we have previously described spontaneous CD8+ and CD4+ T-cell reactivity against PD-L1 in the peripheral blood of patients with various cancers as well as in healthy donors. It is well described that the expression of the PD-L1 protein is introduced in cells by pro-inflammatory cytokines, e.g. IFN-γ. In the current study, we were able to directly link inflammation with PD-L1-specific T cells by showing that inflammatory mediators such as IFN-γ generate measurable numbers of PD-L1-specific T cells in human PBMCs as well as in in vivo models. These PD-L1-specific T cells can vigorously modulate the cell compartments of the local environment. PD-L1-specific T cells may be important for immune homeostasis by sustaining the ongoing inflammatory response by the suppression of regulatory cell function both directly and indirectly.
Collapse
Affiliation(s)
- Shamaila Munir
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital, Herlev, Denmark
| | - Mia Thorup Lundsager
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital, Herlev, Denmark
| | - Mia Aabroe Jørgensen
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital, Herlev, Denmark
| | - Morten Hansen
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital, Herlev, Denmark
| | - Trine Hilkjær Petersen
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Menne Bonefeld
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Christina Friese
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital, Herlev, Denmark
| | - Özcan Met
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital, Herlev, Denmark.,The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Per Thor Straten
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital, Herlev, Denmark.,The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital, Herlev, Denmark.,The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,IO Biotech ApS, DK-2200 Copenhagen, Denmark
| |
Collapse
|
17
|
Martinenaite E, Ahmad SM, Svane IM, Andersen MH. Peripheral memory T cells specific for Arginase-1. Cell Mol Immunol 2019; 16:718-719. [PMID: 31076727 DOI: 10.1038/s41423-019-0231-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 11/09/2022] Open
Affiliation(s)
- Evelina Martinenaite
- Center for Cancer Immune Therapy (CCIT), Copenhagen University Hospital, Herlev, Denmark.
| | - Shamaila Munir Ahmad
- Center for Cancer Immune Therapy (CCIT), Copenhagen University Hospital, Herlev, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy (CCIT), Copenhagen University Hospital, Herlev, Denmark
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Copenhagen University Hospital, Herlev, Denmark. .,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Jørgensen N, Persson G, Hviid TVF. The Tolerogenic Function of Regulatory T Cells in Pregnancy and Cancer. Front Immunol 2019; 10:911. [PMID: 31134056 PMCID: PMC6517506 DOI: 10.3389/fimmu.2019.00911] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells, a subpopulation of suppressive T cells, are potent mediators of self-tolerance and essential for the suppression of triggered immune responses. The immune modulating capacity of these cells play a major role in both transplantation, autoimmune disease, allergy, cancer and pregnancy. During pregnancy, low numbers of regulatory T cells are associated with pregnancy failure and pregnancy complications such as pre-eclampsia. On the other hand, in cancer, low numbers of immunosuppressive T cells are correlated with better prognosis. Hence, maternal immune tolerance toward the fetus during pregnancy and the escape from host immunosurveillance by cancer seem to be based on similar immunological mechanisms being highly dependent on the balance between immune activation and suppression. As regulatory T cells hold a crucial role in several biological processes, they may also be promising subjects for therapeutic use. Especially in the field of cancer, cell therapy and checkpoint inhibitors have demonstrated that immune-based therapies have a very promising potential in treatment of human malignancies. However, these therapies are often accompanied by adverse autoimmune side effects. Therefore, expanding the knowledge to recognize the complexities of immune regulation pathways shared across different immunological scenarios is extremely important in order to improve and develop new strategies for immune-based therapy. The intent of this review is to highlight the functional characteristics of regulatory T cells in the context of mechanisms of immune regulation in pregnancy and cancer, and how manipulation of these mechanisms potentially may improve therapeutic options.
Collapse
Affiliation(s)
| | | | - Thomas Vauvert F. Hviid
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), The ReproHealth Consortium ZUH, Zealand University Hospital, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Abstract
Many different therapeutic strategies focus on targeting tumor-associated macrophages (TAMs), due to their vital role in creating an immune suppressive tumor microenvironment (TME) with the aim to deplete, repro-gram or target the functional mediators secreted by these cells. Immune modulatory vaccination is an emerging strategy to target immune suppressive myeloid populations in the TME. In contrast to the other clinical strategies that target TAMs, this combines both TAM depletion (through direct killing by cytotoxic T cells) and TAM reprogramming (by introducing pro-inflammatory cytokines into the immune suppressive microenvironment).
