1
|
Petruk N, Wood SL, Gregory W, Lopez-Guajardo A, Oliva M, Mella M, Sandholm J, Jukkola A, Brown JE, Selander KS. Increased primary breast tumor expression of CD73 is associated with development of bone metastases and is a potential biomarker for adjuvant bisphosphonate use. Sci Rep 2025; 15:9449. [PMID: 40108234 PMCID: PMC11923362 DOI: 10.1038/s41598-025-92841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025] Open
Abstract
PURPOSE Increased CD73 expression has been associated with progression in various cancer types. Results of the AZURE and other trials suggest that, in postmenopausal breast cancer patients, adjuvant bisphosphonates inhibit bone relapses and prolong overall survival. Based on these findings, adjuvant bisphosphonates (typically zoledronic acid) are standard-of-care in postmenopausal patients with high-risk early breast cancer. However, biomarkers are needed for improved patient selection. The aim of this study was to investigate the association of primary tumor CD73 expression with later development of bone metastases. METHODS To determine whether CD73 levels correlated with tumor parameters (hormone receptor status, tumor stage and grade), patient outcomes (bone metastases and survival) or other patient characteristics (menopausal status, chemotherapy or statin use), we analyzed primary breast tumor CD73 expression immunohistochemically in tumor microarray samples from the AZURE (BIG01/04) trial. RESULTS In the AZURE control arm, high CD73 score are significantly prognostic for overall survival (p-value = 0.03, HR = 1.87, 95% CI = 1.06-3.29), disease-free survival (p-value = 0.06, HR = 1.66, 95% CI = 0.982-2.8) and time to first metastasis to bone (p-value = 0.04, HR = 2.23, 95% CI = 1.04-4.81), as compared with low CD73 scores. However, high CD73 score did not display an association with time to non-bone metastasis or first recurrence to a non-skeletal site. In the zoledronate arm, high CD73 score did not have association with patient outcomes, first metastasis to bone, nor with bone recurrence at any time (distant recurrence, including skeletal) or first non-skeletal recurrence. In multivariate testing, CD73 had no significant association with age, ER status, tumor stage, histological grade, menopausal status, chemotherapy or statin use in either arm. CONCLUSIONS High CD73 expression is associated with development of bone metastases. Zoledronate counteracts this effect. These results suggest that CD73 expression might serve as a biomarker for adjuvant zoledronic acid use.
Collapse
Affiliation(s)
- Nataliia Petruk
- Institute of Biomedicine, University of Turku, Turku, Finland
- Western Cancer Centre FICAN West, Turku, Finland
| | - Steven L Wood
- Division of Clinical Medicine, Medical School, Sheffield, UK
| | - Walter Gregory
- Division of Clinical Medicine, Medical School, Sheffield, UK
| | | | - Maria Oliva
- Division of Clinical Medicine, Medical School, Sheffield, UK
| | - Mikko Mella
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Oncology and Radiation Therapy, Oulu University Hospital, Oulu, Finland
| | - Jouko Sandholm
- Turku Bioscience Centre, University of Turku, Åbo Akademi University, Turku, Finland
| | - Arja Jukkola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Oncology, Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Janet E Brown
- Division of Clinical Medicine, Medical School, Sheffield, UK
| | - Katri S Selander
- Department of Oncology and Radiation Therapy, Oulu University Hospital, Oulu, Finland.
- Department of Translational Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
2
|
Liu W, Yin H, Xie Z, Fang F, Chu J, Yang L, Huang L, Tu S, Cai H, Wu Z, Wei A, Liu C, Hong Y, Tian X, Cheng Y, Pan J, Wang N, Zhang K. FYB1-targeted modulation of CAPG promotes AML progression. Mol Cell Biochem 2025; 480:985-999. [PMID: 38700746 PMCID: PMC11836086 DOI: 10.1007/s11010-024-04992-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/17/2024] [Indexed: 02/19/2025]
Abstract
Acute myeloid leukemia (AML) is a rare and heterogeneous disease. Over the past few decades, patient prognosis has improved with continuous improvements in treatment, but outcomes for some patients with primary drug resistance or relapse after treatment remain poor. Additional therapies to improve outcomes for these patients are urgently needed. FYB1 expression differs substantially between AML tissues and normal tissues. High FYB1 expression is correlated with poorer overall survival (OS), indicating that FYB1 may regulate AML progression. Therefore, understanding the effect of FYB1 on AML could improve the success rate of therapeutic approaches and prognosis for patients with AML. In this study, through analysis of large databases and both in vivo and in vitro experiments, we assessed the expression and role of FYB1 in AML and the relationship of FYB with patient prognosis. Downstream targets of the FYB1 gene were analyzed by RNA-seq. Database mining and in vitro experiments were used to further clarify the effect of the downstream target gelsolin-like actin-capping protein (CAPG) on AML cells and its relationship with patient prognosis. FYB1 expression was significantly higher in AML tissue and corresponded with a poor prognosis. FYB1 knockdown inhibited AML cell proliferation, promoted cell apoptosis, reduced cell adhesion capability and significantly reduced the tumor formation rate in mice. In addition, FYB1 knockdown induced a notable decrease in CAPG expression. The suppression of CAPG significantly inhibited cell proliferation and increased cell apoptosis. The conclusions of this study underscore the pivotal role of the FYB1/CAPG axis in promoting AML. We propose that the FYB1/CAPG axis could serve as a new thread in the development of therapeutic strategies for AML.
Collapse
Affiliation(s)
- Wenyuan Liu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, Anhui Province, China
| | - Hongli Yin
- Institute of Pediatric Research, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou City, 215003, China
| | - Zhiwei Xie
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, Anhui Province, China
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou City, 215003, China
| | - Jinhua Chu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, Anhui Province, China
| | - Linhai Yang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, Anhui Province, China
| | - Lingling Huang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, Anhui Province, China
| | - Songji Tu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, Anhui Province, China
| | - Huaju Cai
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, Anhui Province, China
| | - Zhengyu Wu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, Anhui Province, China
| | - Anbang Wei
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, Anhui Province, China
| | - Chengzhu Liu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, Anhui Province, China
| | - Yi Hong
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, Anhui Province, China
| | - Xiaotong Tian
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, Anhui Province, China
| | - Yan Cheng
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, Anhui Province, China.
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou City, 215003, China.
| | - Ningling Wang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, Anhui Province, China.
| | - Kunlong Zhang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, Anhui Province, China.
| |
Collapse
|
3
|
Chen Y, Zheng J, Mo L, Chen F, Li R, Wang Y, Liang Q, Chen Z, Dai W, Chen L, Yan P, Zhou H, Li X. Oroxylin A suppresses breast cancer-induced osteoclastogenesis and osteolysis as a natural RON inhibitor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155688. [PMID: 38728920 DOI: 10.1016/j.phymed.2024.155688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/09/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Malignant breast cancer cells trigger the over-activation of osteoclast precursor cells, leading to bone loss and severe pain. Targeted inhibition of osteoclast differentiation has emerged as an important strategy for treating bone syndromes induced by breast cancer. PURPOSE The objective is to discover natural osteoclast inhibitor to treat osteoclastogenesis and bone destruction induced by breast cancer, and clarify the specific mechanisms. METHODS Recepteur d'origine Nantais (RON) protein was employed to search the natural osteoclast inhibitor for breast cancer-induced osteoclastogenesis by molecular docking, molecular dynamics simulation and cellular thermal shift assay (CETSA). In the in vitro experiment, breast cancer MDA-MB-231 cell-conditioned medium (MDA-MB-231 CM) was used to induce osteoclastogenesis in murine bone marrow-derived macrophages (BMMs), aiming to elucidate the effects and mechanisms of the natural osteoclast inhibitor. In the in vivo model, MDA-MB-231 cells was injected into the mouse tibia to evaluate the therapeutic effect of drug on breast cancer-induced bone destruction. RESULTS We discovered a significant increase in the expression of RON during MDA-MB-231 CM-induced osteoclast differentiation in vitro. Molecular docking analysis found that oroxylin A (OA), a flavonoid derived from the Chinese medicine Scutellaria baicalensis Georgi, showed binding ability with RON, while its impact and mechanism on breast cancer-induced osteoclastogenesis and osteolysis remains unclear. Molecular dynamics simulation and CETSA further revealed that OA bound directly to the RON protein, and it also decreased RON expression in breast cancer CM-induced osteoclastogenesis. Correspondingly, OA suppressed the MDA-MB-231 CM-induced osteoclastogenesis and bone resorption in vitro. The downstream signals of RON including Src and NFATc1, as well as the osteoclast-specific genes, were downregulated by OA. Of interesting, the suppressive effect of OA on osteoclastogenesis induced by MDA-MB-231 CM was abolished after RON was knocked down by the specific RON-siRNA, this further confirmed that OA showed inhibitory effects on osteoclasts through targeting RON. In addition, we found that OA attenuated MDA-MB-231 cell-induced osteolysis and reduced the number of osteoclasts in vivo. CONCLUSION Our results indicate that OA acts as a natural RON inhibitor to suppress breast cancer-induced osteoclastogenesis and osteolysis. This provides new strategy for treating breast cancer-induced bone destruction and related syndromes.
Collapse
Affiliation(s)
- Yan Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiehuang Zheng
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lixia Mo
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fengsheng Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ruopeng Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yiyuan Wang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qinghe Liang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ziye Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenqi Dai
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lishan Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peiyu Yan
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Xiaojuan Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
4
|
Long Y, Wu J, Shen Y, Gan C, Zhang C, Wang G, Jing J, Zhang C, Pan W. CAPG is a novel biomarker for early gastric cancer and is involved in the Wnt/β-catenin signaling pathway. Cell Death Discov 2024; 10:15. [PMID: 38191512 PMCID: PMC10774411 DOI: 10.1038/s41420-023-01767-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
Past studies have shown that the Gelsolin-like actin-capping protein (CAPG) regulates cell migration and proliferation and is strongly associated with tumor progression. We present the first study of the mechanism of action of CAPG in early gastric cancer (EGC). We demonstrate that CAPG expression is upregulated in gastric cancer (GC) especially EGC. CAPG promotes GC proliferation, migration, invasion, and metastasis in vivo and in vitro. More importantly, CAPG plays a role in GC by involving the Wnt/β-catenin signaling pathway. Our findings suggest that CAPG may function as a novel biomarker for EGC.
Collapse
Affiliation(s)
- Yan Long
- Cancer Center, Department of Gastroenterology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, Zhejiang, China
| | - JiaQi Wu
- Department of Gastroenterology, Affiliated Hospital of Hangzhou Normal University, 310015, Hangzhou, China
| | - Yu Shen
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenxiao Gan
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuandong Zhang
- The Medical College of QingDao University, Qingdao, Shandong, China
| | - Gang Wang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Jiyong Jing
- Department of Medical Education and Simulation Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
| | - Chenjing Zhang
- Cancer Center, Department of Gastroenterology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, Zhejiang, China.
| | - Wensheng Pan
- Cancer Center, Department of Gastroenterology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
LI TINGTING, ZHONG WEI, YANG LIU, ZHAO ZHIYU, WANG LI, LIU CONG, LI WANYUN, LV HAIYAN, WANG SHENGYU, YAN JIANGHUA, WU TING, SONG GANG, LUO FANGHONG. GIPC1 promotes tumor growth and migration in gastric cancer via activating PDGFR/PI3K/AKT signaling. Oncol Res 2023; 32:361-371. [PMID: 38186571 PMCID: PMC10765124 DOI: 10.32604/or.2023.043807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/20/2023] [Indexed: 01/09/2024] Open
Abstract
The high mortality rate associated with gastric cancer (GC) has resulted in an urgent need to identify novel therapeutic targets for GC. This study aimed to investigate whether GAIP interacting protein, C terminus 1 (GIPC1) represents a therapeutic target and its regulating mechanism in GC. GIPC1 expression was elevated in GC tissues, liver metastasis tissues, and lymph node metastases. GIPC1 knockdown or GIPC1 blocking peptide blocked the platelet-derived growth factor receptor (PDGFR)/PI3K/AKT signaling pathway, and inhibited the proliferation and migration of GC cells. Conversely, GIPC1 overexpression markedly activated the PDGFR/PI3K/AKT signaling pathway, and promoted GC cell proliferation and migration. Furthermore, platelet-derived growth factor subunit BB (PDGF-BB) cytokines and the AKT inhibitor attenuated the effect of differential GIPC1 expression. Moreover, GIPC1 silencing decreased tumor growth and migration in BALB/c nude mice, while GIPC1 overexpression had contrasting effects. Taken together, our findings suggest that GIPC1 functions as an oncogene in GC and plays a central role in regulating cell proliferation and migration via the PDGFR/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- TINGTING LI
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - WEI ZHONG
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - LIU YANG
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - ZHIYU ZHAO
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - LI WANG
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - CONG LIU
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - WANYUN LI
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - HAIYAN LV
- Department of Pharmacy, Xiamen Mental Health Center, Xiamen Xianyue Hospital, Xiamen, 361000, China
| | - SHENGYU WANG
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - JIANGHUA YAN
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - TING WU
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - GANG SONG
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - FANGHONG LUO
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361000, China
| |
Collapse
|
6
|
Wang S, Wu W, Lin X, Zhang KM, Wu Q, Luo M, Zhou J. Predictive and prognostic biomarkers of bone metastasis in breast cancer: current status and future directions. Cell Biosci 2023; 13:224. [PMID: 38041134 PMCID: PMC10693103 DOI: 10.1186/s13578-023-01171-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/10/2023] [Indexed: 12/03/2023] Open
Abstract
The most common site of metastasis in breast cancer is the bone, where the balance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation is disrupted. This imbalance causes osteolytic bone metastasis in breast cancer, which leads to bone pain, pathological fractures, spinal cord compression, and other skeletal-related events (SREs). These complications reduce patients' quality of life significantly and have a profound impact on prognosis. In this review, we begin by providing a brief overview of the epidemiology of bone metastasis in breast cancer, including current diagnostic tools, treatment approaches, and existing challenges. Then, we will introduce the pathophysiology of breast cancer bone metastasis (BCBM) and the animal models involved in the study of BCBM. We then come to the focus of this paper: a discussion of several biomarkers that have the potential to provide predictive and prognostic value in the context of BCBM-some of which may be particularly compatible with more comprehensive liquid biopsies. Beyond that, we briefly explore the potential of new technologies such as single-cell sequencing and organoid models, which will improve our understanding of tumor heterogeneity and aid in the development of improved biomarkers. The emerging biomarkers discussed hold promise for future clinical application, aiding in the prevention of BCBM, improving the prognosis of patients, and guiding the implementation of personalized medicine.
