1
|
Chang KJ, Shiau LY, Lin SC, Cheong HP, Wang CY, Ma C, Liang YW, Yang YP, Ko PS, Hsu CH, Chiou SH. N 6-methyladenosine and its epitranscriptomic effects on hematopoietic stem cell regulation and leukemogenesis. Mol Med 2024; 30:196. [PMID: 39497033 PMCID: PMC11536562 DOI: 10.1186/s10020-024-00965-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/20/2024] [Indexed: 11/06/2024] Open
Abstract
N6-methyladenosine (m6A) RNA modification orchestrates cellular epitranscriptome through tuning the homeostasis of transcript stability, translation efficiency, and the transcript affinity toward RNA-binding proteins (RBPs). An aberrant m6A deposition on RNA can lead toward oncogenic expression profile (mRNA), impaired mitochondrial metabolism (mtRNA), and translational suppression (rRNA) of tumor suppressor genes. In addition, non-coding RNAs (ncRNAs), such as X-inactive specific transcript (XIST), miRNAs, and α-ketoglutarate-centric metabolic transcripts are also regulated by the m6A epitranscriptome. Notably, recent studies had uncovered a myriad of m6A-modified transcripts the center of hematopoietic stem cell (HSC) regulation, in which m6A modification act as a context dependent switch to the on and off of hematopoietic stem cell (HSC) maintenance, lineage commitment and terminal differentiation. In this review, we sequentially unfold the m6A mediated epithelial-to-hematopoietic transition in progenitor blood cell production, lymphocytic lineage expansion (T cells, B cells, NK cells, and non-NK ILCs), and the m6A crosstalk with the onco-metabolic prospects of leukemogenesis. Together, an encompassing body of evidence highlighted the emerging m6A significance in the regulation of HSC biology and leukemogenesis.
Collapse
Affiliation(s)
- Kao-Jung Chang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Li-Yang Shiau
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shiuan-Chen Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Han-Ping Cheong
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Yun Wang
- Department of Medical Education, Taichung Veterans General Hospital, Taipei, Taiwan
| | - Chun Ma
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yan-Wen Liang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Life Sciences and Institute of Genomic Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Po-Shen Ko
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Hematology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Hung Hsu
- The Fourth Affiliated Hospital, and Department of Environmental Medicine, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Genetics, International School of Medicine, Zhejiang University, Hangzhou, China
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
2
|
Lei K, Sun M, Chen X, Wang J, Liu X, Ning Y, Ping S, Gong R, Zhang Y, Qing G, Zhao C, Ren H. hnRNPAB Promotes Pancreatic Ductal Adenocarcinoma Extravasation and Liver Metastasis by Stabilizing MYC mRNA. Mol Cancer Res 2024; 22:1022-1035. [PMID: 38967522 DOI: 10.1158/1541-7786.mcr-24-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/11/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
Heterogeneous nuclear ribonucleoprotein AB (hnRNPAB) is considered a cancer-promoting heterogeneous nuclear ribonucleoprotein in many cancers, but its function in pancreatic ductal adenocarcinoma (PDAC) is poorly understood. hnRNPAB was highly expressed in PDAC tissues compared with normal pancreatic tissues, and high expression of hnRNPAB was associated with poor overall survival and recurrence-free survival in patients with PDAC. hnRNPAB promotes migration and invasion of PDAC cells in vitro. In xenograft tumor mouse models, hnRNPAB deprivation significantly attenuated liver metastasis. hnRNPAB mRNA and protein levels are positively associated with MYC in PDAC cells. Mechanistically, hnRNPAB bound to MYC mRNA and prolonged its half-life. hnRNPAB induced PDAC cells to secrete CXCL8 via MYC, which promoted neutrophil recruitment and facilitated tumor cells entrancing into the hepatic parenchyma. These findings point to a novel regulatory mechanism via which hnRNPAB promotes PDAC metastasis. Implications: hnRNPAB participates in the posttranscriptional regulation of the oncogene MYC by binding and stabilizing MYC mRNA, thereby promoting liver metastasis in PDAC.