Collapse
Affiliation(s)
- Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital, Herlev, DK-2730 Herlev, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark.,IO Biotech ApS, DK-2200 Copenhagen, Denmark
| |
Collapse
|
20
|
Werfel TA, Elion DL, Rahman B, Hicks DJ, Sanchez V, Gonzales-Ericsson PI, Nixon MJ, James JL, Balko JM, Scherle PA, Koblish HK, Cook RS. Treatment-Induced Tumor Cell Apoptosis and Secondary Necrosis Drive Tumor Progression in the Residual Tumor Microenvironment through MerTK and IDO1. Cancer Res 2018; 79:171-182. [PMID: 30413412 DOI: 10.1158/0008-5472.can-18-1106] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/31/2018] [Accepted: 11/06/2018] [Indexed: 11/16/2022]
Abstract
Efferocytosis is the process by which apoptotic cells are cleared from tissue by phagocytic cells. The removal of apoptotic cells prevents them from undergoing secondary necrosis and releasing their inflammation-inducing intracellular contents. Efferocytosis also limits tissue damage by increasing immunosuppressive cytokines and leukocytes and maintains tissue homeostasis by promoting tolerance to antigens derived from apoptotic cells. Thus, tumor cell efferocytosis following cytotoxic cancer treatment could impart tolerance to tumor cells evading treatment-induced apoptosis with deleterious consequences in tumor residual disease. We report here that efferocytosis cleared apoptotic tumor cells in residual disease of lapatinib-treated HER2+ mammary tumors in MMTV-Neu mice, increased immunosuppressive cytokines, myeloid-derived suppressor cells (MDSC), and regulatory T cells (Treg). Blockade of efferocytosis induced secondary necrosis of apoptotic cells, but failed to prevent increased tumor MDSCs, Treg, and immunosuppressive cytokines. We found that efferocytosis stimulated expression of IFN-γ, which stimulated the expression of indoleamine-2,3-dioxegenase (IDO) 1, an immune regulator known for driving maternal-fetal antigen tolerance. Combined inhibition of efferocytosis and IDO1 in tumor residual disease decreased apoptotic cell- and necrotic cell-induced immunosuppressive phenotypes, blocked tumor metastasis, and caused tumor regression in 60% of MMTV-Neu mice. This suggests that apoptotic and necrotic tumor cells, via efferocytosis and IDO1, respectively, promote tumor 'homeostasis' and progression. SIGNIFICANCE: These findings show in a model of HER2+ breast cancer that necrosis secondary to impaired efferocytosis activates IDO1 to drive immunosuppression and tumor progression.
Collapse
Affiliation(s)
- Thomas A Werfel
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - David L Elion
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Bushra Rahman
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Donna J Hicks
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Violeta Sanchez
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Mellissa J Nixon
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jamaal L James
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Justin M Balko
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Peggy A Scherle
- Preclinical Biology, Incyte Corporation, Experimental Station, Wilmington, Delaware
| | - Holly K Koblish
- Preclinical Biology, Incyte Corporation, Experimental Station, Wilmington, Delaware
| | - Rebecca S Cook
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee. .,Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee
| |
Collapse
|
21
|
Anti-cancer immunotherapy: breakthroughs and future strategies. Semin Immunopathol 2018; 41:1-3. [PMID: 30242450 DOI: 10.1007/s00281-018-0711-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022]
|
22
|
Cytokine secretion responsiveness of lymphomonocytes following cortisol cell exposure: Sex differences. PLoS One 2018; 13:e0200924. [PMID: 30048487 PMCID: PMC6062061 DOI: 10.1371/journal.pone.0200924] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/05/2018] [Indexed: 02/05/2023] Open
Abstract
The stress hormone cortisol has been recognized as a coordinator of immune response. However, its different ability to modulate the release of inflammatory mediators in males and females has not been clarified yet. Indeed, the dissection of cortisol specific actions may be difficult due to the complex hormonal and physio-pathological individual status. Herein, the release of inflammatory mediators following increasing cortisol concentrations was investigated in an in vitro model of primary human male and female lymphomonocytes. The use of a defined cellular model to assess sex differences in inflammatory cytokine secretion could be useful to exclude the effects of divergent and fluctuating sex hormone levels occurring in vivo. Herein, the cells were challenged with cortisol concentrations resembling the plasma levels achieving in physiological and stressful conditions. The production of cytokines and other molecules involved in inflammatory process was determined. In basal conditions, male cells presented higher levels of some pro-inflammatory molecules (NF-kB and IDO-1 mRNAs, IL-6 and kynurenine) than female cells. Following cortisol exposure, the levels of the pro-inflammatory cytokines, IL-6 and IL-8, were increased in male cells. Conversely, in female cells IL-6 release was unchanged and IL-8 levels were decreased. Anti-inflammatory cytokines, IL-4 and IL-10, did not change in male cells and increased in female cells. Interestingly, kynurenine levels were higher in female cells than in male cells following cortisol stimulus. These results highlighted that cortisol differently affects male and female lymphomonocytes, shifting the cytokine release in favour of a pro-inflammatory pattern in male cells and an anti-inflammatory secretion profile in female cells, opening the way to study the influences of other stressful factors involved in the neurohumoral changes occurring in the response to stress conditions.