Collapse
Affiliation(s)
- Shenkangle Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Wenxin Wu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Xixi Lin
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | | | - QingLiang Wu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
- Hangzhou Ninth People's Hospital, Hangzhou, 310014, China
| | - Mingpeng Luo
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China.
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China.
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310014, China.
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China.
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
7
|
Ali W, Xiao W, Hoang H, Cali V, Kajdacsy-Balla A. Carcinogenesis and Prognostic Utility of Arginine Methylation-Related Genes in Hepatocellular Cancer. Curr Issues Mol Biol 2023; 45:9422-9430. [PMID: 38132437 PMCID: PMC10742294 DOI: 10.3390/cimb45120591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 12/23/2023] Open
Abstract
Protein arginine methylation is among the most important post-translational modifications and has been studied in cancers such as those of the lung and breast. However, comparatively less has been investigated regarding hepatocellular carcinoma, with an annual incidence of almost one million cases. Through using in silico methods, this study examined arginine methylation-related gene expression and methylation levels, and alongside network and enrichment analysis attempted to find how said genes can drive tumorigenesis and offer possible therapeutic targets. We found a robust relationship among the selected methylation genes, with ⅞ showing prognostic value regarding overall survival, and a medley of non-arginine methylation pathways also being highlighted through the aforementioned analysis. This study furthers our knowledge of the methylation and expression patterns of arginine histone methylation-related genes, offering jumping points for further wet-lab studies.
Collapse
Affiliation(s)
- Waleed Ali
- Albert Einstein College of Medicine, The Bronx, NY 10461, USA; (W.A.); (W.X.); (H.H.); (V.C.)
| | - Weirui Xiao
- Albert Einstein College of Medicine, The Bronx, NY 10461, USA; (W.A.); (W.X.); (H.H.); (V.C.)
| | - Henry Hoang
- Albert Einstein College of Medicine, The Bronx, NY 10461, USA; (W.A.); (W.X.); (H.H.); (V.C.)
| | - Vincent Cali
- Albert Einstein College of Medicine, The Bronx, NY 10461, USA; (W.A.); (W.X.); (H.H.); (V.C.)
| | - Andre Kajdacsy-Balla
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Ibragimova MK, Tsyganov MM, Kravtsova EA, Tsydenova IA, Litviakov NV. Organ-Specificity of Breast Cancer Metastasis. Int J Mol Sci 2023; 24:15625. [PMID: 37958607 PMCID: PMC10650169 DOI: 10.3390/ijms242115625] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer (BC) remains one of the most common malignancies among women worldwide. Breast cancer shows metastatic heterogeneity with priority to different organs, which leads to differences in prognosis and response to therapy among patients. The main targets for metastasis in BC are the bone, lung, liver and brain. The molecular mechanism of BC organ-specificity is still under investigation. In recent years, the appearance of new genomic approaches has led to unprecedented changes in the understanding of breast cancer metastasis organ-specificity and has provided a new platform for the development of more effective therapeutic agents. This review summarises recent data on molecular organ-specific markers of metastasis as the basis of a possible therapeutic approach in order to improve the diagnosis and prognosis of patients with metastatically heterogeneous breast cancer.
Collapse
Affiliation(s)
- Marina K. Ibragimova
- Department of Experimental Oncology, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634009, Russia; (M.M.T.); (E.A.K.); (I.A.T.); (N.V.L.)
- Biological Institute, National Research Tomsk State University, Tomsk 634050, Russia
- Faculty of Medicine and Biology, Siberian State Medical University, Tomsk 634050, Russia
| | - Matvey M. Tsyganov
- Department of Experimental Oncology, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634009, Russia; (M.M.T.); (E.A.K.); (I.A.T.); (N.V.L.)
- Faculty of Medicine and Biology, Siberian State Medical University, Tomsk 634050, Russia
| | - Ekaterina A. Kravtsova
- Department of Experimental Oncology, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634009, Russia; (M.M.T.); (E.A.K.); (I.A.T.); (N.V.L.)
- Biological Institute, National Research Tomsk State University, Tomsk 634050, Russia
| | - Irina A. Tsydenova
- Department of Experimental Oncology, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634009, Russia; (M.M.T.); (E.A.K.); (I.A.T.); (N.V.L.)
- Biological Institute, National Research Tomsk State University, Tomsk 634050, Russia
| | - Nikolai V. Litviakov
- Department of Experimental Oncology, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634009, Russia; (M.M.T.); (E.A.K.); (I.A.T.); (N.V.L.)
- Biological Institute, National Research Tomsk State University, Tomsk 634050, Russia
- Faculty of Medicine and Biology, Siberian State Medical University, Tomsk 634050, Russia
| |
Collapse
|
9
|
Petruk N, Siddiqui A, Tadayon S, Määttä J, Mattila PK, Jukkola A, Sandholm J, Selander KS. CD73 regulates zoledronate-induced lymphocyte infiltration in triple-negative breast cancer tumors and lung metastases. Front Immunol 2023; 14:1179022. [PMID: 37533856 PMCID: PMC10390692 DOI: 10.3389/fimmu.2023.1179022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/23/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction Bisphosphonates (BPs) are bone-protecting osteoclast inhibitors, typically used in the treatment of osteoporosis and skeletal complications of malignancies. When given in the adjuvant setting, these drugs may also prevent relapses and prolong overall survival in early breast cancer (EBC), specifically among postmenopausal patients. Because of these findings, adjuvant nitrogen-containing BPs (N-BPs), such as zoledronate (ZOL), are now the standard of care for high-risk EBC patients, but there are no benefit-associated biomarkers, and the efficacy remains low. BPs have been demonstrated to possess anti-tumor activities, but the mechanisms by which they provide the beneficial effects in EBC are not known. Methods We used stably transfected 4T1 breast cancer cells together with suppression of CD73 (sh-CD73) or control cells (sh-NT). We compared ZOL effects on tumor growth and infiltrating lymphocytes (TILs) into tumors and lung metastases using two mouse models. B cell depletion was performed using anti-CD20 antibody. Results Sh-CD73 4T1 cells were significantly more sensitive to the growth inhibitory effects of n-BPs in vitro. However, while ZOL-induced growth inhibition was similar between the tumor groups in vivo, ZOL enhanced B and T lymphocyte infiltration into the orthotopic tumors with down-regulated CD73. A similar trend was detected in lung metastases. ZOL-induced tumor growth inhibition was found to be augmented with B cell depletion in sh-NT tumors, but not in sh-CD73 tumors. As an internal control, ZOL effects on bone were similar in mice bearing both tumor groups. Discussion Taken together, these results indicate that ZOL modifies TILs in breast cancer, both in primary tumors and metastases. Our results further demonstrate that B cells may counteract the growth inhibitory effects of ZOL. However, all ZOL-induced TIL effects may be influenced by immunomodulatory characteristics of the tumor.
Collapse
Affiliation(s)
- Nataliia Petruk
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Arafat Siddiqui
- Institute of Biomedicine, University of Turku, Turku, Finland
- Western Cancer Centre FICAN West, Turku, Finland
| | - Sina Tadayon
- MediCity Research Laboratory, University of Turku, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Jorma Määttä
- Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Pieta K. Mattila
- Institute of Biomedicine, University of Turku, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Arja Jukkola
- Department of Oncology, Tampere University Hospital, Tays Cancer Center, Tampere, Finland
| | - Jouko Sandholm
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Katri S. Selander
- Department of Oncology and Radiation Therapy, Oulu University Hospital, Oulu, Finland
- Cancer Research and Translational Medicine Research Unit, University of Oulu, Oulu, Finland
| |
Collapse
|
10
|
Ma Q, Zhao M, Long B, Li H. Super-enhancer-associated gene CAPG promotes AML progression. Commun Biol 2023; 6:622. [PMID: 37296281 PMCID: PMC10256737 DOI: 10.1038/s42003-023-04973-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Acute myeloid leukemia is the most common acute leukemia in adults, the barrier of refractory and drug resistance has yet to be conquered in the clinical. Abnormal gene expression and epigenetic changes play an important role in pathogenesis and treatment. A super-enhancer is an epigenetic modifier that promotes pro-tumor genes and drug resistance by activating oncogene transcription. Multi-omics integrative analysis identifies the super-enhancer-associated gene CAPG and its high expression level was correlated with poor prognosis in AML. CAPG is a cytoskeleton protein but has an unclear function in AML. Here we show the molecular function of CAPG in regulating NF-κB signaling pathway by proteomic and epigenomic analysis. Knockdown of Capg in the AML murine model resulted in exhausted AML cells and prolonged survival of AML mice. In conclusion, SEs-associated gene CAPG can contributes to AML progression through NF-κB.
Collapse
Affiliation(s)
- Qian Ma
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Minyi Zhao
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Bing Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haixia Li
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China.
| |
Collapse
|
11
|
Wu H, Zhang J, Fu L, Wu R, Gu Z, Yin C, He K. Identification and Development of a 4-Gene Ferroptosis Signature Predicting Overall Survival for Diffuse Large B-Cell Lymphoma. Technol Cancer Res Treat 2023; 22:15330338221147772. [PMID: 36762399 PMCID: PMC9926004 DOI: 10.1177/15330338221147772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Background: Diffuse large B-cell lymphoma (DLBCL) is a well-differentiated disease, which makes the diagnosis and therapeutic strategy a difficult problem. While ferroptosis, as an iron-dependent form of regulated cell death, it plays an important role in causing several types of cancer. This study is aimed at exploring the prognostic value of ferroptosis-related genes in DLBCL. Methods: In our study, mRNA expression and matching clinical data of DLBCL patients were derived from Gene Expression Omnibus (GEO) database. First, multivariate cox regression model and nomogram which can predict the DLBCL patients' prognosis were built and validated. The multigene signature was constructed and optimized by the least absolute shrinkage and selection operator (LASSO) cox regression model. Also, ferroptosis-related subtypes were developed by consistent cluster. Last but not least, we explored the association between categories of infiltrating immune cells and model genes' expression. Results: Our results showed that 27 gene expressions were correlated with overall survival (OS) in the univariate cox regression analysis. A 4-gene signature was constructed through these genes to stratify patients into high-low risk groups using risk score derived from model (model 1:gene expression model). The OS of patients in the high-risk group was shorter than that of patients in the low-risk group in the TNM stage and clinically distinct subtypes (activated B cell [ABC], germinal center B cell [GCB]) (P < .001). Furthermore, it was shown that the risk score was an independent factor in clinical cox regression model for OS (model 2:clinical model) (HR>1, P < .010). Besides, in consistent cluster analysis, ferroptosis prognosis status was different among 3 subtypes. Moreover, the correlation analysis between 4-gene with immune cells showed dendritic cells may be significantly associated with DLBCL. Conclusion: This research constructed an innovative ferroptosis-related gene signature for prognostic estimation of DLBCL patients. Solutions targeting ferroptosis could be an important therapeutic intervention for DLBCL.
Collapse
Affiliation(s)
- Huitao Wu
- Medical Big Data Research Center, Medical Innovation Research
Division of PLA General Hospital, Beijing, P. R. China,Intelligent Healthcare Team, Baidu Inc., Beijing, China
| | - Junyan Zhang
- Medical Big Data Research Center, Medical Innovation Research
Division of PLA General Hospital, Beijing, P. R. China,National Engineering Laboratory for Medical Big Data Application
Technology, Chinese PLA
General Hospital, Beijing, China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province,
College of Materials and Environmental Engineering,
Hangzhou
Dianzi University, Hangzhou, China
| | - Rilige Wu
- Medical Big Data Research Center, Medical Innovation Research
Division of PLA General Hospital, Beijing, P. R. China,National Engineering Laboratory for Medical Big Data Application
Technology, Chinese PLA
General Hospital, Beijing, China
| | - Zhenyang Gu
- The Fifth Medical Center of PLA General Hospital, Beijing,
China
| | - Chengliang Yin
- Medical Big Data Research Center, Medical Innovation Research
Division of PLA General Hospital, Beijing, P. R. China,National Engineering Laboratory for Medical Big Data Application
Technology, Chinese PLA
General Hospital, Beijing, China,Chengliang Yin, Medical Big Data Research
Center, Medical Innovation Research Division of PLA General Hospital, Beijing
100853, P. R. China.
| | - Kunlun He
- Medical Big Data Research Center, Medical Innovation Research
Division of PLA General Hospital, Beijing, P. R. China,National Engineering Laboratory for Medical Big Data Application
Technology, Chinese PLA
General Hospital, Beijing, China,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine,
Medical Innovation Research Division of Chinese PLA General Hospital, Beijing,
China,Military Translational Medicine Lab, Medical Innovation Research
Division of Chinese PLA General Hospital, Beijing, China,Key Laboratory of Biomedical Engineering and Translational Medicine,
Ministry of Industry and Information Technology, Medical Innovation Research
Division of Chinese PLA General Hospital, Beijing, China,Kunlun He, Medical Big Data Research
Center, Medical Innovation Research Division of PLA General Hospital, Beijing
100853, P. R. China.
| |
Collapse
|
12
|
TOR1B: a predictor of bone metastasis in breast cancer patients. Sci Rep 2023; 13:1495. [PMID: 36707670 PMCID: PMC9883392 DOI: 10.1038/s41598-023-28140-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Recent therapeutic advances in breast cancer (BC) have improved survival outcomes; however, the prognosis for patients with bone metastasis (BM) remains poor. Hence, novel clinical biomarkers are needed to accurately predict BC BM as well as to promote personalized medicine. Here, we discovered a novel biomarker, TOR1B, for BM in BC patients via analysis of BC gene expression data and clinical information downloaded from open public databases. In cancer cells, we found high expression levels of TOR1B in the nucleus and endoplasmic reticulum. Regarding gene expression, the level of TOR1B was significantly upregulated in BC patients with BM (p < 0.05), and the result was externally validated. In addition, gene expression clearly demonstrated two distinct types of prognoses in ER- and PR-positive patients. In multivariate regression, the gene could be an independent predictor of BM in BC patients, i.e., a low expression level of TOR1B was associated with delayed metastasis to bone in BC patients (HR, 0.28; 95% CI 0.094-0.84). Conclusively, TOR1B might be a useful biomarker for predicting BM; specifically, patients with ER- and PR-positive subtypes would benefit from the clinical use of this promising prognostic biomarker.