Collapse
Affiliation(s)
- Ke Lei
- Tumor Immunology and Cytotherapy of Medical Research Center, Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Mingyue Sun
- Tumor Immunology and Cytotherapy of Medical Research Center, Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Xianghan Chen
- Tumor Immunology and Cytotherapy of Medical Research Center, Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Jia Wang
- Qingdao Medical College, Qingdao University, Qingdao, P. R. China
| | - Xiaolan Liu
- Tumor Immunology and Cytotherapy of Medical Research Center, Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), Affiliated Hospital of Qingdao University, Qingdao, P. R. China
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Ying Ning
- Department of Gynecology, Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Shuai Ping
- Tumor Immunology and Cytotherapy of Medical Research Center, Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), Affiliated Hospital of Qingdao University, Qingdao, P. R. China
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Ruining Gong
- Tumor Immunology and Cytotherapy of Medical Research Center, Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), Affiliated Hospital of Qingdao University, Qingdao, P. R. China
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Yu Zhang
- Tumor Immunology and Cytotherapy of Medical Research Center, Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), Affiliated Hospital of Qingdao University, Qingdao, P. R. China
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Gong Qing
- Tumor Immunology and Cytotherapy of Medical Research Center, Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), Affiliated Hospital of Qingdao University, Qingdao, P. R. China
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Chenyang Zhao
- Tumor Immunology and Cytotherapy of Medical Research Center, Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - He Ren
- Tumor Immunology and Cytotherapy of Medical Research Center, Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), Affiliated Hospital of Qingdao University, Qingdao, P. R. China
- Center for GI Cancer Diagnosis and Treatment, Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| |
Collapse
|
3
|
Caetano BFR, Rocha VL, Rossini BC, Dos Santos LD, Elgui De Oliveira D. Epstein-Barr Virus miR-BARTs 7 and 9 modulate viral cycle, cell proliferation, and proteomic profiles in Burkitt lymphoma. Tumour Virus Res 2024; 17:200276. [PMID: 38159643 PMCID: PMC11000110 DOI: 10.1016/j.tvr.2023.200276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
The Epstein-Barr Virus (EBV) encodes viral microRNAs (miRs) that have been implicated in the pathogenesis of nasopharyngeal and gastric carcinomas, yet their potential roles in lymphomas remain to be fully elucidated. This study evaluated the impact of CRISPR/Cas9-mediated knockdown of EBV miRs BART-7 and BART-9 in EBV-positive Burkitt lymphoma cells Akata. As anticipated, the Akata cells subjected to CRISPR/Cas9-mediated knockdown of either EBV BART-7 or BART-9 exhibited a significant reduction in the expression of these viral miRs compared to cells with wild-type (wt) EBV genomes. This outcome effectively validates the experimental model employed in this study. Knocking down either BART-7 or BART-9 resulted in a notable reduction in cell viability and proliferation rates, alongside an elevation in the expression of EBV lytic genes. Global proteomic analysis revealed that the knockdown of EBV BART-7 significantly decreased the expression of ubiquitin/proteasome proteins while concurrently increasing RNA binding proteins (RBPs). Conversely, BART-9 knockdown reduced proteins associated with oxidoreductase activity, particularly those involved in fatty acid metabolism. Our findings unveil previously undiscovered EBV miRs BARTs 7 and 9 roles in cellular pathways relevant to both viral biology and lymphomagenesis.
Collapse
Affiliation(s)
- Brunno Felipe Ramos Caetano
- São Paulo State University (UNESP), Department of Pathology, Botucatu Medical School, Av. Prof. Dr. Mário Rubens Guimarães Montenegro S/n, CEP 18618-687, Botucatu, São Paulo, Brazil; São Paulo State University (UNESP), Institute of Biotechnology (IBTEC), Alameda Das Tecomarias S/n, CEP 18607-440, Botucatu, São Paulo, Brazil.
| | - Viviana Loureiro Rocha
- São Paulo State University (UNESP), Institute of Biotechnology (IBTEC), Alameda Das Tecomarias S/n, CEP 18607-440, Botucatu, São Paulo, Brazil; São Paulo State University (UNESP), Institute of Biosciences (IBB). R. Prof. Dr. Antônio Celso Wagner Zanin, 250, CEP 18618-689, Botucatu, São Paulo, Brazil.
| | - Bruno Cesar Rossini
- São Paulo State University (UNESP), Institute of Biotechnology (IBTEC), Alameda Das Tecomarias S/n, CEP 18607-440, Botucatu, São Paulo, Brazil.
| | - Lucilene Delazari Dos Santos
- São Paulo State University (UNESP), Institute of Biotechnology (IBTEC), Alameda Das Tecomarias S/n, CEP 18607-440, Botucatu, São Paulo, Brazil.
| | - Deilson Elgui De Oliveira
- São Paulo State University (UNESP), Department of Pathology, Botucatu Medical School, Av. Prof. Dr. Mário Rubens Guimarães Montenegro S/n, CEP 18618-687, Botucatu, São Paulo, Brazil; São Paulo State University (UNESP), Institute of Biotechnology (IBTEC), Alameda Das Tecomarias S/n, CEP 18607-440, Botucatu, São Paulo, Brazil.