Collapse
|
23
|
Jørgensen MA, Holmström MO, Martinenaite E, Riley CH, Hasselbalch HC, Andersen MH. Spontaneous T-cell responses against Arginase-1 in the chronic myeloproliferative neoplasms relative to disease stage and type of driver mutation. Oncoimmunology 2018; 7:e1468957. [PMID: 30228936 DOI: 10.1080/2162402x.2018.1468957] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 01/11/2023] Open
Abstract
Compelling evidence supports the existence of a profound immune dysregulation in patients with chronic myeloproliferative neoplasms (MPN). Increased Arginase-1 expression has been described in MPN patients and in solid cancers. This increase contributes to an immunosuppressive tumor microenvironment in MPN patients because of L-arginine depletion by Arginase-1-expressing regulatory cells and cancer cells, which subsequently limits the activation of circulating effector cells. In the present study, we demonstrate that Arginase-1-derived peptides are recognized by T cells among peripheral mononuclear blood cells from MPN patients. We characterized the Arginase-1-specific T cells as being CD4+ and found that the magnitude of response to the Arginase-1 peptides depends on disease stage. Activation of Arginase-1-specific T cells by vaccination could be an attractive novel immunotherapeutic approach to targeting malignant and suppressive cells in MPN patients in combination with other immunotherapeutics.
Collapse
Affiliation(s)
- Mia Aaboe Jørgensen
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | - Morten Orebo Holmström
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital, Herlev, Denmark.,Deparmtent of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Evelina Martinenaite
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | | | | | - Mads Hald Andersen
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital, Herlev, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Klausen U, Jørgensen NGD, Grauslund JH, Holmström MO, Andersen MH. Cancer immune therapy for lymphoid malignancies: recent advances. Semin Immunopathol 2018; 41:111-124. [PMID: 30006739 DOI: 10.1007/s00281-018-0696-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 12/21/2022]
Abstract
Immunotherapy has played an important part in improving the life of patients with lymphoproliferative diseases especially since the addition of rituximab to chemotherapy in the CD20-positive neoplasms in the 1990s. While this field of passive immunotherapy is continuously evolving, several breakthroughs will expand the treatment modalities to include more active immunotherapy. With the approval of immune checkpoint-blocking antibodies for Hodgkin lymphoma and bispecific antibodies for acute lymphoblastic leukemia (ALL), activation of endogenous T cells already plays a role in several lymphoid malignancies. With the approval of cellular therapies with CAR-T cells for ALL and diffuse large B cell lymphoma, the impact of the manipulation of immune responses is taken even further. Vaccines are cellular therapies in the opposite end of the spectrum in terms of side effects, and while the big breakthrough is still to come, the prospect of a very low-toxic immunotherapy which could be applicable also in premalignant states or in frail patients drives a considerable research activity in the area. In this review, we summarize the mechanisms of action and clinical data on trials in the lymphoid neoplasms with chimeric antigen receptor T cells, bispecific antibodies, immune checkpoint-blocking antibodies, and antineoplastic vaccination therapy.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/therapeutic use
- Antineoplastic Agents, Immunological/therapeutic use
- Biomarkers, Tumor
- Cancer Vaccines
- Humans
- Immunotherapy/methods
- Immunotherapy, Adoptive/methods
- Leukemia, Lymphoid/diagnosis
- Leukemia, Lymphoid/immunology
- Leukemia, Lymphoid/therapy
- Lymphoma/diagnosis
- Lymphoma/immunology
- Lymphoma/metabolism
- Lymphoma/therapy
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Vaccination
Collapse
Affiliation(s)
- Uffe Klausen
- Center for Cancer Immunotherapy, Department of hematology, Herlev Hospital, Herlev, Denmark.