Collapse
|
13
|
Kalkitoxin: A Potent Suppressor of Distant Breast Cancer Metastasis. Int J Mol Sci 2023; 24:ijms24021207. [PMID: 36674719 PMCID: PMC9863388 DOI: 10.3390/ijms24021207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Bone metastasis resulting from advanced breast cancer causes osteolysis and increases mortality in patients. Kalkitoxin (KT), a lipopeptide toxin derived from the marine cyanobacterium Moorena producens (previously Lyngbya majuscula), has an anti-metastatic effect on cancer cells. We verified that KT suppressed cancer cell migration and invasion in vitro and in animal models in the present study. We confirmed that KT suppressed osteoclast-soup-derived MDA-MB-231 cell invasion in vitro and induced osteolysis in a mouse model, possibly enhancing/inhibiting metastasis markers. Furthermore, KT inhibits CXCL5 and CXCR2 expression, suppressing the secondary growth of breast cancer cells on the bone, brain, and lungs. The breast-cancer-induced osteolysis in the mouse model further reveals that KT plays a protective role, judging by micro-computed tomography and immunohistochemistry. We report for the first time the novel suppressive effects of KT on cancer cell migration and invasion in vitro and on MDA-MB-231-induced bone loss in vivo. These results suggest that KT may be a potential therapeutic drug for the treatment of breast cancer metastasis.
Collapse
|
14
|
Fu Y, Zhang X, Liang X, Chen Y, Chen Z, Xiao Z. CapG promoted nasopharyngeal carcinoma cell motility involving Rho motility pathway independent of ROCK. World J Surg Oncol 2022; 20:347. [PMID: 36258216 PMCID: PMC9580211 DOI: 10.1186/s12957-022-02808-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022] Open
Abstract
Background Gelsolin-like capping actin protein (CapG) modulates actin dynamics and actin-based motility with a debatable role in tumorigenic progression. The motility-associated functions and potential molecular mechanisms of CapG in nasopharyngeal carcinoma (NPC) remain unclear. Methods CapG expression was detected by immunohistochemistry in a cohort of NPC tissue specimens and by Western blotting assay in a variety of NPC cell lines. Loss of function and gain of function of CapG in scratch wound-healing and transwell assays were performed. Inactivation of Rac1 and ROCK with the specific small molecular inhibitors was applied to evaluate CapG’s role in NPC cell motility. GTP-bound Rac1 and phosphorylated-myosin light chain 2 (p-MLC2) were measured in the ectopic CapG overexpressing cells. Finally, CapG-related gene set enrichment analysis was conducted to figure out the significant CapG-associated pathways in NPC. Results CapG disclosed increased level in the poorly differentiated NPC tissues and highly metastatic cells. Knockdown of CapG reduced NPC cell migration and invasion in vitro, while ectopic CapG overexpression showed the opposite effect. Ectopic overexpression of CapG compensated for the cell motility loss caused by simultaneous inactivation of ROCK and Rac1 or inactivation of ROCK alone. GTP-bound Rac1 weakened, and p-MLC2 increased in the CapG overexpressing cells. Bioinformatics analysis validated a positive correlation of CapG with Rho motility signaling, while Rac1 motility pathway showed no significant relationship. Conclusions The present findings highlight the contribution of CapG to NPC cell motility independent of ROCK and Rac1. CapG promotes NPC cell motility at least partly through MLC2 phosphorylation and contradicts with Rac1 activation. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-022-02808-7.
Collapse
Affiliation(s)
- Ying Fu
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiuzhi Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, 451191, Henan, China
| | - Xujun Liang
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yongheng Chen
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhuchu Chen
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhefeng Xiao
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
15
|
Differential Intracellular Protein Distribution in Cancer and Normal Cells-Beta-Catenin and CapG in Gynecologic Malignancies. Cancers (Basel) 2022; 14:cancers14194788. [PMID: 36230711 PMCID: PMC9561979 DOI: 10.3390/cancers14194788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 12/05/2022] Open
Abstract
Simple Summary The distribution and mobility of proteins inside the living cell can be used to differentiate cancer from normal cells. This review highlights differential protein distribution of two exemplary proteins, beta-catenin and CapG, and their role in gynecologic cancers. Recognizing differential protein distribution in cancer cells may have diagnostic and therapeutic implications. Abstract It is well-established that cancer and normal cells can be differentiated based on the altered sequence and expression of specific proteins. There are only a few examples, however, showing that cancer and normal cells can be differentiated based on the altered distribution of proteins within intracellular compartments. Here, we review available data on shifts in the intracellular distribution of two proteins, the membrane associated beta-catenin and the actin-binding protein CapG. Both proteins show altered distributions in cancer cells compared to normal cells. These changes are noted (i) in steady state and thus can be visualized by immunohistochemistry—beta-catenin shifts from the plasma membrane to the cell nucleus in cancer cells; and (ii) in the dynamic distribution that can only be revealed using the tools of quantitative live cell microscopy—CapG shuttles faster into the cell nucleus of cancer cells. Both proteins may play a role as prognosticators in gynecologic malignancies: beta-catenin in endometrial cancer and CapG in breast and ovarian cancer. Thus, both proteins may serve as examples of altered intracellular protein distribution in cancer and normal cells.
Collapse
|
16
|
Allen V, Coulombe J, Zhao H, Kreps LM, Cook DP, Pryce B, Clemons M, Vanderhyden BC, Gray DA, Addison CL. VIVA1: a more invasive subclone of MDA-MB-134VI invasive lobular carcinoma cells with increased metastatic potential in xenograft models. Br J Cancer 2022; 127:56-68. [PMID: 35318435 PMCID: PMC9276762 DOI: 10.1038/s41416-022-01778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/28/2022] [Accepted: 02/25/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Invasive lobular carcinoma (ILC) is the second most common type of breast cancer. As few tools exist to study ILC metastasis, we isolated ILC cells with increased invasive properties to establish a spontaneously metastasising xenograft model. METHODS MDA-MB-134VI ILC cells were placed in transwells for 7 days. Migrated cells were isolated and expanded to create the VIVA1 cell line. VIVA1 cells were compared to parental MDA-MB-134VI cells in vitro for ILC marker expression and relative proliferative and invasive ability. An intraductally injected orthotopic xenograft model was used to assess primary and metastatic tumour growth in vivo. RESULTS Similar to MDA-MB-134VI, VIVA1 cells retained expression of oestrogen receptor (ER) and lacked expression of E-cadherin, however showed increased invasion in vitro. Following intraductal injection, VIVA1 and MDA-MB-134VI cells had similar primary tumour growth and survival kinetics. However, macrometastases were apparent in 7/10 VIVA1-injected animals. Cells from a primary orthotopic tumour (VIVA-LIG43) were isolated and showed similar proliferative rates but were also more invasive than parental cells. Upon re-injection intraductally, VIVA-LIG43 cells had more rapid tumour growth with similar metastatic incidence and location. CONCLUSIONS We generated a new orthotopic spontaneously metastasising xenograft model for ER+ ILC amenable for the study of ILC metastasis.
Collapse
Affiliation(s)
- Victoria Allen
- Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, K1H 8M5, ON, Canada
| | - Josée Coulombe
- Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, ON, Canada
| | - Huijun Zhao
- Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, ON, Canada
| | - Lauren M Kreps
- Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, K1H 8M5, ON, Canada
| | - David P Cook
- Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8M5, ON, Canada
| | - Benjamin Pryce
- Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8M5, ON, Canada
| | - Mark Clemons
- Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, ON, Canada.,Department of Medicine, University of Ottawa, Ottawa, K1H 8M5, ON, Canada
| | - Barbara C Vanderhyden
- Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8M5, ON, Canada
| | - Douglas A Gray
- Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, K1H 8M5, ON, Canada
| | - Christina L Addison
- Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, ON, Canada. .,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, K1H 8M5, ON, Canada. .,Department of Medicine, University of Ottawa, Ottawa, K1H 8M5, ON, Canada.
| |
Collapse
|
17
|
Lovero D, D'Oronzo S, Palmirotta R, Cafforio P, Brown J, Wood S, Porta C, Lauricella E, Coleman R, Silvestris F. Correlation between targeted RNAseq signature of breast cancer CTCs and onset of bone-only metastases. Br J Cancer 2022; 126:419-429. [PMID: 34272498 PMCID: PMC8810805 DOI: 10.1038/s41416-021-01481-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/04/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bone is the most frequent site of metastases from breast cancer (BC), but no biomarkers are yet available to predict skeletal dissemination. METHODS We attempted to identify a gene signature correlated with bone metastasis (BM) onset in circulating tumour cells (CTCs), isolated by a DEPArray-based protocol from 40 metastatic BC patients and grouped according to metastasis sites, namely "BM" (bone-only), "ES" (extra-skeletal) or BM + ES (bone + extra-skeletal). RESULTS A 134-gene panel was first validated through targeted RNA sequencing (RNAseq) on sub-clones of the MDA-MB-231 BC cell line with variable organotropism, which successfully shaped their clustering. The panel was then applied to CTC groups and, in particular, the "BM" vs "ES" CTC comparison revealed 31 differentially expressed genes, including MAF, CAPG, GIPC1 and IL1B, playing key prognostic roles in BC. CONCLUSION Such evidence confirms that CTCs are suitable biological sources for organotropism investigation through targeted RNAseq and might deserve future applications in wide-scale prospective studies.
Collapse
Affiliation(s)
- Domenica Lovero
- Department of Biomedical Sciences and Human Oncology-Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Stella D'Oronzo
- Department of Biomedical Sciences and Human Oncology-Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Raffaele Palmirotta
- Department of Biomedical Sciences and Human Oncology-Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Paola Cafforio
- Department of Biomedical Sciences and Human Oncology-Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Janet Brown
- Department of Oncology and Metabolism, University of Sheffield, Weston Park Hospital, Sheffield, UK
| | - Steven Wood
- Department of Oncology and Metabolism, University of Sheffield, Weston Park Hospital, Sheffield, UK
| | - Camillo Porta
- Department of Biomedical Sciences and Human Oncology-Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Eleonora Lauricella
- Department of Biomedical Sciences and Human Oncology-Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Robert Coleman
- Department of Oncology and Metabolism, University of Sheffield, Weston Park Hospital, Sheffield, UK
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology-Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
18
|
Albaradei S, Uludag M, Thafar MA, Gojobori T, Essack M, Gao X. Predicting Bone Metastasis Using Gene Expression-Based Machine Learning Models. Front Genet 2021; 12:771092. [PMID: 34858485 PMCID: PMC8631472 DOI: 10.3389/fgene.2021.771092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Bone is the most common site of distant metastasis from malignant tumors, with the highest prevalence observed in breast and prostate cancers. Such bone metastases (BM) cause many painful skeletal-related events, such as severe bone pain, pathological fractures, spinal cord compression, and hypercalcemia, with adverse effects on life quality. Many bone-targeting agents developed based on the current understanding of BM onset's molecular mechanisms dull these adverse effects. However, only a few studies investigated potential predictors of high risk for developing BM, despite such knowledge being critical for early interventions to prevent or delay BM. This work proposes a computational network-based pipeline that incorporates a ML/DL component to predict BM development. Based on the proposed pipeline we constructed several machine learning models. The deep neural network (DNN) model exhibited the highest prediction accuracy (AUC of 92.11%) using the top 34 featured genes ranked by betweenness centrality scores. We further used an entirely separate, "external" TCGA dataset to evaluate the robustness of this DNN model and achieved sensitivity of 85%, specificity of 80%, positive predictive value of 78.10%, negative predictive value of 80%, and AUC of 85.78%. The result shows the models' way of learning allowed it to zoom in on the featured genes that provide the added benefit of the model displaying generic capabilities, that is, to predict BM for samples from different primary sites. Furthermore, existing experimental evidence provides confidence that about 50% of the 34 hub genes have BM-related functionality, which suggests that these common genetic markers provide vital insight about BM drivers. These findings may prompt the transformation of such a method into an artificial intelligence (AI) diagnostic tool and direct us towards mechanisms that underlie metastasis to bone events.
Collapse
Affiliation(s)
- Somayah Albaradei
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmut Uludag
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Maha A Thafar
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
| | - Takashi Gojobori
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Magbubah Essack
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xin Gao
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
19
|
Ionkina AA, Balderrama-Gutierrez G, Ibanez KJ, Phan SHD, Cortez AN, Mortazavi A, Prescher JA. Transcriptome analysis of heterogeneity in mouse model of metastatic breast cancer. Breast Cancer Res 2021; 23:93. [PMID: 34579762 PMCID: PMC8477508 DOI: 10.1186/s13058-021-01468-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cancer metastasis is a complex process involving the spread of malignant cells from a primary tumor to distal organs. Understanding this cascade at a mechanistic level could provide critical new insights into the disease and potentially reveal new avenues for treatment. Transcriptome profiling of spontaneous cancer models is an attractive method to examine the dynamic changes accompanying tumor cell spread. However, such studies are complicated by the underlying heterogeneity of the cell types involved. The purpose of this study was to examine the transcriptomes of metastatic breast cancer cells using the well-established MMTV-PyMT mouse model. METHODS Organ-derived metastatic cell lines were harvested from 10 female MMTV-PyMT mice. Cancer cells were isolated and sorted based on the expression of CD44low/EpCAMhigh or CD44high/EpCAMhigh surface markers. RNA from each cell line was extracted and sequenced using the NextSeq 500 Illumina platform. Tissue-specific genes were compared across the different metastatic and primary tumor samples. Reads were mapped to the mouse genome using STAR, and gene expression was quantified using RSEM. Single-cell RNA-seq (scRNA-seq) was performed on select samples using the ddSeq platform by BioRad and analyzed using Seurat v3.2.3. Monocle2 was used to infer pseudo-time progression. RESULTS Comparison of RNA sequencing data across all cell populations produced distinct gene clusters. Differential gene expression patterns related to CD44 expression, organ tropism, and immunomodulatory signatures were observed. scRNA-seq identified expression profiles based on tissue-dependent niches and clonal heterogeneity. These cohorts of data were narrowed down to identify subsets of genes with high expression and known metastatic propensity. Dot plot analyses further revealed clusters expressing cancer stem cell and cancer dormancy markers. Changes in relevant genes were investigated across pseudo-time and tissue origin using Monocle2. These data revealed transcriptomes that may contribute to sub-clonal evolution and treatment evasion during cancer progression. CONCLUSIONS We performed a comprehensive transcriptome analysis of tumor heterogeneity and organ tropism during breast cancer metastasis. These data add to our understanding of metastatic progression and highlight targets for breast cancer treatment. These markers could also be used to image the impact of tumor heterogeneity on metastases.
Collapse
Affiliation(s)
- Anastasia A Ionkina
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
| | | | - Krystian J Ibanez
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - Steve Huy D Phan
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Angelique N Cortez
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697, USA.
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA, 92697, USA.
| | - Jennifer A Prescher
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA.
- Department of Chemistry, University of California Irvine, Irvine, CA, 92697, USA.