| |
Collapse
|
4
|
Rahn K, Abdallah AT, Gan L, Herbrich S, Sonntag R, Benitez O, Malaney P, Zhang X, Rodriguez AG, Brottem J, Marx G, Brümmendorf TH, Ostareck DH, Ostareck-Lederer A, Crysandt M, Post SM, Naarmann-de Vries IS. Insight into the mechanism of AML del(9q) progression: hnRNP K targets the myeloid master regulators CEBPA (C/EBPα) and SPI1 (PU.1). BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195004. [PMID: 38008244 DOI: 10.1016/j.bbagrm.2023.195004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Deletions on the long arm of chromosome 9 (del(9q)) are recurrent abnormalities in about 2 % of acute myeloid leukemia cases, which usually involve HNRNPK and are frequently associated with other known aberrations. Based on an Hnrnpk haploinsufficient mouse model, a recent study demonstrated a function of hnRNP K in pathogenesis of myeloid malignancies via the regulation of cellular proliferation and myeloid differentiation programs. Here, we provide evidence that reduced hnRNP K expression results in the dysregulated expression of C/EBPα and additional transcription factors. CyTOF analysis revealed monocytic skewing with increased levels of mature myeloid cells. To explore the role of hnRNP K during normal and pathological myeloid differentiation in humans, we characterized hnRNP K-interacting RNAs in human AML cell lines. Notably, RNA-sequencing revealed several mRNAs encoding key transcription factors involved in the regulation of myeloid differentiation as targets of hnRNP K. We showed that specific sequence motifs confer the interaction of SPI1 and CEBPA 5' and 3'UTRs with hnRNP K. The siRNA mediated reduction of hnRNP K in human AML cells resulted in an increase of PU.1 and C/EBPα that is most pronounced for the p30 isoform. The combinatorial treatment with the inducer of myeloid differentiation valproic acid resulted in increased C/EBPα expression and myeloid differentiation. Together, our results indicate that hnRNP K post-transcriptionally regulates the expression of myeloid master transcription factors. These novel findings can inaugurate novel options for targeted treatment of AML del(9q) by modulation of hnRNP K function.
Collapse
Affiliation(s)
- Kerstin Rahn
- Department of Intensive Care Medicine, University Hospital RWTH Aachen University, Aachen, Germany; Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ali T Abdallah
- Interdisciplinary Center for Clinical Research (IZKF) Aachen, RWTH Aachen University, Germany; Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Lin Gan
- Interdisciplinary Center for Clinical Research (IZKF) Aachen, RWTH Aachen University, Germany
| | - Shelley Herbrich
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roland Sonntag
- Department of Internal Medicine III, University Hospital RWTH Aachen University, Aachen, Germany
| | - Oscar Benitez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prerna Malaney
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaorui Zhang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashely G Rodriguez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jared Brottem
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gernot Marx
- Department of Intensive Care Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Dirk H Ostareck
- Department of Intensive Care Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| | - Antje Ostareck-Lederer
- Department of Intensive Care Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| | - Martina Crysandt
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Sean M Post
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Isabel S Naarmann-de Vries
- Department of Intensive Care Medicine, University Hospital RWTH Aachen University, Aachen, Germany; Section of Bioinformatics and Systems Cardiology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
5
|
Qureshi QUA, Audas TE, Morin RD, Coyle KM. Emerging roles for heterogeneous ribonuclear proteins in normal and malignant B cells. Biochem Cell Biol 2023; 101:160-171. [PMID: 36745874 DOI: 10.1139/bcb-2022-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are among the most abundantly expressed RNA binding proteins in the cell and play major roles in all facets of RNA metabolism. hnRNPs are increasingly appreciated as essential for mammalian B cell development by regulating the carefully ordered expression of specific genes. Due to this tight regulation of the hnRNP-RNA network, it is no surprise that a growing number of genes encoding hnRNPs have been causally associated with the onset or progression of many cancers, including B cell neoplasms. Here we discuss our current understanding of hnRNP-driven regulation in normal, perturbed, and malignant B cells, and the most recent and emerging therapeutic innovations aimed at targeting the hnRNP-RNA network in lymphoma.
Collapse
Affiliation(s)
- Qurat Ul Ain Qureshi
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Timothy E Audas
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Ryan D Morin
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Krysta M Coyle
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
6
|
Malaney P, Benitez O, Zhang X, Post SM. Assessing the role of intrinsic disorder in RNA-binding protein function: hnRNP K as a case study. Methods 2022; 208:59-65. [DOI: 10.1016/j.ymeth.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/20/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
|
7
|
Aitken MJL, Malaney P, Zhang X, Herbrich SM, Chan L, Benitez O, Rodriguez A, Ma H, Jacamo R, Duan R, Link T, Kornblau S, Kanagal-Shamanna R, Bueso-Ramos C, Post S. Heterogeneous nuclear ribonucleoprotein K is overexpressed in acute myeloid leukemia and causes myeloproliferation in mice via altered Runx1 splicing. NAR Cancer 2022; 4:zcac039. [PMID: 36518526 PMCID: PMC9732523 DOI: 10.1093/narcan/zcac039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is driven by numerous molecular events that contribute to disease progression. Herein, we identify hnRNP K overexpression as a recurrent abnormality in AML that negatively correlates with patient survival. Overexpression of hnRNP K in murine fetal liver cells results in altered self-renewal and differentiation potential. Further, murine transplantation models reveal that hnRNP K overexpression results in myeloproliferation in vivo. Mechanistic studies expose a direct functional relationship between hnRNP K and RUNX1-a master transcriptional regulator of hematopoiesis often dysregulated in leukemia. Molecular analyses show that overexpression of hnRNP K results in an enrichment of an alternatively spliced isoform of RUNX1 lacking exon 4. Our work establishes hnRNP K's oncogenic potential in influencing myelogenesis through its regulation of RUNX1 splicing and subsequent transcriptional activity.