| | | | - Jacob Handlos Grauslund
- Center for Cancer Immunotherapy, Department of hematology, Herlev Hospital, Herlev, Denmark
- Department of hematology, Roskilde Hospital, Roskilde, Denmark
| | - Morten Orebo Holmström
- Center for Cancer Immunotherapy, Department of hematology, Herlev Hospital, Herlev, Denmark
- Department of hematology, Roskilde Hospital, Roskilde, Denmark
| | - Mads Hald Andersen
- Center for Cancer Immunotherapy, Department of hematology, Herlev Hospital, Herlev, Denmark
- Institution for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Andersen MH. The T-win® technology: immune-modulating vaccines. Semin Immunopathol 2018; 41:87-95. [PMID: 29968045 DOI: 10.1007/s00281-018-0695-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/14/2018] [Indexed: 12/25/2022]
Abstract
The T-win® technology is an innovative investigational approach designed to activate the body's endogenous anti-regulatory T cells (anti-Tregs) to target regulatory as well as malignant cells. Anti-Tregs are naturally occurring T cells that can directly react against regulatory immune cells because they recognize proteins that these targets express, including indoleamine 2,3-dioxygenase (IDO), tryptophan 2,6-dioxygenase, arginase, and programmed death ligand 1 (PD-L1). The T-win® technology is characterized by therapeutic vaccination with long peptide epitopes derived from these antigens and therefore offers a novel way to target genetically stable cells with regular human leukocyte antigen expression in the tumor microenvironment. The T-win® technology thus also represents a novel way to attract pro-inflammatory cells to the tumor microenvironment where they can directly affect immune inhibitory pathways, potentially altering tolerance to tumor antigens. The modification of an immune regulatory environment into a pro-inflammatory milieu potentiates effective anti-tumor T cell responses. Many regulatory immune cells may be reverted into effector cells given the right stimulus. Because T-win® technology is based on the immune-modulatory function of the vaccines, the vaccines activate both CD4 and CD8 anti-Tregs. Of importance, in clinical trials, vaccinations against IDO or PD-L1 to potentiate anti-Tregs have so far proved to be safe, with minimal toxicity.
Collapse
Affiliation(s)
- Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, DK-2730, Herlev, Denmark. .,Department of Immunology and Microbiology, University of Copenhagen, DK-2200, Copenhagen, Denmark. .,IO Biotech ApS, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
26
|
Yu Y, Ma X, Gong R, Zhu J, Wei L, Yao J. Recent advances in CD8 + regulatory T cell research. Oncol Lett 2018; 15:8187-8194. [PMID: 29805553 DOI: 10.3892/ol.2018.8378] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 02/01/2018] [Indexed: 11/05/2022] Open
Abstract
Various subgroups of CD8+ T lymphocytes do not only demonstrate cytotoxic effects, but also serve important regulatory roles in the body's immune response. In particular, CD8+ regulatory T cells (CD8+ Tregs), which possess important immunosuppressive functions, are able to effectively block the overreacting immune response and maintain the body's immune homeostasis. In recent years, studies have identified a small set of special CD8+ Tregs that can recognize major histocompatibility complex class Ib molecules, more specifically Qa-1 in mice and HLA-E in humans, and target the self-reactive CD4+ T ce lls. These findings have generated broad implications in the scientific community and attracted general interest to CD8+ Tregs. The present study reviews the recent research progress on CD8+ Tregs, including their origin, functional classification, molecular markers and underlying mechanisms of action.
Collapse
Affiliation(s)
- Yating Yu
- Department of Medical School, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, P.R. China
| | - Xinbo Ma
- Department of Medical School, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, P.R. China
| | - Rufei Gong
- Department of Medical School, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, P.R. China
| | - Jianmeng Zhu
- Department of Chunan First People's Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Lihua Wei
- Department of Medical School, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, P.R. China
| | - Jinguang Yao
- Department of Medical School, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, P.R. China
| |
Collapse
|
27
|
Andersen MH. The Balance Players of the Adaptive Immune System. Cancer Res 2018; 78:1379-1382. [DOI: 10.1158/0008-5472.can-17-3607] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/12/2017] [Accepted: 01/02/2018] [Indexed: 11/16/2022]
|
28
|
Morales V, Soto-Ortiz L. Modeling Macrophage Polarization and Its Effect on Cancer Treatment Success. ACTA ACUST UNITED AC 2018; 8:36-80. [PMID: 35847834 PMCID: PMC9286492 DOI: 10.4236/oji.2018.82004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Positive feedback loops drive immune cell polarization toward a pro-tumor phenotype that accentuates immunosuppression and tumor angiogenesis. This phenotypic switch leads to the escape of cancer cells from immune destruction. These positive feedback loops are generated by cytokines such as TGF-β, Interleukin-10 and Interleukin-4, which are responsible for the polarization of monocytes and M1 macrophages into pro-tumor M2 macrophages, and the polarization of naive helper T cells intopro-tumor Th2 cells. In this article, we present a deterministic ordinary differential equation (ODE) model that includes key cellular interactions and cytokine signaling pathways that lead to immune cell polarization in the tumor microenvironment. The model was used to simulate various cancer treatments in silico. We identified combination therapies that consist of M1 macrophages or Th1 helper cells, coupled with an anti-angiogenic treatment, that are robust with respect to immune response strength, initial tumor size and treatment resistance. We also identified IL-4 and IL-10 as the targets that should be neutralized in order to make these combination treatments robust with respect to immune cell polarization. The model simulations confirmed a hypothesis based on published experimental evidence that a polarization into the M1 and Th1 phenotypes to increase the M1-to-M2 and Th1-to-Th2 ratios plays a significant role in treatment success. Our results highlight the importance of immune cell reprogramming as a viable strategy to eradicate a highly vascularized tumor when the strength of the immune response is characteristically weak and cell polarization to the pro-tumor phenotype has occurred.