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
20
|
The Roadmap of RANKL/RANK Pathway in Cancer. Cells 2021; 10:cells10081978. [PMID: 34440747 PMCID: PMC8393235 DOI: 10.3390/cells10081978] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 01/02/2023] Open
Abstract
The receptor activator of the nuclear factor-κB ligand (RANKL)/RANK signaling pathway was identified in the late 1990s and is the key mediator of bone remodeling. Targeting RANKL with the antibody denosumab is part of the standard of care for bone loss diseases, including bone metastases (BM). Over the last decade, evidence has implicated RANKL/RANK pathway in hormone and HER2-driven breast carcinogenesis and in the acquisition of molecular and phenotypic traits associated with breast cancer (BCa) aggressiveness and poor prognosis. This marked a new era in the research of the therapeutic use of RANKL inhibition in BCa. RANKL/RANK pathway is also an important immune mediator, with anti-RANKL therapy recently linked to improved response to immunotherapy in melanoma, non-small cell lung cancer (NSCLC), and renal cell carcinoma (RCC). This review summarizes and discusses the pre-clinical and clinical evidence of the relevance of the RANKL/RANK pathway in cancer biology and therapeutics, focusing on bone metastatic disease, BCa onset and progression, and immune modulation.
Collapse
|
21
|
Ramirez Rios S, Torres A, Diemer H, Collin-Faure V, Cianférani S, Lafanechère L, Rabilloud T. A proteomic-informed view of the changes induced by loss of cellular adherence: The example of mouse macrophages. PLoS One 2021; 16:e0252450. [PMID: 34048472 PMCID: PMC8162644 DOI: 10.1371/journal.pone.0252450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/14/2021] [Indexed: 11/19/2022] Open
Abstract
Except cells circulating in the bloodstream, most cells in vertebrates are adherent. Studying the repercussions of adherence per se in cell physiology is thus very difficult to carry out, although it plays an important role in cancer biology, e.g. in the metastasis process. In order to study how adherence impacts major cell functions, we used a murine macrophage cell line. Opposite to the monocyte/macrophage system, where adherence is associated with the acquisition of differentiated functions, these cells can be grown in both adherent or suspension conditions without altering their differentiated functions (phagocytosis and inflammation signaling). We used a proteomic approach to cover a large panel of proteins potentially modified by the adherence status. Targeted experiments were carried out to validate the proteomic results, e.g. on metabolic enzymes, mitochondrial and cytoskeletal proteins. The mitochondrial activity was increased in non-adherent cells compared with adherent cells, without differences in glucose consumption. Concerning the cytoskeleton, a rearrangement of the actin organization (filopodia vs sub-cortical network) and of the microtubule network were observed between adherent and non-adherent cells. Taken together, these data show the mechanisms at play for the modification of the cytoskeleton and also modifications of the metabolic activity between adherent and non-adherent cells.
Collapse
Affiliation(s)
- Sacnite Ramirez Rios
- Institute for Advanced Biosciences, Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Grenoble, France
| | - Anaelle Torres
- Chemistry and Biology of Metals, Univ. Grenoble Alpes, CNRS UMR5249, CEA, IRIG-DIESE-CBM-ProMD, Grenoble, France
| | - Hélène Diemer
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
- Infrastructure Nationale de Protéomique, FR2048 ProFI, Strasbourg, France
| | - Véronique Collin-Faure
- Chemistry and Biology of Metals, Univ. Grenoble Alpes, CNRS UMR5249, CEA, IRIG-DIESE-CBM-ProMD, Grenoble, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
- Infrastructure Nationale de Protéomique, FR2048 ProFI, Strasbourg, France
| | - Laurence Lafanechère
- Institute for Advanced Biosciences, Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Grenoble, France
| | - Thierry Rabilloud
- Chemistry and Biology of Metals, Univ. Grenoble Alpes, CNRS UMR5249, CEA, IRIG-DIESE-CBM-ProMD, Grenoble, France
- * E-mail:
| |
Collapse
|
22
|
Natural history of stage II/III breast cancer, bone metastasis and the impact of adjuvant zoledronate on distribution of recurrences. J Bone Oncol 2021; 28:100367. [PMID: 34026478 PMCID: PMC8134065 DOI: 10.1016/j.jbo.2021.100367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/18/2021] [Accepted: 04/04/2021] [Indexed: 01/14/2023] Open
Abstract
Contemporary information on the pattern of disease recurrence in breast cancer provides useful information for planning clinical trials of novel adjuvant strategies. Bone metastases remain the most frequent site for metastasis from stage II-III breast cancer. The annual rates of disease recurrence and bone metastasis specifically are about 3% and 1% respectively in this intermediate to high-risk population. Zoledronate reduces bone metastasis but has adverse effects on extra-skeletal recurrences in women who have not passed through menopause and/or have adverse histological features.
Aim The prognosis for women with breast cancer has improved markedly over recent decades. However, mortality from breast cancer remains high and, for those developing metastatic disease, curative therapy is not possible. Here, we report the frequency and distribution of disease recurrence(s) in a large population of women with AJCC stage II/III breast cancer and evaluate the impact of adjuvant treatment with the bisphosphonate zoledronate on clinical outcomes. Patients and methods In the context of the AZURE study (ISRCTN7981382), 3359 patients with histologically confirmed stage II/III breast cancer were randomised to receive standard adjuvant treatment ± zoledronate for five years. Patients were followed up for 10 years and all patients with recurrent disease in that time identified. The site of first recurrence, the first distant recurrence site(s) and bone metastasis at any time were recorded and outcomes in the control and zoledronate treatment groups compared. Survival after recurrence was also evaluated. Results In the study population as a whole, disease recurrence at a median follow-up of 117 months occurred in 1010/3359 (30%) women with a relatively constant rate of disease relapse of around 3% per year. 727 (72%) first recurrences were at distant sites, 178 locoregional (18%) and 105 (10%) both locoregional and distant relapses occurred synchronously. Bone was the most frequent first recurrence site occurring in 463 (14%) of all patients and was the only distant metastatic site in 265 (7.9%). 69% of the control group who developed recurrent disease had bone metastases identified. Bone metastases were more frequent in those with oestrogen receptor (ER) positive disease and recurrences overall, especially at visceral sites, were more likely with ER negative disease. Zoledronate reduced bone metastases in both ER subgroups but increased the proportion with extra-skeletal metastases, particularly in women who were not definitely postmenopausal at study entry. Adjuvant zoledronate also reduced bone metastases after recurrence at an extra-skeletal site. Conclusions This analysis provides contemporary information on the frequency and pattern of recurrences after treatment for stage II/III breast cancer that may be of value in planning future adjuvant trials. It confirms the ongoing importance of bone metastases and describes in detail for the first time the effects of adjuvant zoledronate on the pattern of metastasis.
Collapse
|
23
|
Datta A, Deng S, Gopal V, Yap KCH, Halim CE, Lye ML, Ong MS, Tan TZ, Sethi G, Hooi SC, Kumar AP, Yap CT. Cytoskeletal Dynamics in Epithelial-Mesenchymal Transition: Insights into Therapeutic Targets for Cancer Metastasis. Cancers (Basel) 2021; 13:1882. [PMID: 33919917 PMCID: PMC8070945 DOI: 10.3390/cancers13081882] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
In cancer cells, a vital cellular process during metastasis is the transformation of epithelial cells towards motile mesenchymal cells called the epithelial to mesenchymal transition (EMT). The cytoskeleton is an active network of three intracellular filaments: actin cytoskeleton, microtubules, and intermediate filaments. These filaments play a central role in the structural design and cell behavior and are necessary for EMT. During EMT, epithelial cells undergo a cellular transformation as manifested by cell elongation, migration, and invasion, coordinated by actin cytoskeleton reorganization. The actin cytoskeleton is an extremely dynamic structure, controlled by a balance of assembly and disassembly of actin filaments. Actin-binding proteins regulate the process of actin polymerization and depolymerization. Microtubule reorganization also plays an important role in cell migration and polarization. Intermediate filaments are rearranged, switching to a vimentin-rich network, and this protein is used as a marker for a mesenchymal cell. Hence, targeting EMT by regulating the activities of their key components may be a potential solution to metastasis. This review summarizes the research done on the physiological functions of the cytoskeleton, its role in the EMT process, and its effect on multidrug-resistant (MDR) cancer cells-highlight some future perspectives in cancer therapy by targeting cytoskeleton.
Collapse
Affiliation(s)
- Arpita Datta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
| | - Shuo Deng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
| | - Vennila Gopal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
| | - Kenneth Chun-Hong Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
| | - Clarissa Esmeralda Halim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
| | - Mun Leng Lye
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
| | - Mei Shan Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117593, Singapore;
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Shing Chuan Hooi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
- Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117593, Singapore;
- Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| | - Celestial T. Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
- Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| |
Collapse
|
24
|
A Review of Literature on Updates of Bisphosphonates Administration, Cancer Biomarkers for Bisphosphonate Therapy, and Bisphosphonate-related Osteonecrosis of the Jaw in Breast Cancer. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2021. [DOI: 10.5812/ijcm.102733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Context: The emergence of bone health maintenance in breast cancer patients is known as an indispensable aspect in survival and morbidity improvement; therefore, bisphosphonates play a substantial role in the prevention/delaying of cancer treatment induced bone loss and skeletal-related events (SREs) in these patients, although this drug can cause necrosis of the jaw. In this article, we aimed at summarizing updated evidence on bisphosphonates administration, biomarkers representative of the efficacy of bisphosphonate therapy, and bisphosphonate-related osteonecrosis of the jaw (BRONJ) affection in patients involved in breast cancer. Methods: Associated published articles were searched for in EMBASE, MEDLINE, CDSR, PubMed, Google Scholar, and CINAHL, using the following keywords or, in the case of PubMed database, medical subject headings (MeSH): ‘Diphosphonate’, ‘osteonecrosis’, ‘breast cancer’, and ‘biomarker’ in the abstract or title, and was limited by "clinical trials, meta-analysis and randomized controlled trial” published in English language from 2015 to 2020-09-15. Results: Bisphosphonates depicted remarkable advantages in improving SREs, skeletal morbidity rate (SMR), survival rate, and treatment-emergent adverse events in breast cancer patients in almost all aspects of breast cancer therapy, from adjuvant therapy for the early stage breast cancer to bone metastatic breast cancer (BMBC). The identification of breast cancer biomarkers that are capable of reflecting the outcomes of bisphosphonates therapy is a highly advantageous aid in the optimal utilization of these drugs. Breast cancer biomarkers such as MAF, DOCK4, CD73, TLR9, and CAPG/GIPC1 composite illustrated a significant correlation with bisphosphonates administration. Medication-related osteonecrosis of the jaw (MRONJ) stands out as the most hazardous adverse event of the bisphosphonates with a rationally high incidence among breast cancer patients, which requires cautious prescription of bisphosphonates as well as regular dental health counseling for being prevented. Conclusions: Bisphosphonates are great weapons in the arsenal of breast cancer treatment and, therefore, comprehensive studying of their features leads to the optimal and safe administration of them. Unfortunately, as this procedure can cause necrosis of the jaw, dental procedures should be performed in these patients before starting bisphosphonate treatment.
Collapse
|
25
|
Gentile M, Centonza A, Lovero D, Palmirotta R, Porta C, Silvestris F, D'Oronzo S. Application of "omics" sciences to the prediction of bone metastases from breast cancer: State of the art. J Bone Oncol 2021; 26:100337. [PMID: 33240786 PMCID: PMC7672315 DOI: 10.1016/j.jbo.2020.100337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 11/28/2022] Open
Abstract
Breast cancer (BC) is the most frequent malignancy and the first cause of cancer-related death in women. The majority of patients with advanced BC develop skeletal metastases which may ultimately lead to serious complications, termed skeletal-related events, that often dramatically impact on quality of life and survival. Therefore, the identification of biomarkers able to stratify BC patient risk to develop bone metastases (BM) is fundamental to define personalized diagnostic and therapeutic strategies, possibly at the earliest stages of the disease. In this regard, the advent of "omics" sciences boosted the investigation of several putative biomarkers of BC osteotropism, including deregulated genes, proteins and microRNAs. The present review revisits the current knowledge on BM development in BC and the most recent studies exploring potential BM-predicting biomarkers, based on the application of omics sciences to the study of primary breast malignancies.