Collapse
Affiliation(s)
- Marisa J L Aitken
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Prerna Malaney
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Xiaorui Zhang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shelley M Herbrich
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren Chan
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Oscar Benitez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashley G Rodriguez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huaxian Ma
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rodrigo Jacamo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruizhi Duan
- School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
| | - Todd M Link
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven M Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carlos E Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sean M Post
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
8
|
The Role of RNA-Binding Proteins in Hematological Malignancies. Int J Mol Sci 2022; 23:ijms23179552. [PMID: 36076951 PMCID: PMC9455611 DOI: 10.3390/ijms23179552] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
Hematological malignancies comprise a plethora of different neoplasms, such as leukemia, lymphoma, and myeloma, plus a myriad of dysplasia, such as myelodysplastic syndromes or anemias. Despite all the advances in patient care and the development of new therapies, some of these malignancies remain incurable, mainly due to resistance and refractoriness to treatment. Therefore, there is an unmet clinical need to identify new biomarkers and potential therapeutic targets that play a role in treatment resistance and contribute to the poor outcomes of these tumors. RNA-binding proteins (RBPs) are a diverse class of proteins that interact with transcripts and noncoding RNAs and are involved in every step of the post-transcriptional processing of transcripts. Dysregulation of RBPs has been associated with the development of hematological malignancies, making them potential valuable biomarkers and potential therapeutic targets. Although a number of dysregulated RBPs have been identified in hematological malignancies, there is a critical need to understand the biology underlying their contribution to pathology, such as the spatiotemporal context and molecular mechanisms involved. In this review, we emphasize the importance of deciphering the regulatory mechanisms of RBPs to pinpoint novel therapeutic targets that could drive or contribute to hematological malignancy biology.
Collapse
|
9
|
Zhao H, Wei Z, Shen G, Chen Y, Hao X, Li S, Wang R. Poly(rC)-binding proteins as pleiotropic regulators in hematopoiesis and hematological malignancy. Front Oncol 2022; 12:1045797. [PMID: 36452487 PMCID: PMC9701828 DOI: 10.3389/fonc.2022.1045797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Poly(rC)-binding proteins (PCBPs), a defined subfamily of RNA binding proteins, are characterized by their high affinity and sequence-specific interaction with poly-cytosine (poly-C). The PCBP family comprises five members, including hnRNP K and PCBP1-4. These proteins share a relatively similar structure motif, with triple hnRNP K homology (KH) domains responsible for recognizing and combining C-rich regions of mRNA and single- and double-stranded DNA. Numerous studies have indicated that PCBPs play a prominent role in hematopoietic cell growth, differentiation, and tumorigenesis at multiple levels of regulation. Herein, we summarized the currently available literature regarding the structural and functional divergence of various PCBP family members. Furthermore, we focused on their roles in normal hematopoiesis, particularly in erythropoiesis. More importantly, we also discussed and highlighted their involvement in carcinogenesis, including leukemia and lymphoma, aiming to clarify the pleiotropic roles and molecular mechanisms in the hematopoietic compartment.
Collapse
Affiliation(s)
- Huijuan Zhao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, China.,Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Guomin Shen
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, China.,Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Yixiang Chen
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, China.,Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Xueqin Hao
- Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Sanqiang Li
- Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Rong Wang
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Wu HL, Li SM, Huang YC, Xia QD, Zhou P, Li XM, Yu X, Wang SG, Ye ZQ, Hu J. Transcriptional regulation and ubiquitination-dependent regulation of HnRNPK oncogenic function in prostate tumorigenesis. Cancer Cell Int 2021; 21:641. [PMID: 34857003 PMCID: PMC8641147 DOI: 10.1186/s12935-021-02331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Heterogeneous nuclear ribonucleoprotein K (HnRNPK) is a nucleic acid-binding protein that regulates diverse biological events. Pathologically, HnRNPK proteins are frequently overexpressed and clinically correlated with poor prognosis in various types of human cancers and are therefore pursued as attractive therapeutic targets for select patients. However, both the transcriptional regulation and degradation of HnRNPK in prostate cancer remain poorly understood. METHODS qRT-PCR was used to detect the expression of HnRNPK mRNA and miRNA; Immunoblots and immunohistochemical assays were used to determine the levels of HnRNPK and other proteins. Flow cytometry was used to investigate cell cycle stage. MTS and clonogenic assays were used to investigate cell proliferation. Immunoprecipitation was used to analyse the interaction between SPOP and HnRNPK. A prostate carcinoma xenograft mouse model was used to detect the in vivo effects of HnRNPK and miRNA. RESULTS In the present study, we noted that HnRNPK emerged as an important player in the carcinogenesis process of prostate cancer. miR-206 and miR-613 suppressed HnRNPK expression by targeting its 3'-UTR in PrCa cell lines in which HnRNPK is overexpressed. To explore the potential biological function, proliferation and colony formation of PrCa cells in vitro and tumor growth in vivo were also dramatically suppressed upon reintroduction of miR-206/miR-613. We have further provided evidence that Cullin 3 SPOP is a novel upstream E3 ubiquitin ligase complex that governs HnRNPK protein stability and oncogenic functions by promoting the degradation of HnRNPK in polyubiquitination-dependent proteolysis in the prostate cancer setting. Moreover, prostate cancer-associated SPOP mutants fail to interact with and promote the destruction of HnRNPK proteins. CONCLUSION Our findings reveal new posttranscriptional and posttranslational modification mechanisms of HnRNPK regulation via miR-206/miR-613 and SPOP, respectively. More importantly, given the critical oncogenic role of HnRNPK and the high frequency of SPOP mutations in prostate cancer, our results provide a molecular rationale for the clinical investigation of novel strategies to combat prostate cancer based on SPOP genetic status.