Collapse
Affiliation(s)
- Valentin Morales
- Department of Engineering and Technologies, East Los Angeles College, Monterey Park, USA
| | - Luis Soto-Ortiz
- Department of Mathematics, East Los Angeles College, Monterey Park, USA
| |
Collapse
|
29
|
Martinenaite E, Mortensen REJ, Hansen M, Orebo Holmström M, Munir Ahmad S, Grønne Dahlager Jørgensen N, Met Ö, Donia M, Svane IM, Andersen MH. Frequent adaptive immune responses against arginase-1. Oncoimmunology 2017; 7:e1404215. [PMID: 29399404 DOI: 10.1080/2162402x.2017.1404215] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/25/2017] [Accepted: 11/07/2017] [Indexed: 01/09/2023] Open
Abstract
The enzyme arginase-1 reduces the availability of arginine to tumor-infiltrating immune cells, thus reducing T-cell functionality in the tumor milieu. Arginase-1 is expressed by some cancer cells and by immune inhibitory cells, such as myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs), and its expression is associated with poor prognosis. In the present study, we divided the arginase-1 protein sequence into overlapping 20-amino-acid-long peptides, generating a library of 31 peptides covering the whole arginase-1 sequence. Reactivity towards this peptide library was examined in PBMCs from cancer patients and healthy individuals. IFNγ ELISPOT revealed frequent immune responses against multiple arginase-1-derived peptides. We further identified a hot-spot region within the arginase-1 protein sequence containing multiple epitopes recognized by T cells. Next, we examined in vitro-expanded tumor-infiltrating lymphocytes (TILs) isolated from melanoma patients, and detected arginase-1-specific T cells that reacted against epitopes from the hot-spot region. Arginase-1-specific CD4+T cells could be isolated and expanded from peripheral T cell pool of a patient with melanoma, and further demonstrated the specificity and reactivity of these T cells. Overall, we showed that arginase-1-specific T cells were capable of recognizing arginase-1-expressing cells. The activation of arginase-1-specific T cells by vaccination is an attractive approach to target arginase-1-expressing malignant cells and inhibitory immune cells. In the clinical setting, the induction of arginase-1-specific immune responses could induce or increase Th1 inflammation at the sites of tumors that are otherwise excluded due to infiltration with MDSCs and TAMs.
Collapse
Affiliation(s)
- Evelina Martinenaite
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Morten Hansen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | - Morten Orebo Holmström
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark.,Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Shamaila Munir Ahmad
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Özcan Met
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark.,Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Marco Donia
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark.,Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark.,Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark.,Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| |
Collapse
|
30
|
Ahmad SM, Martinenaite E, Holmström M, Jørgensen MA, Met Ö, Nastasi C, Klausen U, Donia M, Pedersen LM, Munksgaard L, Ødum N, Woetmann A, Svane IM, Andersen MH. The inhibitory checkpoint, PD-L2, is a target for effector T cells: Novel possibilities for immune therapy. Oncoimmunology 2017; 7:e1390641. [PMID: 29308318 DOI: 10.1080/2162402x.2017.1390641] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/05/2017] [Accepted: 10/05/2017] [Indexed: 10/18/2022] Open
Abstract
Cell surface molecules of the B7/CD28 family play an important role in T-cell activation and tolerance. The relevance of the PD-1/PD-L1 pathway in cancer has been extensively studied whereas PD-L2 has received less attention. However, recently the expression of PD-L2 was described to be independently associated with clinical response in anti-PD1-treated cancer patients. Here, we investigated whether PD-L2 might represent a natural target that induces specific T cells. We identified spontaneous specific T-cell reactivity against two epitopes located in the signal peptide of PD-L2 from samples from patients with cancer as well as healthy individuals ex vivo. We characterized both CD8+ and CD4+ PD-L2-specific T cells. Interestingly, the epitope in PD-L2 that elicited the strongest response was equivalent to a potent HLA-A2-restricted epitope in PD-L1. Importantly, PD-L1-specific and PD-L2-specific T cells did not cross-react; therefore, they represent different T-cell antigens. Moreover, PD-L2-specific T cells reacted to autologous target cells depending on PD-L2 expression. These results suggested that activating PD-L2 specific T cells (e.g., by vaccination) might be an attractive strategy for anti-cancer immunotherapy. Accordingly, PD-L2 specific T cells can directly support anti-cancer immunity by killing of target cells, as well as, indirectly, by releasing pro-inflammatory cytokines at the microenvironment in response to PD-L2-expressing immune supressive cells.