Collapse
Key Words
- ADAMTS1, a disintegrin-like and metalloproteinase with thrombospondin type 1
- ALP, alkaline phosphatase
- BALP (BSAP), bone-specific alkaline phosphatase
- BC, breast cancer
- BM, bone metastases
- BOLCs, breast osteoblast-like cells
- BTM, bone turnover markers
- Biomarkers
- Bone metastases
- Breast cancer
- CAPG, capping-protein
- CCN3, cellular communication network factor 3
- CDH11, cadherin-11
- CNV, copy number variation
- CTGF, connective tissue-derived growth factor
- CTSK, cathepsin K
- CTX, C-telopeptide
- CXCL, C-X-C-ligand
- CXCR, C–X–C motif chemokine receptor
- DEGs, differentially expressed genes
- DOCK4, dedicator of cytokinesis protein 4
- DPD, deoxypyridoline
- DTC, disseminated tumour cells
- EMT, epithelial-to-mesenchymal transition
- ER, estrogen receptor
- ERRα, estrogen-related receptor alpha
- FAK, focal adhesion kinase
- FGF, fibroblast growth factor
- FST, follistatin
- GIPC1, PDZ domain-containing protein member 1
- HR, hazard ratio
- Her, human epidermal growth factor
- ICAM-1, intercellular adhesion molecule 1
- IGF, insulin-like growth factor
- IHC, immunohistochemistry
- IL, interleukin
- LC/MS/MS, liquid chromatography/mass spectrometry/mass spectrometry
- MAF, v-maf avian muscolo aponeurotic fibro-sarcoma oncogene homolog
- MDA-MB, MD Anderson metastatic BC
- MMP1, matrix metalloproteinase-1
- NTX, N-telopeptide
- OPG, osteoprotegerin
- Omics sciences
- Osteotropism
- P1CP, pro-collagen type I C-terminal
- P1NP, pro-collagen type I N-terminal
- PDGF, platelet-derived growth factor
- PRG1, proteoglycan-1
- PTH-rP, parathyroid hormone-related protein
- PYD, pyridoline
- PgR, progesterone receptor
- PlGF, placental growth factor
- RANK, receptor activator of nuclear factor к-B
- RT-PCR, real time-PCR
- SILAC-MS, stable isotope labelling by amino acids in cell culture-mass spectrometry
- SNPs, single nucleotide polymorphisms
- SPP1, osteopontin
- SREs, skeletal-related events
- TCGA, the cancer genome atlas
- TGF-β, transforming growth factor beta
- TNF-α, tumor necrosis factor-α
- TRACP-5b, tartrate resistant acid phosphatase-5b
- VEGF, vascular endothelial growth factor
- ZNF217, zinc-finger protein 217
- miRNAs, microRNAs
- ncRNAs, noncoding RNA
Collapse
Affiliation(s)
- Marica Gentile
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Antonella Centonza
- “Casa Sollievo della Sofferenza” Onco-hematologic Department, Medical Oncology Unit, Viale Cappuccini 1, 71013 San Giovanni Rotondo, Italy
| | - Domenica Lovero
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Raffaele Palmirotta
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Camillo Porta
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Stella D'Oronzo
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
26
|
Canuas-Landero VG, George CN, Lefley DV, Corness H, Muthana M, Wilson C, Ottewell PD. Oestradiol Contributes to Differential Antitumour Effects of Adjuvant Zoledronic Acid Observed Between Pre- and Post-Menopausal Women. Front Endocrinol (Lausanne) 2021; 12:749428. [PMID: 34733240 PMCID: PMC8559775 DOI: 10.3389/fendo.2021.749428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
Clinical trials have demonstrated that adding zoledronic acid (Zol) to (neo)adjuvant standard of care has differential antitumour effects in pre- and post-menopausal women: Both benefit from reduced recurrence in bone; however, while postmenopausal women also incur survival benefit, none is seen in premenopausal women treated with adjuvant bisphosphonates. In the current study, we have used mouse models to investigate the role of oestradiol in modulating potential antitumour effects of Zol. Pre-, peri-, and post-menopausal concentrations of oestradiol were modelled in BALB/c wild-type, BALB/c nude, and C57BL/6 mice by ovariectomy followed by supplementation with oestradiol. Mice also received 40 mg/kg/day goserelin to prevent ovariectomy-induced increases in follicle-stimulating hormone (FSH). Metastasis was modelled following injection of MDA-MB-231, 4T1, or E0771 cells after ovariectomy and saline or 100 μg/kg Zol administered weekly. Supplementing ovariectomised mice with 12.5 mg/ml, 1.38 mg/ml, and 0 ng/ml oestradiol, in the presence of goserelin, resulted in serum concentrations of 153.16 ± 18.10 pg/ml, 48.64 ± 18.44 pg/ml, and 1.00 ± 0.27 pg/ml oestradiol, which are equivalent to concentrations found in pre-, peri-, and post-menopausal humans. Osteoclast activity was increased 1.5-1.8-fold with peri- and post-menopausal compared with premenopausal oestradiol, resulting in a 1.34-1.69-fold reduction in trabecular bone. Zol increased trabecular bone in all groups but did not restore bone to volumes observed under premenopausal conditions. In tumour-bearing mice, Zol reduced bone metastases in BALB/c (wild-type and nude), with greatest effects seen under pre- and post-menopausal concentrations of oestradiol. Zol did not affect soft tissue metastases in immunocompetent BALB/c mice but increased metastases 3.95-fold in C57BL/6 mice under premenopausal concentrations of oestradiol. In contrast, Zol significantly reduced soft tissue metastases 2.07 and 4.69-fold in immunocompetent BALB/c and C57BL/6 mice under postmenopausal oestradiol, mirroring the results of the clinical trials of (neo)adjuvant bisphosphonates. No effects on soft tissue metastases were observed in immunocompromised mice, and differences in antitumour response did not correlate with musculoaponeurotic fibrosarcoma (MAF), macrophage capping protein (CAPG), or PDZ domain containing protein GIPC1 (GIPC1) expression. In conclusion, oestradiol contributes to altered antitumour effects of Zol observed between pre- and post-menopausal women. However, other immunological/microenvironmental factors are also likely to contribute to this phenomenon.
Collapse
|
27
|
Clézardin P, Coleman R, Puppo M, Ottewell P, Bonnelye E, Paycha F, Confavreux CB, Holen I. Bone metastasis: mechanisms, therapies, and biomarkers. Physiol Rev 2020; 101:797-855. [PMID: 33356915 DOI: 10.1152/physrev.00012.2019] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Skeletal metastases are frequent complications of many cancers, causing bone complications (fractures, bone pain, disability) that negatively affect the patient's quality of life. Here, we first discuss the burden of skeletal complications in cancer bone metastasis. We then describe the pathophysiology of bone metastasis. Bone metastasis is a multistage process: long before the development of clinically detectable metastases, circulating tumor cells settle and enter a dormant state in normal vascular and endosteal niches present in the bone marrow, which provide immediate attachment and shelter, and only become active years later as they proliferate and alter the functions of bone-resorbing (osteoclasts) and bone-forming (osteoblasts) cells, promoting skeletal destruction. The molecular mechanisms involved in mediating each of these steps are described, and we also explain how tumor cells interact with a myriad of interconnected cell populations in the bone marrow, including a rich vascular network, immune cells, adipocytes, and nerves. We discuss metabolic programs that tumor cells could engage with to specifically grow in bone. We also describe the progress and future directions of existing bone-targeted agents and report emerging therapies that have arisen from recent advances in our understanding of the pathophysiology of bone metastases. Finally, we discuss the value of bone turnover biomarkers in detection and monitoring of progression and therapeutic effects in patients with bone metastasis.
Collapse
Affiliation(s)
- Philippe Clézardin
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France.,Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Rob Coleman
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Margherita Puppo
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Penelope Ottewell
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Edith Bonnelye
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France
| | - Frédéric Paycha
- Service de Médecine Nucléaire, Hôpital Lariboisière, Paris, France
| | - Cyrille B Confavreux
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France.,Service de Rhumatologie Sud, CEMOS-Centre Expert des Métastases Osseuses, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Ingunn Holen
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
28
|
Liu F, Ke J, Song Y. Application of Biomarkers for the Prediction and Diagnosis of Bone Metastasis in Breast Cancer. J Breast Cancer 2020; 23:588-598. [PMID: 33408885 PMCID: PMC7779727 DOI: 10.4048/jbc.2020.23.e65] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/23/2020] [Indexed: 12/27/2022] Open
Abstract
The most common metastatic site of breast cancer is the bone. Metastatic bone disease can alter the integrity of the bone and cause serious complications, thereby greatly reducing health-related quality of life and leading to high medical costs. Although diagnostic methods and treatments for bone metastases (BM) are improving, some patients with early breast cancer who are at high risk of BM are not diagnosed early enough, leading to delayed intervention. Moreover, whole-body scintigraphy cannot easily distinguish BM from non-malignant bone diseases. To circumvent these issues, specific gene and protein biomarkers are being investigated for their potential to predict, diagnose, and evaluate breast cancer prognosis. In this review, we summarized the current biomarkers associated with BM in breast cancer and their role in clinical applications to assist in the diagnosis and treatment of BM in the future.
Collapse
Affiliation(s)
- Feiqi Liu
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jianji Ke
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yanqiu Song
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
George CN, Canuas-Landero V, Theodoulou E, Muthana M, Wilson C, Ottewell P. Oestrogen and zoledronic acid driven changes to the bone and immune environments: Potential mechanisms underlying the differential anti-tumour effects of zoledronic acid in pre- and post-menopausal conditions. J Bone Oncol 2020; 25:100317. [PMID: 32995253 PMCID: PMC7516134 DOI: 10.1016/j.jbo.2020.100317] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Late stage breast cancer commonly metastasises to bone and patient survival averages 2-3 years following diagnosis of bone involvement. One of the most successful treatments for bone metastases is the bisphosphonate, zoledronic acid (ZOL). ZOL has been used in the advanced setting for many years where it has been shown to reduce skeletal complications associated with bone metastasis. More recently, several large adjuvant clinical trials have demonstrated that administration of ZOL can prevent recurrence and improve survival when given in early breast cancer. However, these promising effects were only observed in post-menopausal women with confirmed low concentrations of circulating ovarian hormones. In this review we focus on potential interactions between the ovarian hormone, oestrogen, and ZOL to establish credible hypotheses that could explain why anti-tumour effects are specific to post-menopausal women. Specifically, we discuss the molecular and immune cell driven mechanisms by which ZOL and oestrogen affect the tumour microenvironment to inhibit/induce tumour growth and how oestrogen can interact with zoledronic acid to inhibit its anti-tumour actions.
Collapse
Affiliation(s)
- Christopher N. George
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| | - Victor Canuas-Landero
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| | - Elizavet Theodoulou
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| | - Munitta Muthana
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| | - Caroline Wilson
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| | - Penelope Ottewell
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| |
Collapse
|
30
|
Abstract
Bone is the most frequent site for metastasis for many cancers, notably for tumours originating in the breast and the prostate. Tumour cells can escape from the primary tumour site and colonize the bone microenvironment. Within the bone, these disseminated tumour cells, as well as those arising in the context of multiple myeloma, may assume a state of dormancy, remaining quiescent for years before resuming proliferation and causing overt metastasis, which causes bone destruction via activation of osteoclast-mediated osteolysis. This structural damage can lead to considerable morbidity, including pain, fractures and impaired quality of life. Although treatment of bone metastases and myeloma bone disease is rarely curative, disease control is often possible for many years through the use of systemic anticancer treatments on a background of multidisciplinary supportive care. This care should include bone-targeted agents to inhibit tumour-associated osteolysis and prevent skeletal morbidity as well as use of appropriate local treatments such as radiation therapy, orthopaedic surgery and specialist palliative care to minimize the impact of metastatic bone disease on physical functioning. In this Primer, we provide an overview of the clinical features, the pathophysiology and the specific treatment approaches to prevent and treat bone metastases from solid tumours as well as myeloma bone disease.
Collapse
|
31
|
Fang F, Zhao Q, Chu H, Liu M, Zhao B, Liang Z, Zhang L, Li G, Wang L, Qin J, Zhang Y. Molecular Dynamics Simulation-assisted Ionic Liquid Screening for Deep Coverage Proteome Analysis. Mol Cell Proteomics 2020; 19:1724-1737. [PMID: 32675193 PMCID: PMC8015004 DOI: 10.1074/mcp.tir119.001827] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 07/08/2020] [Indexed: 11/06/2022] Open
Abstract
In-depth coverage of proteomic analysis could enhance our understanding to the mechanism of the protein functions. Unfortunately, many highly hydrophobic proteins and low-abundance proteins, which play critical roles in signaling networks, are easily lost during sample preparation, mainly attributed to the fact that very few extractants can simultaneously satisfy the requirements on strong solubilizing ability to membrane proteins and good enzyme compatibility. Thus, it is urgent to screen out ideal extractant from the huge compound libraries in a fast and effective way. Herein, by investigating the interior mechanism of extractants on the membrane proteins solubilization and trypsin compatibility, a molecular dynamics simulation system was established as complement to the experimental procedure to narrow down the scope of candidates for proteomics analysis. The simulation data shows that the van der Waals interaction between cation group of ionic liquid and membrane protein is the dominant factor in determining protein solubilization. In combination with the experimental data, 1-dodecyl-3-methylimidazolium chloride (C12Im-Cl) is on the shortlist for the suitable candidates from comprehensive aspects. Inspired by the advantages of C12Im-Cl, an ionic liquid-based filter-aided sample preparation (i-FASP) method was developed. Using this strategy, over 3,300 proteins were confidently identified from 103 HeLa cells (∼100 ng proteins) in a single run, an improvement of 53% over the conventional FASP method. Then the i-FASP method was further successfully applied to the label-free relative quantitation of human liver cancer and para-carcinoma tissues with obviously improved accuracy, reproducibility and coverage than the commonly used urea-based FASP method. The above results demonstrated that the i-FASP method could be performed as a versatile tool for the in-depth coverage proteomic analysis of biological samples.
Collapse
Affiliation(s)
- Fei Fang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, National Chromatographic Research and Analysis Center, Dalian, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, National Chromatographic Research and Analysis Center, Dalian, China
| | - Huiying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences, Beijing, China
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, National Chromatographic Research and Analysis Center, Dalian, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, National Chromatographic Research and Analysis Center, Dalian, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, National Chromatographic Research and Analysis Center, Dalian, China.
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China.
| | - Liming Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences, Beijing, China; Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, National Chromatographic Research and Analysis Center, Dalian, China
| |
Collapse
|
32
|
Cross-Species Proteomics Identifies CAPG and SBP1 as Crucial Invasiveness Biomarkers in Rat and Human Malignant Mesothelioma. Cancers (Basel) 2020; 12:cancers12092430. [PMID: 32867073 PMCID: PMC7564583 DOI: 10.3390/cancers12092430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/25/2022] Open
Abstract
Malignant mesothelioma (MM) still represents a devastating disease that is often detected too late, while the current effect of therapies on patient outcomes remains unsatisfactory. Invasiveness biomarkers may contribute to improving early diagnosis, prognosis, and treatment for patients, a task that could benefit from the development of high-throughput proteomics. To limit potential sources of bias when identifying such biomarkers, we conducted cross-species proteomic analyzes on three different MM sources. Data were collected firstly from two human MM cell lines, secondly from rat MM tumors of increasing invasiveness grown in immunocompetent rats and human MM tumors grown in immunodeficient mice, and thirdly from paraffin-embedded sections of patient MM tumors of the epithelioid and sarcomatoid subtypes. Our investigations identified three major invasiveness biomarkers common to the three tumor sources, CAPG, FABP4, and LAMB2, and an additional set of 25 candidate biomarkers shared by rat and patient tumors. Comparing the data to proteomic analyzes of preneoplastic and neoplastic rat mesothelial cell lines revealed the additional role of SBP1 in the carcinogenic process. These observations could provide new opportunities to identify highly vulnerable MM patients with poor survival outcomes, thereby improving the success of current and future therapeutic strategies.
Collapse
|
33
|
Wood SL, Brown JE. Personal Medicine and Bone Metastases: Biomarkers, Micro-RNAs and Bone Metastases. Cancers (Basel) 2020; 12:cancers12082109. [PMID: 32751181 PMCID: PMC7465268 DOI: 10.3390/cancers12082109] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Bone metastasis is a major cause of morbidity within solid tumours of the breast, prostate, lung and kidney. Metastasis to the skeleton is associated with a wide range of complications including bone fractures, spinal cord compression, hypercalcaemia and increased bone pain. Improved treatments for bone metastasis, such as the use of anti-bone resorptive bisphosphonate agents, within post-menopausal women have improved disease-free survival; however, these treatments are not without side effects. There is thus a need for biomarkers, which will predict the risk of developing the spread to bone within these cancers. The application of molecular profiling techniques, together with animal model systems and engineered cell-lines has enabled the identification of a series of potential bone-metastasis biomarker molecules predictive of bone metastasis risk. Some of these biomarker candidates have been validated within patient-derived samples providing a step towards clinical utility. Recent developments in multiplex biomarker quantification now enable the simultaneous measurement of up to 96 micro-RNA/protein molecules in a spatially defined manner with single-cell resolution, thus enabling the characterisation of the key molecules active at the sites of pre-metastatic niche formation as well as tumour-stroma signalling. These technologies have considerable potential to inform biomarker discovery. Additionally, a potential future extension of these discoveries could also be the identification of novel drug targets within cancer spread to bone. This chapter summarises recent findings in biomarker discovery within the key bone metastatic cancers (breast, prostate, lung and renal cell carcinoma). Tissue-based and circulating blood-based biomarkers are discussed from the fields of genomics, epigenetic regulation (micro-RNAs) and protein/cell-signalling together with a discussion of the potential future development of these markers towards clinical development.