Collapse
Affiliation(s)
- Huan-Lei Wu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sen-Mao Li
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Ave, No. 1095, Wuhan, 430030, P.R. China.,Department of Urology, Peking University First Hospital, Peking University, BeijingBeijing, 100034, China
| | - Yao-Chen Huang
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Ave, No. 1095, Wuhan, 430030, P.R. China
| | - Qi-Dong Xia
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Ave, No. 1095, Wuhan, 430030, P.R. China
| | - Peng Zhou
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Ave, No. 1095, Wuhan, 430030, P.R. China
| | - Xian-Miao Li
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Ave, No. 1095, Wuhan, 430030, P.R. China
| | - Xiao Yu
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Ave, No. 1095, Wuhan, 430030, P.R. China
| | - Shao-Gang Wang
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Ave, No. 1095, Wuhan, 430030, P.R. China
| | - Zhang-Qun Ye
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Ave, No. 1095, Wuhan, 430030, P.R. China
| | - Jia Hu
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Ave, No. 1095, Wuhan, 430030, P.R. China.
| |
Collapse
|
11
|
Perez-Chacon G, Vincent-Fabert C, Zapata JM. Editorial: Mouse Models of B Cell Malignancies. Front Immunol 2021; 12:789901. [PMID: 34777400 PMCID: PMC8581536 DOI: 10.3389/fimmu.2021.789901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 01/20/2023] Open
Affiliation(s)
- Gema Perez-Chacon
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Christelle Vincent-Fabert
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, Limoges, France.,Hematology Laboratory of Dupuytren, Hospital University Center (CHU) of Limoges, Limoges, France
| | - Juan M Zapata
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Madrid, Spain.,Instituto de Investigación Sanitaria La Paz (IdIPAZ), Madrid, Spain
| |
Collapse
|
12
|
Tian J, Ma C, Yang L, Sun Y, Zhang Y. Prognostic Value and Immunological Characteristics of a Novel RNA Binding Protein Signature in Cutaneous Melanoma. Front Genet 2021; 12:723796. [PMID: 34531901 PMCID: PMC8438157 DOI: 10.3389/fgene.2021.723796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022] Open
Abstract
Background The existing studies indicate that RNA binding proteins (RBPs) are closely correlated with the genesis and development of cancers. However, the role of RBPs in cutaneous melanoma remains largely unknown. Therefore, the present study aims to establish a reliable prognostic signature based on RBPs to distinguish cutaneous melanoma patients with different prognoses and investigate the immune infiltration of patients. Methods After screening RBPs from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, Cox and least absolute shrinkage and selection operator (LASSO) regression analysis were then used to establish a prediction model. The relationship between the signature and the abundance of immune cell types, the tumor microenvironment (TME), immune-related pathways, and immune checkpoints were also analyzed. Results In total, 7 RBPs were selected to establish the prognostic signature. Patients categorized as a high-risk group demonstrated worse overall survival (OS) rates compared to those of patients categorized as a low-risk group. The signature was validated in an independent external cohort and indicated a promising prognostic ability. Further analysis indicated that the signature wasan independent prognostic indicator in cutaneous melanoma. A nomogram combining risk score and clinicopathological features was then established to evaluate the 3- and 5-year OS in cutaneous melanoma patients. Analyses of immune infiltrating, the TME, immune checkpoint, and drug susceptibility revealed significant differences between the two groups. GSEA analysis revealed that basal cell carcinoma, notch signaling pathway, melanogenesis pathways were enriched in the high-risk group, resulting in poor OS. Conclusion We established and validated a robust 7-RBP signature that could be a potential biomarker to predict the prognosis and immunotherapy response of cutaneous melanoma patients, which provides new insights into cutaneous melanoma immunotherapeutic strategies.