Collapse
Affiliation(s)
- Shamaila Munir Ahmad
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, DK-2730 Herlev, Denmark
| | - Evelina Martinenaite
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, DK-2730 Herlev, Denmark
| | - Morten Holmström
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, DK-2730 Herlev, Denmark.,Department of Hematology, Zealand University Hospital, DK-4000 Roskilde, Denmark
| | - Mia Aaboe Jørgensen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, DK-2730 Herlev, Denmark
| | - Özcan Met
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, DK-2730 Herlev, Denmark.,Department of Oncology, Copenhagen University Hospital, Herlev, DK-2730 Herlev, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Nastasi
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Uffe Klausen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, DK-2730 Herlev, Denmark
| | - Marco Donia
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, DK-2730 Herlev, Denmark.,Department of Oncology, Copenhagen University Hospital, Herlev, DK-2730 Herlev, Denmark
| | - Lars Møller Pedersen
- Department of hematology, Copenhagen University Hospital, Herlev, DK-2730 Herlev, Denmark
| | - Lars Munksgaard
- Department of Hematology, Zealand University Hospital, DK-4000 Roskilde, Denmark
| | - Niels Ødum
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, DK-2730 Herlev, Denmark.,Department of Oncology, Copenhagen University Hospital, Herlev, DK-2730 Herlev, Denmark
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, DK-2730 Herlev, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Gulley JL, Repasky EA, Wood LS, Butterfield LH. Highlights of the 31st annual meeting of the Society for Immunotherapy of Cancer (SITC), 2016. J Immunother Cancer 2017; 5:55. [PMID: 28716068 PMCID: PMC5514521 DOI: 10.1186/s40425-017-0262-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/26/2017] [Indexed: 12/13/2022] Open
Abstract
Therapeutic efforts to engage the immune system against cancer have yielded exciting breakthroughs and a growing list of approved immune-based agents across a variety of disease states. Despite the early successes and durable responses associated with treatments such as immune checkpoint inhibition, there is still progress to be made in the field of cancer immunotherapy. The 31st annual meeting of the Society for Immunotherapy of Cancer (SITC 2016), which took place November 11–13, 2016 in National Harbor, Maryland, showcased the latest advancements in basic, translational, and clinical research focused on cancer immunology and immunotherapy. Novel therapeutic targets, insights into the dynamic tumor microenvironment, potential biomarkers, and novel combination approaches were some of the main themes covered at SITC 2016. This report summarizes key data and highlights from each session.