Collapse
Affiliation(s)
- Steven L. Wood
- Department of Oncology and Metabolism, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
- Correspondence:
| | - Janet E. Brown
- Department of Oncology and Metabolism, Weston Park Hospital, Whitham Road, Sheffield S10 2SJ, UK;
| |
Collapse
|
34
|
Iuliani M, Simonetti S, Ribelli G, Napolitano A, Pantano F, Vincenzi B, Tonini G, Santini D. Current and Emerging Biomarkers Predicting Bone Metastasis Development. Front Oncol 2020; 10:789. [PMID: 32582538 PMCID: PMC7283490 DOI: 10.3389/fonc.2020.00789] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023] Open
Abstract
Bone is one of the preferential sites of distant metastases from malignant tumors, with the highest prevalence observed in breast and prostate cancers. Patients with bone metastases (BMs) may experience skeletal-related events, such as severe bone pain, pathological fractures, spinal cord compression, and hypercalcemia, with negative effects on the quality of life. In the last decades, a deeper understanding of the molecular mechanisms underlying the BM onset has been gained, leading to the development of bone-targeting agents. So far, most of the research has been focused on the pathophysiology and treatment of BM, with only relatively few studies investigating potential predictors of risk for BM development. The ability to select such "high-risk" patients could allow early identification of those most likely to benefit from interventions to prevent or delay BM. This review summarizes several evidences for the potential use of specific biomarkers able to predict early the BM development.
Collapse
Affiliation(s)
- Michele Iuliani
- Medical Oncology, Bio-Medico University of Rome, Rome, Italy
| | - Sonia Simonetti
- Medical Oncology, Bio-Medico University of Rome, Rome, Italy
| | - Giulia Ribelli
- Medical Oncology, Bio-Medico University of Rome, Rome, Italy
| | | | | | - Bruno Vincenzi
- Medical Oncology, Bio-Medico University of Rome, Rome, Italy
| | - Giuseppe Tonini
- Medical Oncology, Bio-Medico University of Rome, Rome, Italy
| | - Daniele Santini
- Medical Oncology, Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
35
|
D’Oronzo S, Silvestris E, Paradiso A, Cives M, Tucci M. Role of Bone Targeting Agents in the Prevention of Bone Metastases from Breast Cancer. Int J Mol Sci 2020; 21:ijms21083022. [PMID: 32344743 PMCID: PMC7215395 DOI: 10.3390/ijms21083022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is the most common malignancy in women worldwide and leads, in more than 70% of patients with advanced disease, to skeleton colonization and formation of bone metastases (BM). This condition implies a severe disability and deterioration of the quality of life, with consequent additional social costs. In recent decades, several studies explored the role of agents acting within the bone microenvironment to counteract BM development, and several bone-targeting agents (BTAs) have been introduced in the clinical practice to manage bone lesions and reduce the risk of skeletal complications. However, long-term exposure to these agents is not free from potential toxicities and needs careful monitoring. In this context, the potential capability to prevent BM onset in selected BC patients, through the early administration of BTAs, has been explored by several researchers, with the belief that “prevention is better than cure” and that, ultimately, metastatic BC is an incurable condition. Here, we revised the mechanisms of BM development in BC as well as the strategies for selecting high-risk patients suitable for early BTA treatment.
Collapse
Affiliation(s)
- Stella D’Oronzo
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70124 Bari, Italy; (M.C.); (M.T.)
- IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
- Correspondence: ; Tel.: +39-080-547-8674; Fax: +39-080-547-8831
| | - Erica Silvestris
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | - Angelo Paradiso
- IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | - Mauro Cives
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70124 Bari, Italy; (M.C.); (M.T.)
| | - Marco Tucci
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70124 Bari, Italy; (M.C.); (M.T.)
- IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| |
Collapse
|
36
|
Bao L, Guo T, Wang J, Zhang K, Bao M. Prognostic genes of triple-negative breast cancer identified by weighted gene co-expression network analysis. Oncol Lett 2019; 19:127-138. [PMID: 31897123 PMCID: PMC6923995 DOI: 10.3892/ol.2019.11079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/06/2019] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by a deficiency in the estrogen receptor (ER), progesterone receptor (PR) and HER2/neu genes. Patients with TNBC have an increased likelihood of distant recurrence and mortality, compared with patients with other subtypes of breast cancer. The current study aimed to identify novel biomarkers for TNBC. Weighted gene co-expression network analysis (WGCNA) was applied to construct gene co-expression networks; these were used to explore the correlation between mRNA profiles and clinical data, thus identifying the most significant co-expression network associated with the American Joint Committee on Cancer-TNM stage of TNBC. Using RNAseq datasets from The Cancer Genome Atlas, downloaded from the University of California, Santa Cruz, WGCNA identified 23 modules via K-means clustering. The most significant module consisted of 248 genes, on which gene ontology analysis was subsequently performed. Differently Expressed Gene (DEG) analysis was then applied to determine the DEGs between normal and tumor tissues. A total of 42 genes were positioned in the overlap between DEGs and the most significant module. Following survival analysis, 5 genes [GIPC PDZ domain containing family member 1 (GIPC1), hes family bHLH transcription factor 6 (HES6), calmodulin-regulated spectrin-associated protein family member 3 (KIAA1543), myosin light chain kinase 2 (MYLK2) and peter pan homolog (PPAN)] were selected and their association with the American Joint Committee on Cancer-TNM diagnostic stage was investigated. The expression level of these genes in different pathological stages varied, but tended to increase in more advanced pathological stages. The expression of these 5 genes exhibited accurate capacity for the identification of tumor and normal tissues via receiver operating characteristic curve analysis. High expression of GIPC1, HES6, KIAA1543, MYLK2 and PPAN resulted in poor overall survival (OS) in patients with TNBC. In conclusion, via unsupervised clustering methods, a co-expressed gene network with high inter-connectivity was constructed, and 5 genes were identified as biomarkers for TNBC.
Collapse
Affiliation(s)
- Ligang Bao
- Emergency Department, Dongyang People's Hospital, Jinhua, Zhejiang 322100, P.R. China
| | - Ting Guo
- Department of Neurosurgery, Zhejiang Province Taizhou Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Ji Wang
- Department of Orthopaedics, 967th Hospital of The PLA Joint Logistics Support Force, Dalian, Liaoning 116021, P.R. China
| | - Kai Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Maode Bao
- Orthopedics Department, Dongyang Chinese Medicine Hospital, Jinhua, Zhejiang 322100, P.R. China
| |
Collapse
|
37
|
Lang Z, Chen Y, Zhu H, Sun Y, Zhang H, Huang J, Zou Z. Prognostic and clinicopathological significance of CapG in various cancers: Evidence from a meta-analysis. Pathol Res Pract 2019; 215:152683. [PMID: 31685300 DOI: 10.1016/j.prp.2019.152683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/23/2019] [Accepted: 10/06/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND The gelsolin-like actin-capping protein (CapG) is an actin-binding protein in the gelsolin superfamily. Increasing evidence indicates that CapG is highly expressed in various types of cancer. However, the role of CapG in malignant tumors is still controversial. Therefore, we conducted a meta-analysis to assess the prognostic value and clinicopathological significance of CapG in malignant tumors. METHOD We searched for eligible studies in the PubMed, Web of Science, Embase, and Cochrane databases. Stata SE12.0 software was used for quantitative meta-analysis. The hazard ratios (HRs) and odds ratios (ORs) with 95% CI were pooled to assess the relationship between CapG expression and overall survival (OS), as well as clinicopathological parameters. RESULTS Sixteen studies with a total of 1987 cancer patients were included in this meta-analysis. The results showed that higher CapG expression was statistically correlated with shorter OS (HR 1.70, 95% CI 1.43-1.97, P < 0.001), positive lymph node metastasis (OR 1.91, 95% CI 1.19-3.09, P = 0.008), advanced TNM stage (OR 1.87, 95% CI 1.17-3.00, P = 0.009), advanced T-primary stage (OR 2.54, 95% CI 1.08-6.00, P = 0.033) and male sex (OR 1.77, 95% CI 1.23-2.56, P = 0.002). However, no significant correlation was observed between increased CapG expression and advanced age, larger tumor size, differentiation, or advanced histopathologic grading (P > 0.05). CONCLUSIONS High CapG expression is associated with a poor prognosis and worse clinicopathological parameters in various cancers. CapG is a potential prognostic biomarker and a possible clinicopathological predictive factor for various cancers.
Collapse
Affiliation(s)
- Zhiquan Lang
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, PR China; Nanchang University, Nanchang, Jiangxi, PR China
| | - Yuting Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, PR China; Nanchang University, Nanchang, Jiangxi, PR China
| | - Hanyan Zhu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, PR China; Nanchang University, Nanchang, Jiangxi, PR China
| | - Yuting Sun
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, PR China; Nanchang University, Nanchang, Jiangxi, PR China
| | - Hao Zhang
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, PR China; Nanchang University, Nanchang, Jiangxi, PR China
| | - Junfu Huang
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, PR China; Nanchang University, Nanchang, Jiangxi, PR China
| | - Zhenhong Zou
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, PR China.
| |
Collapse
|
38
|
Brown JE, Westbrook JA, Wood SL. Dedicator of Cytokinesis 4: A Potential Prognostic and Predictive Biomarker Within the Metastatic Spread of Breast Cancer to Bone. Cancer Inform 2019; 18:1176935119866842. [PMID: 31488945 PMCID: PMC6712742 DOI: 10.1177/1176935119866842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022] Open
Abstract
Metastasis to bone occurs in over 70% of patients with advanced breast cancer resulting in skeletal complications, including pathological fractures, hypercalcaemia, and bone pain. Significant advances have been made in the treatment of bone metastases, including the use of antiresorptive drugs, such as bisphosphonates, as well as antibody-based therapies targeting key signalling intermediates within the process of cancer-mediated bone destruction. Despite these advances, treatment is not without side effects, including osteonecrosis of the jaw therefore biomarkers predictive of which patients are at high risk of developing bone spread are required to enable personalized medicine initiatives within this important disease area. We used proteomic analysis to compare the protein expression within (1) a parental triple negative human breast cancer cell line, (2) a fully bone homing cell line and (3) a lung homing cell line. The bone and lung homing cell-lines were derived by intra-cardiac injection of fluorescently labelled cells within immune-compromised mice. Proteomics identified Dedicator of Cytokinesis 4 as a biomarker predictive of bone spread, and this finding was further supported by the observation that high levels of Dedicator of Cytokinesis 4 within primary breast tumours were predictive of breast cancer spread to bone. Here, we provide an overview of this study and put the findings into context.
Collapse
Affiliation(s)
- Janet E Brown
- Department of Oncology & Metabolism, Academic Unit of Clinical Oncology, The University of Sheffield, Sheffield, UK
| | - Jules A Westbrook
- Department of Oncology & Metabolism, Academic Unit of Clinical Oncology, The University of Sheffield, Sheffield, UK
| | - Steven L Wood
- Department of Oncology & Metabolism, Academic Unit of Clinical Oncology, The University of Sheffield, Sheffield, UK
| |
Collapse
|
39
|
Fu Q, Shaya M, Li S, Kugeluke Y, Dilimulati Y, Liu B, Zhou Q. Analysis of clinical characteristics of macrophage capping protein (CAPG) gene expressed in glioma based on TCGA data and clinical experiments. Oncol Lett 2019; 18:1344-1350. [PMID: 31423196 PMCID: PMC6607217 DOI: 10.3892/ol.2019.10396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023] Open
Abstract
Macrophage capping protein (CAPG) genes were investigated based on The Cancer Genome Atlas (TCGA) database and clinical experiments. Glioblastoma (GBM) genes expression profiling chip of 529 disease samples and 10 normal samples selected from TCGA database were used for analysis, 25 brain glioma tissue samples and 15 normal brain tissues were collected in the Department of Neurosurgery of the First Affiliated Hospital of Xinjiang Medical University in China from 2016 to 2017 to analyze CAPG genes. TCGA results showed that the expression level of CAPG genes in GBM was higher than that in normal tissues, and the expression level of men, aged over 46 years and high grade gliomas in pathological stages was higher than that of women, aged ≤46 and low grade gliomas in pathological stages, and the survival time of high expression was shorter than that of low expression. The expression level of CAPG in glioma tissues was higher than that in normal tissues, and the expression level of CAPG in males was higher than that in females, as males had lymphatic transfer and low differentiation compared with females, but the expression level was not related to age. Survival analysis showed that higher expression level indicated shorter survival time, they were positively correlated. The expression of CAPG in glioma is high, and it is highly expressed with the severity of the disease, and it is also obviously related to the prognosis. Therefore, CAPG could be used as a biomarker for pathological grade and prognosis in glioma. However, the related studies are not consistent on the expression of different sex and ages, so further study is needed.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University (XJMU), Urumqi, Xinjiang 830011, P.R. China
| | - Mahati Shaya
- Department of Tumor Center, First Affiliated Hospital of Xinjiang Medical University (XJMU), Urumqi, Xinjiang 830011, P.R. China
| | - Shaoshan Li
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University (XJMU), Urumqi, Xinjiang 830011, P.R. China
| | - Yalikun Kugeluke
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University (XJMU), Urumqi, Xinjiang 830011, P.R. China
| | - Yisireyili Dilimulati
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University (XJMU), Urumqi, Xinjiang 830011, P.R. China
| | - Bo Liu
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University (XJMU), Urumqi, Xinjiang 830011, P.R. China
| | - Qingjiu Zhou
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University (XJMU), Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|
40
|
Elie BT, Hubbard K, Pechenyy Y, Layek B, Prabha S, Contel M. Preclinical evaluation of an unconventional ruthenium-gold-based chemotherapeutic: RANCE-1, in clear cell renal cell carcinoma. Cancer Med 2019; 8:4304-4314. [PMID: 31192543 PMCID: PMC6675714 DOI: 10.1002/cam4.2322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND There are few effective treatments for patients with advanced clear cell renal cell carcinoma (CCRCC). Recent findings indicate that ruthenium-gold containing compounds exhibit significant antitumor efficacy against CCRCC in vitro affecting cell viability as well as angiogenesis and markers driving those 2 phenomena. However, no in vivo preclinical evaluation of this class of compounds has been reported. METHODS Following the dose-finding pharmacokinetic determination, NOD.CB17-Prkdc SCID/J mice bearing xenograft CCRCC Caki-1 tumors were treated in an intervention trial for 21 days at 10 mg/kg/72h of RANCE-1. At the end of the trial, tumor samples were analyzed for histopathological and changes in protein expression levels were assessed. RESULTS After 21 days of treatment there was no significant change in tumor size in the RANCE-1-treated mice as compared to the starting size (+3.87%) (P = 0.082) while the vehicle treated mice exhibited a significant tumor size increase (+138%) (P < 0.01). There were no signs of pathological complications as a result of treatment. Significant reduction in the expression of VEGF, PDGF, FGF, EGFR, and HGRF, all key to the proliferation of tumor cells and stromal cells serving protumorigenic purposes was observed. CONCLUSIONS The tumor growth inhibition displayed and favorable pathology profile of RANCE-1 makes it a promising candidate for further evaluation toward clinical use for the treatment of advanced CCRCC.