Collapse
Affiliation(s)
- Jun Tian
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Chongzhi Ma
- Department of Dermatology, The 63600 Hospital of PLA, Lanzhou, China
| | - Li Yang
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yang Sun
- Department of Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yuan Zhang
- Department of Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
13
|
Arginine Methylation of hnRNPK Inhibits the DDX3-hnRNPK Interaction to Play an Anti-Apoptosis Role in Osteosarcoma Cells. Int J Mol Sci 2021; 22:ijms22189764. [PMID: 34575922 PMCID: PMC8469703 DOI: 10.3390/ijms22189764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is an RNA/DNA binding protein involved in diverse cell processes; it is also a p53 coregulator that initiates apoptosis under DNA damage conditions. However, the upregulation of hnRNPK is correlated with cancer transformation, progression, and migration, whereas the regulatory role of hnRNPK in cancer malignancy remains unclear. We previously showed that arginine methylation of hnRNPK attenuated the apoptosis of U2OS osteosarcoma cells under DNA damage conditions, whereas the replacement of endogenous hnRNPK with a methylation-defective mutant inversely enhanced apoptosis. The present study further revealed that an RNA helicase, DDX3, whose C-terminus preferentially binds to the unmethylated hnRNPK and could promote such apoptotic enhancement. Moreover, C-terminus-truncated DDX3 induced significantly less apoptosis than full-length DDX3. Notably, we also identified a small molecule that docks at the ATP-binding site of DDX3, promotes the DDX3-hnRNPK interaction, and induces further apoptosis. Overall, we have shown that the arginine methylation of hnRNPK suppresses the apoptosis of U2OS cells via interfering with DDX3-hnRNPK interaction. On the other hand, DDX3-hnRNPK interaction with a proapoptotic role may serve as a target for promoting apoptosis in osteosarcoma cells.
Collapse
|
14
|
Liu M, Yang L, Liu X, Nie Z, Zhang X, Lu Y, Pan Y, Wang X, Luo J. HNRNPH1 Is a Novel Regulator Of Cellular Proliferation and Disease Progression in Chronic Myeloid Leukemia. Front Oncol 2021; 11:682859. [PMID: 34295818 PMCID: PMC8290130 DOI: 10.3389/fonc.2021.682859] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/17/2021] [Indexed: 12/29/2022] Open
Abstract
RNA binding proteins act as essential modulators in cancers by regulating biological cellular processes. Heterogeneous nuclear ribonucleoprotein H1 (HNRNPH1), as a key member of the heterogeneous nuclear ribonucleoproteins family, is frequently upregulated in multiple cancer cells and involved in tumorigenesis. However, the function of HNRNPH1 in chronic myeloid leukemia (CML) remains unclear. In the present study, we revealed that HNRNPH1 expression level was upregulated in CML patients and cell lines. Moreover, the higher level of HNRNPH1 was correlated with disease progression of CML. In vivo and in vitro experiments showed that knockdown of HNRNPH1 inhibited cell proliferation and promoted cell apoptosis in CML cells. Importantly, knockdown of HNRNPH1 in CML cells enhanced sensitivity to imatinib. Mechanically, HNRNPH1 could bind to the mRNA of PTPN6 and negatively regulated its expression. PTPN6 mediated the regulation between HNRNPH1 and PI3K/AKT activation. Furthermore, the HNRNPH1–PTPN6–PI3K/AKT axis played a critical role in CML tumorigenesis and development. The present study first investigated the deregulated HNRNPH1–PTPN6–PI3K/AKT axis moderated cell growth and apoptosis in CML cells, whereby targeting this pathway may be a therapeutic CML treatment.
Collapse
Affiliation(s)
- Menghan Liu
- Department of Hematology, The Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang, China
| | - Lin Yang
- Department of Hematology, The Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang, China
| | - Xiaojun Liu
- Department of Hematology, The Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang, China
| | - Ziyuan Nie
- Department of Hematology, The Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang, China
| | - Xiaoyan Zhang
- Department of Hematology, The Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang, China
| | - Yaqiong Lu
- Department of Hematology, The Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang, China
| | - Yuxia Pan
- Department of Hematology, The Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang, China
| | - Xingzhe Wang
- Department of Hematology, The Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang, China
| | - Jianmin Luo
- Department of Hematology, The Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang, China
| |
Collapse
|
15
|
Yuan C, Chen M, Cai X. Advances in poly(rC)-binding protein 2: Structure, molecular function, and roles in cancer. Biomed Pharmacother 2021; 139:111719. [PMID: 34233389 DOI: 10.1016/j.biopha.2021.111719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023] Open
Abstract
Poly(rC)-binding protein 2 (PCBP2) is an RNA-binding protein that is characterized by its ability to interact with poly(C) with high affinity in a sequence-specific manner. PCBP2 contains three K homology domains, which are consensus RNA-binding domains that play a role in recognizing and combining with RNA and DNA. The specific structure and localization of PCBP2 lay the foundation for its multiple roles in transcriptional, posttranscriptional, and translational processes, even in iron metabolism. Numerous studies have indicated that PCBP2 expression is increased in many cancer types. PCBP2 is considered as an oncogene that promotes tumorigenesis, development of cancer cells, and metastasis. Here, we summarized the current evidence regarding PCBP2 in the proliferation, migration, invasion of cancer cells, and drug resistance, aiming to clarify the molecular mechanisms of PCBP2 in cancer. Results from this review suggest that an in-depth study of PCBP2 in cancer may provide novel biomarkers for prognostic or therapeutic purposes.