Collapse
Affiliation(s)
- James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, NCI, 10 Center Dr., 13N240, Bethesda, MD, 20892, USA
| | - Elizabeth A Repasky
- Department of Immunology/CGP-L5-321, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY, 14263, USA
| | - Laura S Wood
- Cleveland Clinic Taussig Cancer Institute, 13907, Blackberry Circle, Strongsville, OH, 44136, USA
| | - Lisa H Butterfield
- Department of Medicine, Surgery and Immunology, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
32
|
Timosenko E, Hadjinicolaou AV, Cerundolo V. Modulation of cancer-specific immune responses by amino acid degrading enzymes. Immunotherapy 2017; 9:83-97. [PMID: 28000524 DOI: 10.2217/imt-2016-0118] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To evade immune destruction, tumors exploit a wide range of immune escape mechanisms, including the induction of an immunosuppressive tumor microenvironment. This is mediated, in part, by amino acid degrading enzymes indoleamine 2,3-dioxygenase, tryptophan 2,3-dioxygenase, arginase 1 and arginase 2, which have emerged as key players in the regulation of tumor-induced immune tolerance. Here we describe how the expression of tryptophan- and arginine-degrading enzymes by tumor and tumor-infiltrating cells can hamper cancer-specific immune responses, and discuss how this knowledge is being exploited to develop new strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Elina Timosenko
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Andreas V Hadjinicolaou
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| |
Collapse
|
33
|
Martinenaite E, Munir Ahmad S, Hansen M, Met Ö, Westergaard MW, Larsen SK, Klausen TW, Donia M, Svane IM, Andersen MH. CCL22-specific T Cells: Modulating the immunosuppressive tumor microenvironment. Oncoimmunology 2016; 5:e1238541. [PMID: 27999757 DOI: 10.1080/2162402x.2016.1238541] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 10/20/2022] Open
Abstract
Tumor cells and tumor-infiltrating macrophages produce the chemokine CCL22, which attracts regulatory T cells (Tregs) into the tumor microenvironment, decreasing anticancer immunity. Here, we investigated the possibility of targeting CCL22-expressing cells by activating specific T cells. We analyzed the CCL22 protein signal sequence, identifying a human leukocyte antigen A2- (HLA-A2-) restricted peptide epitope, which we then used to stimulate peripheral blood mononuclear cells (PMBCs) to expand populations of CCL22-specific T cells in vitro. T cells recognizing an epitope derived from the signal-peptide of CCL22 will recognize CCL22-expressing cells even though CCL22 is secreted out of the cell. CCL22-specific T cells recognized and killed CCL22-expressing cancer cells. Furthermore, CCL22-specific T cells lysed acute monocytic leukemia cells in a CCL22 expression-dependent manner. Using the Enzyme-Linked ImmunoSPOT assay, we examined peripheral blood mononuclear cells from HLA-A2+ cancer patients and healthy volunteers for reactivity against the CCL22-derived T-cell epitope. This revealed spontaneous T-cell responses against the CCL22-derived epitope in cancer patients and in healthy donors. Finally, we performed tetramer enrichment/depletion experiments to examine the impact of HLA-A2-restricted CCL22-specific T cells on CCL22 levels among PMBCs. The addition or activation of CCL22-specific T cells decreased the CCL22 level in the microenvironment. Activating CCL22-specific T cells (e.g., by vaccination) may directly target cancer cells and tumor-associated macrophages, thereby modulating Treg recruitment into the tumor environment and augmenting anticancer immunity.
Collapse
Affiliation(s)
- Evelina Martinenaite
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital , Herlev, Denmark
| | - Shamaila Munir Ahmad
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital , Herlev, Denmark
| | - Morten Hansen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital , Herlev, Denmark
| | - Özcan Met
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Marie Wulff Westergaard
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital , Herlev, Denmark
| | - Stine Kiaer Larsen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital , Herlev, Denmark
| | - Tobias Wirenfeldt Klausen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital , Herlev, Denmark
| | - Marco Donia
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Abstract
Our initial understanding of immune-regulatory cells was based on the discovery of suppressor cells that assure peripheral T-cell tolerance and promote immune homeostasis. Research has particularly focused on the importance of regulatory T cells (Tregs) for immune modulation, e.g. directing host responses to tumours or inhibiting autoimmunity development. However, recent studies report the discovery of self-reactive pro-inflammatory T cells-termed anti-regulatory T cells (anti-Tregs)-that target immune-suppressive cells. Thus, regulatory cells can now be defined as both cells that suppress immune reactions as well as effector cells that counteract the effects of suppressor cells and support immune reactions. Self-reactive anti-Tregs have been described that specifically recognize human leukocyte antigen-restricted epitopes derived from proteins that are normally expressed by regulatory immune cells, including indoleamine 2,3-dioxygenase (IDO), tryptophan 2,6-dioxygenase (TDO), programmed death-ligand 1 (PD-L1), and forkhead box P3 (Foxp3). These proteins are highly expressed in professional antigen-presenting cells under various physiological conditions, such as inflammation and stress. Therefore, self-reactive T cells that recognize such targets may be activated due to the strong activation signal given by their cognate targets. The current review describes the existing knowledge regarding these self-reactive anti-Tregs, providing examples of antigen-specific anti-Tregs and discussing their possible roles in immune homeostasis and their potential future clinical applications.