Collapse
Affiliation(s)
- Benelita T. Elie
- Department of ChemistryBrooklyn College, The City University of New YorkBrooklynNew York
- Biology PhD Program, The Graduate CenterThe City University of New YorkNew YorkNew York
| | - Karen Hubbard
- Biology PhD Program, The Graduate CenterThe City University of New YorkNew YorkNew York
- Department of BiologyCity College of New York, The City University of New YorkNew YorkNew York
| | - Yuriy Pechenyy
- Department of BiologyCity College of New York, The City University of New YorkNew YorkNew York
| | - Buddhadev Layek
- University of Minnesota College of PharmacyMinneapolisMinnesota
| | - Swayam Prabha
- University of Minnesota College of PharmacyMinneapolisMinnesota
| | - Maria Contel
- Department of ChemistryBrooklyn College, The City University of New YorkBrooklynNew York
- Biology PhD Program, The Graduate CenterThe City University of New YorkNew YorkNew York
- Chemistry PhD Program, The Graduate CenterThe City University of New YorkNew YorkNew York
- Biochemistry PhD Program, The Graduate CenterThe City University of New YorkNew YorkNew York
| |
Collapse
|
41
|
Brown J, Rathbone E, Hinsley S, Gregory W, Gossiel F, Marshall H, Burkinshaw R, Shulver H, Thandar H, Bertelli G, Maccon K, Bowman A, Hanby A, Bell R, Cameron D, Coleman R. Associations Between Serum Bone Biomarkers in Early Breast Cancer and Development of Bone Metastasis: Results From the AZURE (BIG01/04) Trial. J Natl Cancer Inst 2019; 110:871-879. [PMID: 29425304 PMCID: PMC6093369 DOI: 10.1093/jnci/djx280] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 12/06/2017] [Indexed: 01/21/2023] Open
Abstract
Background Adjuvant therapies can prevent/delay bone metastasis development in breast cancer. We investigated whether serum bone turnover markers in early disease have clinical utility in identifying patients with a high risk of developing bone metastasis. Methods Markers of bone formation (N-terminal propeptide of type-1 collagen [P1NP]) and bone resorption (C-telopeptide of type-1 collagen [CTX], pyridinoline cross-linked carboxy-terminal telopeptide of type-1 collagen [1-CTP]) were measured in baseline (pretreatment blood samples from 872 patients from a large randomized trial of adjuvant zoledronic acid (AZURE-ISRCTN79831382) in early breast cancer. Cox proportional hazards regression and cumulative incidence functions (adjusted for factors having a statistically significant effect on outcome) were used to investigate prognostic and predictive associations between recurrence events, bone marker levels, and clinical variables. All statistical tests were two-sided. Results When considered as continuous variables (log transformed), P1NP, CTX, and 1-CTP were each prognostic for future bone recurrence at any time (P = .006, P = .009, P = .008, respectively). Harrell’s c-indices were a P1NP of 0.57 (95% confidence interval [CI] = 0.51 to 0.63), CTX of 0.57 (95% CI = 0.51 to 0.62), and 1-CTP of 0.57 (95% CI = 0.52 to 0.63). In categorical analyses based on the normal range, high baseline P1NP (>70 ng/mL) and CTX (>0.299 ng/mL), but not 1-CTP (>4.2 ng/mL), were also prognostic for future bone recurrence (P = .03, P = .03, P = .10, respectively). None of the markers were prognostic for overall distant recurrence; that is, they were bone metastasis specific, and none of the markers were predictive of treatment benefit from zoledronic acid. Conclusions Serum P1NP, CTX, and 1-CTP are clinically useful, easily measured markers that show good prognostic ability (though low-to-moderate discrimination) for bone-specific recurrence and are worthy of further study.
Collapse
Affiliation(s)
- Janet Brown
- Academic Unit of Clinical Oncology and Sheffield ECMC, University of Sheffield, Weston Park Hospital, Sheffield, UK.,Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Emma Rathbone
- Academic Unit of Clinical Oncology and Sheffield ECMC, University of Sheffield, Weston Park Hospital, Sheffield, UK.,Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK.,Calderdale and Huddersfield NHS Foundation Trust, Huddersfield, UK
| | - Samantha Hinsley
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Walter Gregory
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Fatma Gossiel
- Academic Unit of Bone Metabolism, Metabolic Bone Centre, University of Sheffield, Northern General Hospital, Sheffield, UK
| | - Helen Marshall
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Roger Burkinshaw
- Academic Unit of Clinical Oncology and Sheffield ECMC, University of Sheffield, Weston Park Hospital, Sheffield, UK
| | - Helen Shulver
- Academic Unit of Clinical Oncology and Sheffield ECMC, University of Sheffield, Weston Park Hospital, Sheffield, UK
| | | | | | - Keane Maccon
- Cancer Trials Ireland, University College Hospital, Galway, Ireland
| | - Angela Bowman
- University of Edinburgh Cancer Research Centre, Western General Hospital, Edinburgh, UK
| | - Andrew Hanby
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | | | - David Cameron
- University of Edinburgh Cancer Research Centre, Western General Hospital, Edinburgh, UK
| | - Robert Coleman
- Academic Unit of Clinical Oncology and Sheffield ECMC, University of Sheffield, Weston Park Hospital, Sheffield, UK
| |
Collapse
|
42
|
Salvador F, Llorente A, Gomis RR. From latency to overt bone metastasis in breast cancer: potential for treatment and prevention. J Pathol 2019; 249:6-18. [PMID: 31095738 PMCID: PMC6771808 DOI: 10.1002/path.5292] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Abstract
Bone metastasis is present in a high percentage of breast cancer (BCa) patients with distant disease, especially in those with the estrogen receptor‐positive (ER+) subtype. Most cells that escape primary tumors are unable to establish metastatic lesions, which suggests that target organ microenvironments are hostile for tumor cells. This implies that BCa cells must achieve a process of speciation to adapt to the new conditions imposed in the new organ. Bone has unique characteristics that can be exploited by cancer cells: it undergoes constant remodeling and comprises diverse environments (including osteogenic, perivascular, and hematopoietic stem cell niches). This allows colonizing cells to take advantage of numerous adhesion molecules, matrix proteins, and soluble factors that facilitate homing, survival, and, eventually, metastatic outgrowth. However, in most cases, metastatic lesions enter into a latency state that can last months, years, or even decades, before forming a clinically detectable macrometastasis. This dormant state challenges the effectiveness of adjuvant chemotherapy. Detecting which tumors are more prone to metastasize to bone and developing new specific therapies that target bone metastasis represent urgent clinical needs. Here, we review the biological mechanisms of BCa bone metastasis and provide the latest options of treatments and predictive markers that are currently in clinical use or are being tested in clinical assays. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Fernando Salvador
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Alicia Llorente
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Roger R Gomis
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,CIBERONC, Barcelona, Spain.,ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.,School of Medicine, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
43
|
Sinomenine inhibits osteolysis in breast cancer by reducing IL-8/CXCR1 and c-Fos/NFATc1 signaling. Pharmacol Res 2019; 142:140-150. [DOI: 10.1016/j.phrs.2019.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/16/2022]
|
44
|
Wu Y, Tan X, Liu P, Yang Y, Huang Y, Liu X, Meng X, Yu B, Wu M, Jin H. ITGA6 and RPSA synergistically promote pancreatic cancer invasion and metastasis via PI3K and MAPK signaling pathways. Exp Cell Res 2019; 379:30-47. [PMID: 30894280 DOI: 10.1016/j.yexcr.2019.03.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is one of the most malignant tumors. Invasion and metastasis can occur in the early stage of pancreatic cancer, contributing to the poor prognosis. Accordingly, in this study, we evaluated the molecular mechanisms underlying invasion and metastasis. Using mass spectrometry, we found that Integrin alpha 6 (ITGA6) was more highly expressed in a highly invasive pancreatic cancer cell line (PC-1.0) than in a less invasive cell line (PC-1). Through in vitro and in vivo experiments, we observed significant decreases in invasion and metastasis in pancreatic cancer cells after inhibiting ITGA6. Based on data in TCGA, high ITGA6 expression significantly predicted poor prognosis. By using Co-IP combined mass spectrometry, we found that ribosomal protein SA (RPSA), which was also highly expressed in PC-1.0, interacted with ITGA6. Similar to ITGA6, high RPSA expression promoted invasion and metastasis and indicated poor prognosis. Interestingly, although ITGA6 and RPSA interacted, they did not mutually regulate each other. ITGA6 and RPSA affected invasion and metastasis via the PI3K and MAPK signaling pathways, respectively. Inhibiting ITGA6 significantly reduced the expression of p-AKT, while inhibiting RPSA led to the downregulation of p-ERK1/2. Compared with the inhibition of ITGA6 or RPSA alone, the downregulation of both ITGA6 and RPSA weakened invasion and metastasis to a greater extent and led to the simultaneous downregulation of p-AKT and p-ERK1/2. Our research indicates that the development of drugs targeting both ITGA6 and RPSA may be an effective strategy for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yunhao Wu
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Xiaodong Tan
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, PR China.
| | - Peng Liu
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Yifan Yang
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Yinpeng Huang
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Xinlu Liu
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Xiangli Meng
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Boqiang Yu
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Mengwei Wu
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Haoyi Jin
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, PR China
| |
Collapse
|
45
|
Westbrook JA, Wood SL, Cairns DA, McMahon K, Gahlaut R, Thygesen H, Shires M, Roberts S, Marshall H, Oliva MR, Dunning MJ, Hanby AM, Selby PJ, Speirs V, Mavria G, Coleman RE, Brown JE. Identification and validation of DOCK4 as a potential biomarker for risk of bone metastasis development in patients with early breast cancer. J Pathol 2019; 247:381-391. [PMID: 30426503 PMCID: PMC6618075 DOI: 10.1002/path.5197] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 10/04/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022]
Abstract
Skeletal metastasis occurs in around 75% of advanced breast cancers, with the disease incurable once cancer cells disseminate to bone, but there remains an unmet need for biomarkers to identify patients at high risk of bone recurrence. This study aimed to identify such a biomarker and to assess its utility in predicting response to adjuvant zoledronic acid (zoledronate). We used quantitative proteomics (stable isotope labelling by amino acids in cell culture-mass spectrometry; SILAC-MS) to compare protein expression in a bone-homing variant (BM1) of the human breast cancer cell line MDA-MB-231 with parental non-bone-homing cells to identify novel biomarkers for risk of subsequent bone metastasis in early breast cancer. SILAC-MS showed that dedicator of cytokinesis protein 4 (DOCK4) was upregulated in bone-homing BM1 cells, confirmed by western blotting. BM1 cells also had enhanced invasive ability compared with parental cells, which could be reduced by DOCK4-shRNA. In a training tissue microarray (TMA) comprising 345 patients with early breast cancer, immunohistochemistry followed by Cox regression revealed that high DOCK4 expression correlated with histological grade (p = 0.004) but not oestrogen receptor status (p = 0.19) or lymph node involvement (p = 0.15). A clinical validation TMA used tissue samples and the clinical database from the large AZURE adjuvant study (n = 689). Adjusted Cox regression analyses showed that high DOCK4 expression in the control arm (no zoledronate) was significantly prognostic for first recurrence in bone (HR 2.13, 95%CI 1.06-4.30, p = 0.034). No corresponding association was found in patients who received zoledronate (HR 0.812, 95%CI 0.176-3.76, p = 0.790), suggesting that treatment with zoledronate may counteract the higher risk for bone relapse from high DOCK4-expressing tumours. High DOCK4 expression was not associated with metastasis to non-skeletal sites when these were assessed collectively. In conclusion, high DOCK4 in early breast cancer is significantly associated with aggressive disease and with future bone metastasis and is a potentially useful biomarker for subsequent bone metastasis risk. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jules A Westbrook
- Department of Oncology and Metabolism, Academic Unit of Clinical OncologyUniversity of SheffieldSheffieldUK
- Clinical and Biomedical Proteomics GroupLeeds Institute of Cancer and Pathology, University of LeedsLeedsUK
| | - Steven L Wood
- Department of Oncology and Metabolism, Academic Unit of Clinical OncologyUniversity of SheffieldSheffieldUK
- Clinical and Biomedical Proteomics GroupLeeds Institute of Cancer and Pathology, University of LeedsLeedsUK
| | - David A Cairns
- Clinical and Biomedical Proteomics GroupLeeds Institute of Cancer and Pathology, University of LeedsLeedsUK
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials ResearchUniversity of LeedsLeedsUK
| | - Kathryn McMahon
- Leeds Institute of Cancer and PathologyUniversity of LeedsLeedsUK
| | - Renu Gahlaut
- Leeds Institute of Cancer and PathologyUniversity of LeedsLeedsUK
| | - Helene Thygesen
- Leeds Institute of Cancer and PathologyUniversity of LeedsLeedsUK
| | - Mike Shires
- Leeds Institute of Cancer and PathologyUniversity of LeedsLeedsUK
| | - Stephanie Roberts
- Clinical and Biomedical Proteomics GroupLeeds Institute of Cancer and Pathology, University of LeedsLeedsUK
| | - Helen Marshall
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials ResearchUniversity of LeedsLeedsUK
| | - Maria R Oliva
- Department of Oncology and Metabolism, Academic Unit of Clinical OncologyUniversity of SheffieldSheffieldUK
| | - Mark J Dunning
- Sheffield Institute of Translational NeuroscienceUniversity of SheffieldSheffieldUK
| | - Andrew M Hanby
- Leeds Institute of Cancer and PathologyUniversity of LeedsLeedsUK
| | - Peter J Selby
- Clinical and Biomedical Proteomics GroupLeeds Institute of Cancer and Pathology, University of LeedsLeedsUK
- Leeds Institute of Cancer and PathologyUniversity of LeedsLeedsUK
| | - Valerie Speirs
- Leeds Institute of Cancer and PathologyUniversity of LeedsLeedsUK
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Georgia Mavria
- Leeds Institute of Cancer and PathologyUniversity of LeedsLeedsUK
| | - Robert E Coleman
- Department of Oncology and Metabolism, Academic Unit of Clinical OncologyUniversity of SheffieldSheffieldUK
| | - Janet E Brown
- Department of Oncology and Metabolism, Academic Unit of Clinical OncologyUniversity of SheffieldSheffieldUK
- Clinical and Biomedical Proteomics GroupLeeds Institute of Cancer and Pathology, University of LeedsLeedsUK
| |
Collapse
|
46
|
Tulotta C, Lefley DV, Freeman K, Gregory WM, Hanby AM, Heath PR, Nutter F, Wilkinson JM, Spicer-Hadlington AR, Liu X, Bradbury SMJ, Hambley L, Cookson V, Allocca G, Kruithof de Julio M, Coleman RE, Brown JE, Holen I, Ottewell PD. Endogenous Production of IL1B by Breast Cancer Cells Drives Metastasis and Colonization of the Bone Microenvironment. Clin Cancer Res 2019; 25:2769-2782. [PMID: 30670488 DOI: 10.1158/1078-0432.ccr-18-2202] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/20/2018] [Accepted: 01/17/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Breast cancer bone metastases are incurable, highlighting the need for new therapeutic targets. After colonizing bone, breast cancer cells remain dormant, until signals from the microenvironment stimulate outgrowth into overt metastases. Here we show that endogenous production of IL1B by tumor cells drives metastasis and growth in bone. EXPERIMENTAL DESIGN Tumor/stromal IL1B and IL1 receptor 1 (IL1R1) expression was assessed in patient samples and effects of the IL1R antagonist, Anakinra, or the IL1B antibody canakinumab on tumor growth and spontaneous metastasis were measured in a humanized mouse model of breast cancer bone metastasis. Effects of tumor cell-derived IL1B on bone colonization and parameters associated with metastasis were measured in MDA-MB-231, MCF7, and T47D cells transfected with IL1B/control. RESULTS In tissue samples from >1,300 patients with stage II/III breast cancer, IL1B in tumor cells correlated with relapse in bone (HR = 1.85; 95% CI, 1.05-3.26; P = 0.02) and other sites (HR = 2.09; 95% CI, 1.26-3.48; P = 0.0016). In a humanized model of spontaneous breast cancer metastasis to bone, Anakinra or canakinumab reduced metastasis and reduced the number of tumor cells shed into the circulation. Production of IL1B by tumor cells promoted epithelial-to-mesenchymal transition (altered E-Cadherin, N-Cadherin, and G-Catenin), invasion, migration, and bone colonization. Contact between tumor and osteoblasts or bone marrow cells increased IL1B secretion from all three cell types. IL1B alone did not stimulate tumor cell proliferation. Instead, IL1B caused expansion of the bone metastatic niche leading to tumor proliferation. CONCLUSIONS Pharmacologic inhibition of IL1B has potential as a novel treatment for breast cancer metastasis.