Collapse
Affiliation(s)
- Chendong Yuan
- Department of Vascular Surgery, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang 311800, China.
| | - Mingxiang Chen
- Department of Cardiovascular surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, Yubei 401120, China.
| | - Xiaolu Cai
- Department of Oncological Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
16
|
Malaney P, Velasco-Estevez M, Aguilar-Garrido P, Aitken MJL, Chan LE, Zhang X, Post SM, Gallardo M. The Eµ-hnRNP K Murine Model of Lymphoma: Novel Insights into the Role of hnRNP K in B-Cell Malignancies. Front Immunol 2021; 12:634584. [PMID: 33912162 PMCID: PMC8072109 DOI: 10.3389/fimmu.2021.634584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/23/2021] [Indexed: 01/18/2023] Open
Abstract
B-cell lymphomas are one of the most biologically and molecularly heterogeneous group of malignancies. The inherent complexity of this cancer subtype necessitates the development of appropriate animal model systems to characterize the disease with the ultimate objective of identifying effective therapies. In this article, we discuss a new driver of B-cell lymphomas - hnRNP K (heterogenous nuclear ribonucleoprotein K)-an RNA-binding protein. We introduce the Eµ-Hnrnpk mouse model, a murine model characterized by hnRNP K overexpression in B cells, which develops B-cell lymphomas with high penetrance. Molecular analysis of the disease developed in this model reveals an upregulation of the c-Myc oncogene via post-transcriptional and translational mechanisms underscoring the impact of non-genomic MYC activation in B-cell lymphomas. Finally, the transplantability of the disease developed in Eµ-Hnrnpk mice makes it a valuable pre-clinical platform for the assessment of novel therapeutics.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Disease Models, Animal
- Gene Expression Regulation, Neoplastic
- Genetic Predisposition to Disease
- Heterogeneous-Nuclear Ribonucleoprotein K/genetics
- Heterogeneous-Nuclear Ribonucleoprotein K/metabolism
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Phenotype
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Prerna Malaney
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | | | | | - Marisa J. L. Aitken
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Lauren E. Chan
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Xiaorui Zhang
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Sean M. Post
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Miguel Gallardo
- H12O–CNIO Haematological Malignancies Clinical Research Unit, CNIO, Madrid, Spain
| |
Collapse
|
17
|
Xie Y, Luo X, He H, Pan T, He Y. Identification of an individualized RNA binding protein-based prognostic signature for diffuse large B-cell lymphoma. Cancer Med 2021; 10:2703-2713. [PMID: 33749163 PMCID: PMC8026940 DOI: 10.1002/cam4.3859] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
RNA binding proteins (RBPs) are increasingly appreciated as being essential for normal hematopoiesis and have a critical role in the progression of hematological malignancies. However, their functional consequences and clinical significance in diffuse large B‐cell lymphoma (DLBCL) remain unknown. Here, we conducted a systematic analysis to identify RBP‐related genes affecting DLBCL prognosis based on the Gene Expression Omnibus database. By univariate and multivariate Cox proportional hazards regression (CPHR) methods, six RBPs‐related genes (CMSS1, MAEL, THOC5, PSIP1, SNIP1, and ZCCHC7) were identified closely related to the overall survival (OS) of DLBCL patients. The RBPs signature could efficiently distinguished low‐risk from high‐risk patients and could serve as an independent and reliable factor for predicting OS. Moreover, Gene Set Enrichment Analysis revealed 17 significantly enriched pathways between high‐ versus low‐risk group, including the regulation of autophagy, chronic myeloid leukemia, NOTCH signaling pathway, and B cell receptor signaling pathway. Then we developed an RBP‐based nomogram combining other clinical risk factors. The receiver operating characteristic curve analysis demonstrated high prognostic predictive efficiency of this model with the area under the curve values were 0.820 and 0.780, respectively, in the primary set and entire set. In summary, our RBP‐based model could be a novel prognostic predictor and had the potential for developing treatment targets for DLBCL.
Collapse
Affiliation(s)
- Yongzhi Xie
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ximei Luo
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Haiqing He
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Tao Pan
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Yizi He
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China
| |
Collapse
|
18
|
Zhang Y, Qian J, Gu C, Yang Y. Alternative splicing and cancer: a systematic review. Signal Transduct Target Ther 2021; 6:78. [PMID: 33623018 PMCID: PMC7902610 DOI: 10.1038/s41392-021-00486-7] [Citation(s) in RCA: 222] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 01/31/2023] Open
Abstract
The abnormal regulation of alternative splicing is usually accompanied by the occurrence and development of tumors, which would produce multiple different isoforms and diversify protein expression. The aim of the present study was to conduct a systematic review in order to describe the regulatory mechanisms of alternative splicing, as well as its functions in tumor cells, from proliferation and apoptosis to invasion and metastasis, and from angiogenesis to metabolism. The abnormal splicing events contributed to tumor progression as oncogenic drivers and/or bystander factors. The alterations in splicing factors detected in tumors and other mis-splicing events (i.e., long non-coding and circular RNAs) in tumorigenesis were also included. The findings of recent therapeutic approaches targeting splicing catalysis and splicing regulatory proteins to modulate pathogenically spliced events (including tumor-specific neo-antigens for cancer immunotherapy) were introduced. The emerging RNA-based strategies for the treatment of cancer with abnormally alternative splicing isoforms were also discussed. However, further studies are still required to address the association between alternative splicing and cancer in more detail.