Collapse
Affiliation(s)
- Mads Hald Andersen
- Department of Hematology, Center for Cancer Immune Therapy (CCIT), Copenhagen University Hospital, Herlev, 2730, Herlev, Denmark. .,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
35
|
Ahmad SM, Borch TH, Hansen M, Andersen MH. PD-L1-specific T cells. Cancer Immunol Immunother 2016; 65:797-804. [PMID: 26724936 PMCID: PMC11028888 DOI: 10.1007/s00262-015-1783-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/13/2015] [Indexed: 12/21/2022]
Abstract
Recently, there has been an increased focus on the immune checkpoint protein PD-1 and its ligand PD-L1 due to the discovery that blocking the PD-1/PD-L1 pathway with monoclonal antibodies elicits striking clinical results in many different malignancies. We have described naturally occurring PD-L1-specific T cells that recognize both PD-L1-expressing immune cells and malignant cells. Thus, PD-L1-specific T cells have the ability to modulate adaptive immune reactions by reacting to regulatory cells. Thus, utilization of PD-L1-derived T cell epitopes may represent an attractive vaccination strategy for targeting the tumor microenvironment and for boosting the clinical effects of additional anticancer immunotherapy. This review summarizes present information about PD-L1 as a T cell antigen, depicts the initial findings about the function of PD-L1-specific T cells in the adjustment of immune responses, and discusses future opportunities.
Collapse
Affiliation(s)
- Shamaila Munir Ahmad
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Herlev Ringvej 75, 2730, Herlev, Denmark
| | - Troels Holz Borch
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Herlev Ringvej 75, 2730, Herlev, Denmark
| | - Morten Hansen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Herlev Ringvej 75, 2730, Herlev, Denmark
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Herlev Ringvej 75, 2730, Herlev, Denmark.
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
36
|
Munir Ahmad S, Martinenaite E, Hansen M, Junker N, Borch TH, Met Ö, Donia M, Svane IM, Andersen MH. PD-L1 peptide co-stimulation increases immunogenicity of a dendritic cell-based cancer vaccine. Oncoimmunology 2016; 5:e1202391. [PMID: 27622072 DOI: 10.1080/2162402x.2016.1202391] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/12/2016] [Accepted: 06/12/2016] [Indexed: 12/31/2022] Open
Abstract
We recently described naturally occurring PD-L1-specific T cells that recognize PD-L1-expressing immune cells as well as malignant cells. In the present study, we investigated whether the immunogenicity of a dendritic cell (DC)-based vaccine could be influenced by co-stimulation with a known PD-L1-derived epitope. We incubated a PD-L1-derived peptide epitope (19 amino acids long) or a control peptide (an irrelevant HIV epitope) with peripheral blood mononuclear cells from patients with malignant melanoma who had received a DC-based vaccine. We observed a significantly higher number of T cells that reacted to the vaccine in cultures that had been co-stimulated with the PD-L1 peptide epitope compared to cultures incubated with control peptide. Next, we characterized a novel PD-L1-derived epitope (23 amino acids long) and found that co-stimulation with both PD-L1 epitopes boosted the immune response elicited by the DC vaccine even further. Consequently, we observed a significant increase in the number of vaccine-reacting T cells in vitro. In conclusion, activation of PD-L1-specific T cells may directly modulate immunogenicity of DC vaccines. Addition of PD-L1 epitopes may thus be an easily applicable and attractive option to augment the effectiveness of cancer vaccines and other immunotherapeutic agents.
Collapse
Affiliation(s)
- Shamaila Munir Ahmad
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital , Herlev, Denmark
| | - Evelina Martinenaite
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital , Herlev, Denmark
| | - Morten Hansen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital , Herlev, Denmark
| | - Niels Junker
- Department of Oncology, Copenhagen University Hospital , Herlev, Denmark
| | - Troels Holz Borch
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Özcan Met
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Marco Donia
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Kalpadakis C, Pangalis GA, Sachanas S, Rontogianni D, Korkolopoulou P, Milionis V, Vassilakopoulos TP, Papadaki HA, Angelopoulou MK. No evidence of splenic disease in patients with splenic marginal zone lymphoma undergoing splenectomy for autoimmune hemolytic anemia after monotherapy with rituximab. Leuk Lymphoma 2016; 57:2705-8. [DOI: 10.3109/10428194.2016.1157877] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Andersen MH. Novel understanding of self-reactive T cells. Oncoimmunology 2015; 5:e1083672. [PMID: 27141338 DOI: 10.1080/2162402x.2015.1083672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/11/2015] [Indexed: 12/31/2022] Open
Abstract
In a recent issue of Immunity, Mark Davis and colleagues describe that thymic selection does not eliminate but prunes self-reactive T cell clones. Self-reactive T cells are a natural part of the T-cell repertoire and may be important in the fight against pathogens in addition to being important immune regulators.
Collapse
Affiliation(s)
- Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital , Herlev, Denmark
| |
Collapse
|