Collapse
Affiliation(s)
- Claudia Tulotta
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Diane V Lefley
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Katy Freeman
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Walter M Gregory
- Leeds Institute of Clinical Trials Research, Leeds, United Kingdom
| | - Andrew M Hanby
- Institute of Molecular Medicine, St James's University Hospital, Leeds, United Kingdom
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Faith Nutter
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - J Mark Wilkinson
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | | | - Xinming Liu
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Steven M J Bradbury
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Lisa Hambley
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Victoria Cookson
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Gloria Allocca
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | | | - Robert E Coleman
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Janet E Brown
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Ingunn Holen
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Penelope D Ottewell
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
47
|
Schiano C, Soricelli A, De Nigris F, Napoli C. New challenges in integrated diagnosis by imaging and osteo-immunology in bone lesions. Expert Rev Clin Immunol 2019; 15:289-301. [PMID: 30570412 DOI: 10.1080/1744666x.2019.1561283] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION High-resolution imaging is the gold standard to measure the functional and biological features of bone lesions. Imaging markers have allowed the characterization both of tumour heterogeneity and metabolic data. Besides, ongoing studies are evaluating a combined use of 'imaging markers', such as SUVs, MATV, TLG, ADC from PET and MRI techniques respectively, and several 'biomarkers' spanning from chemokine immune-modulators, such as PD-1, RANK/RANKL, CXCR4/CXCL12 to transcription factors, such as TP53, RB1, MDM2, RUNX family, EZH2, YY1, MAD2. Osteoimmunology may improve diagnosis and prognosis leading to precision medicine in bone lesion treatment. Areas covered: We investigated modalities (molecular and imaging approach) useful to identify bone lesions deriving both from primary bone tumours and from osteotropic tumours, which have a higher incidence, prevalence and prognosis. Here, we summarized the recent advances in imaging techniques and osteoimmunology biomarkers which could play a pivotal role in personalized treatment. Expert commentary: Although imaging and molecular integration could allow both early diagnosis and stratification of cancer prognosis, large scale clinical trials will be necessary to translate pilot studies in the current clinical setting. ABBREVIATIONS ADC: apparent diffusion coefficient; ALCAM: Activated Leukocyte Cell Adhesion Molecule; ALP: Alkaline phosphatases; BC: Breast cancer; BSAP: B-Cell Lineage Specific Activator; BSAP: bone-specific alkaline phosphatase; BSP: bone sialoprotein; CRIP1: cysteine-rich intestinal protein 1; CD44: cluster of differentiation 44; CT: computed tomography; CXCL12: C-X-C motif ligand 12; CXCR4: C-X-C C-X-C chemokine receptor type 4; CTLA-4: Cytotoxic T-lymphocyte antigen 4; CTX-1: C-terminal end of the telopeptide of type I collagen; DC: dendritic cell; DWI: Diffusion-weighted MR image; EMT: mesenchymal transition; ET-1: endothelin-1; FDA: Food and Drug Administration; FDG: 18F-2-fluoro-2-deoxy-D-glucose; FGF: fibroblast growth factor; FOXC2: forkhead box protein C2: HK-2: hexokinase-2; ICTP: carboxyterminal cross-linked telopeptide of type I collagen; IGF-1R: Insulin Like Growth Factor 1 Receptor; ILC: innate lymphocytes cells; LC: lung cancer; IL-1: interleukin-1; LYVE1: lymphatic vessel endothelial hyaluronic acid receptor 1; MAD2: mitotic arrest deficient 2; MATV: metabolically active tumour volume; M-CSF: macrophage colony stimulating factor; MM: multiple myeloma; MIP1a: macrophage inflammatory protein 1a; MSC: mesenchymal stem cell; MRI: magnetic resonance imaging; PC: prostate cancer; NRP2: neuropilin 2; OPG: osteoprotogerin; PDGF: platelet-derived growth factor; PD-1: Programmed Cell Death 1; PET: positron emission tomography; PINP: procollagen type I N propeptide; PROX1: prospero homeobox protein 1; PSA: Prostate-specific antigen; PTH: parathyroid hormone; RANK: Receptor activator of NF-kB ligand; RECK: Reversion-inducing-cysteine-rich protein; SEMAs: semaphorins; SPECT: single photon computed tomography; SUV: standard uptake value; TLG: total lesion glycolysis; TP53: tumour protein 53; VCAM-1: vascular endothelial molecule-1; VOI: volume of interest; YY1: Yin Yang 1.
Collapse
Affiliation(s)
- Concetta Schiano
- a Department of Biochemical and Clinical Diagnostic , IRCCS SDN , Naples , Italy
| | - Andrea Soricelli
- a Department of Biochemical and Clinical Diagnostic , IRCCS SDN , Naples , Italy.,b Department of Motor Sciences and Healthiness , University of Naples Parthenope , Naples , Italy
| | - Filomena De Nigris
- c Department of Precision Medicine , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Claudio Napoli
- a Department of Biochemical and Clinical Diagnostic , IRCCS SDN , Naples , Italy.,d Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences , University of Campania "Luigi Vanvitelli" , Naples , Italy
| |
Collapse
|
48
|
Zhao C, Lou Y, Wang Y, Wang D, Tang L, Gao X, Zhang K, Xu W, Liu T, Xiao J. A gene expression signature-based nomogram model in prediction of breast cancer bone metastases. Cancer Med 2018; 8:200-208. [PMID: 30575323 PMCID: PMC6346244 DOI: 10.1002/cam4.1932] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is prone to form bone metastases and subsequent skeletal‐related events (SREs) dramatically decrease patients’ quality of life and survival. Prediction and early management of bone lesions are valuable; however, proper prognostic models are inadequate. In the current study, we reviewed a total of 572 breast cancer patients in three microarray data sets including 191 bone metastases and 381 metastases‐free. Gene set enrichment analysis (GSEA) indicated less aggressive and low‐grade features of patients with bone metastases compared with metastases‐free ones, while luminal subtypes are more prone to form bone metastases. Five bone metastases‐related genes (KRT23, REEP1, SPIB, ALDH3B2, and GLDC) were identified and subjected to construct a gene expression signature‐based nomogram (GESBN) model. The model performed well in both training and testing sets for evaluation of breast cancer bone metastases (BCBM). Clinically, the model may help in prediction of early bone metastases, prevention and management of SREs, and even help to prolong survivals for patients with BCBM. The five‐gene GESBN model showed some implications as molecular diagnostic markers and therapeutic targets. Furthermore, our study also provided a way for analysis of tumor organ‐specific metastases. To the best of our knowledge, this is the first published model focused on tumor organ‐specific metastases.
Collapse
Affiliation(s)
- Chenglong Zhao
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yan Lou
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yao Wang
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Dongsheng Wang
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Liang Tang
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xin Gao
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Kun Zhang
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei Xu
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tielong Liu
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jianru Xiao
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
49
|
Elie BT, Fernández-Gallardo J, Curado N, Cornejo MA, Ramos JW, Contel M. Bimetallic titanocene-gold phosphane complexes inhibit invasion, metastasis, and angiogenesis-associated signaling molecules in renal cancer. Eur J Med Chem 2018; 161:310-322. [PMID: 30368130 DOI: 10.1016/j.ejmech.2018.10.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/11/2018] [Accepted: 10/14/2018] [Indexed: 01/08/2023]
Abstract
Following promising recent in vitro and in vivo studies of the anticancer efficacies of heterometallic titanocene-gold chemotherapeutic candidates against renal cancer, we report here on the synthesis, characterization, stability studies and biological evaluation of a new titanocene complex containing a gold-triethylphosphane fragment [(η-C5H5)2TiMe(μ-mba)Au(PEt3)] (4) Titanofin. The compound is more stable in physiological fluid than those previously reported, and it is highly cytotoxic against a line of human clear cell renal carcinoma. We describe here preliminary mechanistic data for this compound and previously reported [(η-C5H5)2TiMe(μ-mba)Au(PPh3)] (2) Titanocref which displayed remarkable activity in an in vivo mouse model. Mechanistic studies were carried out in the human clear cell renal carcinoma Caki-1 line for the bimetallic compounds [(η-C5H5)2TiMe(μ-mba)Au(PR3)] (PR3 = PPh32 Titanocref and PEt34 Titanofin), the two monometallic gold derivatives [Au(Hmba)(PR3)] (PR3 = PPh31 cref; PEt33 fin), titanocene dichloride and Auranofin as controls. These studies indicate that bimetallic compounds Titanocref (2) and Titanofin (4) are more cytotoxic than gold monometallic derivatives (1 and 3) and significantly more cytotoxic than titanocene dichloride while being quite selective. Titanocref (2) and Titanofin (4) inhibit migration, invasion, and angiogenic assembly along with molecular markers associated with these processes such as prometastatic IL(s), MMP(s), TNF-α, and proangiogenic VEGF, FGF-basic. The bimetallic compounds also strongly inhibit the mitochondrial protein TrxR often overexpressed in cancer cells evading apoptosis and also inhibit FOXC2, PECAM-1, and HIF-1α whose overexpression is linked to resistance to genotoxic chemotherapy. In summary, bimetallic titanocene-gold phosphane complexes (Titanocref 2 and Titanofin 4) are very promising candidates for further preclinical evaluations for the treatment of renal cancer.
Collapse
Affiliation(s)
- Benelita T Elie
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA; Biology PhD Programs, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
| | - Jacob Fernández-Gallardo
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
| | - Natalia Curado
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
| | - Mike A Cornejo
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
| | - Joe W Ramos
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, USA
| | - María Contel
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA; Biology PhD Programs, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA; Chemistry PhD Programs, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA; Biochemistry PhD Programs, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA; Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, USA.
| |
Collapse
|
50
|
Genomic and expression profiling reveal molecular heterogeneity of disseminated tumor cells in bone marrow of early breast cancer. NPJ Breast Cancer 2018; 4:31. [PMID: 30211312 PMCID: PMC6125436 DOI: 10.1038/s41523-018-0083-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/05/2018] [Accepted: 08/09/2018] [Indexed: 12/11/2022] Open
Abstract
Detection of disseminated tumor cells (DTCs) in bone marrow is an established negative prognostic factor. We isolated small pools of (~20) EPCAM-positive DTCs from early breast cancer patients for genomic profiling. Genome-wide copy number profiles of DTC pools (n = 45) appeared less aberrant than the corresponding primary tumors (PT, n = 16). PIK3CA mutations were detected in 26% of DTC pools (n = 53), none of them were shared with matched PTs. Expression profiling of DTC pools (n = 30) confirmed the upregulation of EPCAM expression and certain oncogenes (e.g., MYC and CCNE1), as well as the absence of hematopoietic features. Two expression subtypes were observed: (1) luminal with dual epithelial-mesenchymal properties (high ESR1 and VIM/CAV1 expression), and (2) basal-like with proliferative/stem cell-like phenotype (low ESR1 and high MKI67/ALDH1A1 expression). We observed high discordance between ESR1 (40%) and ERRB2 (43%) expression in DTC pools vs. the clinical ER and HER2 status of the corresponding primary tumors, suggesting plasticity of biomarker status during dissemination to the bone marrow. Comparison of expression profiles of DTC pools with available data from circulating tumor cells (CTCs) of metastatic breast cancer patients revealed gene expression signatures in DTCs that were unique from those of CTCs. For example, ALDH1A1, CAV1, and VIM were upregulated in DTC pools relative to CTCs. Taken together, analysis of pooled DTCs revealed molecular heterogeneity, possible genetic divergence from corresponding primary tumor, and two distinct subpopulations. Validation in larger cohorts is needed to confirm the presence of these molecular subtypes and to evaluate their biological and clinical significance.
Collapse
|