Collapse
Affiliation(s)
- Yuanjiao Zhang
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Qian
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Gu
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ye Yang
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
19
|
Nakamoto MY, Lammer NC, Batey RT, Wuttke DS. hnRNPK recognition of the B motif of Xist and other biological RNAs. Nucleic Acids Res 2020; 48:9320-9335. [PMID: 32813011 PMCID: PMC7498318 DOI: 10.1093/nar/gkaa677] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/29/2020] [Accepted: 08/06/2020] [Indexed: 12/26/2022] Open
Abstract
Heterogeneous nuclear ribonuclear protein K (hnRNPK) is an abundant RNA-binding protein crucial for a wide variety of biological processes. While its binding preference for multi-cytosine-patch (C-patch) containing RNA is well documented, examination of binding to known cellular targets that contain C-patches reveals an unexpected breadth of binding affinities. Analysis of in-cell crosslinking data reinforces the notion that simple C-patch preference is not fully predictive of hnRNPK localization within transcripts. The individual RNA-binding domains of hnRNPK work together to interact with RNA tightly, with the KH3 domain being neither necessary nor sufficient for binding. Rather, the RG/RGG domain is implicated in providing essential contributions to RNA-binding, but not DNA-binding, affinity. hnRNPK is essential for X chromosome inactivation, where it interacts with Xist RNA specifically through the Xist B-repeat region. We use this interaction with an RNA motif derived from this B-repeat region to determine the RNA-structure dependence of C-patch recognition. While the location preferences of hnRNPK for C-patches are conformationally restricted within the hairpin, these structural constraints are relieved in the absence of RNA secondary structure. Together, these results illustrate how this multi-domain protein's ability to accommodate and yet discriminate between diverse cellular RNAs allows for its broad cellular functions.
Collapse
Affiliation(s)
- Meagan Y Nakamoto
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Nickolaus C Lammer
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Robert T Batey
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Deborah S Wuttke
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| |
Collapse
|
20
|
RNA-binding motifs of hnRNP K are critical for induction of antibody diversification by activation-induced cytidine deaminase. Proc Natl Acad Sci U S A 2020; 117:11624-11635. [PMID: 32385154 DOI: 10.1073/pnas.1921115117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is the key enzyme for class switch recombination (CSR) and somatic hypermutation (SHM) to generate antibody memory. Previously, heterogeneous nuclear ribonucleoprotein K (hnRNP K) was shown to be required for AID-dependent DNA breaks. Here, we defined the function of major RNA-binding motifs of hnRNP K, GXXGs and RGGs in the K-homology (KH) and the K-protein-interaction (KI) domains, respectively. Mutation of GXXG, RGG, or both impaired CSR, SHM, and cMyc/IgH translocation equally, showing that these motifs were necessary for AID-dependent DNA breaks. AID-hnRNP K interaction is dependent on RNA; hence, mutation of these RNA-binding motifs abolished the interaction with AID, as expected. Some of the polypyrimidine sequence-carrying prototypical hnRNP K-binding RNAs, which participate in DNA breaks or repair bound to hnRNP K in a GXXG and RGG motif-dependent manner. Mutation of the GXXG and RGG motifs decreased nuclear retention of hnRNP K. Together with the previous finding that nuclear localization of AID is necessary for its function, lower nuclear retention of these mutants may worsen their functional deficiency, which is also caused by their decreased RNA-binding capacity. In summary, hnRNP K contributed to AID-dependent DNA breaks with all of its major RNA-binding motifs.
Collapse
|
21
|
Molecular Complexity of Diffuse Large B-Cell Lymphoma: Can It Be a Roadmap for Precision Medicine? Cancers (Basel) 2020; 12:cancers12010185. [PMID: 31940809 PMCID: PMC7017344 DOI: 10.3390/cancers12010185] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma; it features extreme molecular heterogeneity regardless of the classical cell-of-origin (COO) classification. Despite this, the standard therapeutic approach is still immunochemotherapy (rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone-R-CHOP), which allows a 60% overall survival (OS) rate, but up to 40% of patients experience relapse or refractory (R/R) disease. With the purpose of searching for new clinical parameters and biomarkers helping to make a better DLBCL patient characterization and stratification, in the last years a series of large discovery genomic and transcriptomic studies has been conducted, generating a wealth of information that needs to be put in order. We reviewed these researches, trying ultimately to understand if there are bases offering a roadmap toward personalized and precision medicine also for DLBCL.
Collapse
|