1
|
da Silva AL, Guedes BLM, Santos SN, Correa GF, Nardy A, Nali LHDS, Bachi ALL, Romano CM. Beyond pathogens: the intriguing genetic legacy of endogenous retroviruses in host physiology. Front Cell Infect Microbiol 2024; 14:1379962. [PMID: 38655281 PMCID: PMC11035796 DOI: 10.3389/fcimb.2024.1379962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
The notion that viruses played a crucial role in the evolution of life is not a new concept. However, more recent insights suggest that this perception might be even more expansive, highlighting the ongoing impact of viruses on host evolution. Endogenous retroviruses (ERVs) are considered genomic remnants of ancient viral infections acquired throughout vertebrate evolution. Their exogenous counterparts once infected the host's germline cells, eventually leading to the permanent endogenization of their respective proviruses. The success of ERV colonization is evident so that it constitutes 8% of the human genome. Emerging genomic studies indicate that endogenous retroviruses are not merely remnants of past infections but rather play a corollary role, despite not fully understood, in host genetic regulation. This review presents some evidence supporting the crucial role of endogenous retroviruses in regulating host genetics. We explore the involvement of human ERVs (HERVs) in key physiological processes, from their precise and orchestrated activities during cellular differentiation and pluripotency to their contributions to aging and cellular senescence. Additionally, we discuss the costs associated with hosting a substantial amount of preserved viral genetic material.
Collapse
Affiliation(s)
- Amanda Lopes da Silva
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Luiz Miranda Guedes
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Samuel Nascimento Santos
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Giovanna Francisco Correa
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ariane Nardy
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | | | - Andre Luis Lacerda Bachi
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Camila Malta Romano
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
2
|
Akiguchi I, Pallàs M, Budka H, Akiyama H, Ueno M, Han J, Yagi H, Nishikawa T, Chiba Y, Sugiyama H, Takahashi R, Unno K, Higuchi K, Hosokawa M. SAMP8 mice as a neuropathological model of accelerated brain aging and dementia: Toshio Takeda's legacy and future directions. Neuropathology 2017; 37:293-305. [PMID: 28261874 DOI: 10.1111/neup.12373] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/14/2022]
Abstract
Senescence accelerated mice P8 (SAMP8) show significant age-related deteriorations in memory and learning ability in accordance with early onset and rapid advancement of senescence. Brains of SAMP8 mice reveal an age-associated increase of PAS-positive granular structures in the hippocampal formation and astrogliosis in the brain stem and hippocampus. A spongy degeneration in the brain stem appears at 1 month of age and reaches a maximum at 4-8 months. In addition, clusters of activated microglia also appear around the vacuoles in the brain stem. β/A4(Aβ) protein-like immunoreactive granular structures are observed in various regions and increase in number markedly with age. Other age-associated histological changes include cortical atrophy, neuronal cell loss in locus coeruleus and lateral tegmental nuclei, intraneuronal accumulation of lipopigments in Purkinje cells and eosinophilic inclusion bodies in thalamic neurons. A blood-brain barrier dysfunction and astrogliosis are also prominent with advancing age in the hippocampus. These changes are generally similar to the pathomorphology of aging human brains and characterized by their association with some specific glioneuronal reactions. As for the hallmarks of Alzheimer brains, tau morphology has not yet been confirmed regardless of the age-related increase in phosphorylated tau in SAMP8 mice brains, but early age-related Aβ deposition in the hippocampus has recently been published. SAMP8 mice are, therefore, not only a senescence-accelerated model but also a promising model for Alzheimer's disease and other cognitive disorders.
Collapse
Affiliation(s)
- Ichiro Akiguchi
- Center of Neurological and Cerebrovascular Diseases, Koseikai Takeda Hospital, Kyoto, Japan.,Department of Health Science, Kyoto Koka Women's University, Kyoto, Japan
| | - Mercè Pallàs
- Pharmacology Section and Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Herbert Budka
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Haruhiko Akiyama
- Department of Clinical Research, Yokohama Brain and Spine Center, Yokohama, Japan
| | - Masaki Ueno
- Department of Pathology and Host Defence, Faculty of Medicine, Kagawa University, Takamatsu, Japan
| | - Jingxian Han
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hideo Yagi
- Center of Neurological and Cerebrovascular Diseases, Koseikai Takeda Hospital, Kyoto, Japan
| | - Tomohumi Nishikawa
- Department of Health Science, Kyoto Koka Women's University, Kyoto, Japan
| | - Yoichi Chiba
- Department of Pathology and Host Defence, Faculty of Medicine, Kagawa University, Takamatsu, Japan
| | | | - Ryoya Takahashi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Keiko Unno
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Keiichi Higuchi
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Masanori Hosokawa
- Institute for Developmental Research, Aichi Human Service Center, Nagoya, Japan
| |
Collapse
|
3
|
Involvement of endogenous retroviruses in prion diseases. Pathogens 2013; 2:533-43. [PMID: 25437206 PMCID: PMC4235691 DOI: 10.3390/pathogens2030533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 07/25/2013] [Accepted: 08/09/2013] [Indexed: 11/17/2022] Open
Abstract
For millions of years, vertebrates have been continuously exposed to infection by retroviruses. Ancient retroviral infection of germline cells resulted in the formation and accumulation of inherited retrovirus sequences in host genomes. These inherited retroviruses are referred to as endogenous retroviruses (ERVs), and recent estimates have revealed that a significant portion of animal genomes is made up of ERVs. Although various host factors have suppressed ERV activation, both positive and negative functions have been reported for some ERVs in normal and abnormal physiological conditions, such as in disease states. Similar to other complex diseases, ERV activation has been observed in prion diseases, and this review will discuss the potential involvement of ERVs in prion diseases.
Collapse
|
4
|
Assessment of social interaction and anxiety-like behavior in senescence-accelerated-prone and -resistant mice. Physiol Behav 2013; 118:97-102. [PMID: 23672852 DOI: 10.1016/j.physbeh.2013.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 01/23/2013] [Accepted: 05/03/2013] [Indexed: 11/23/2022]
Abstract
Two members of the senescence-accelerated mouse group, SAMP8 and SAMP10, are characterized by learning and memory deficits, while the SAMR1 strain is not. In this study, we used two behavioral tests, social approach and object recognition and compared the results observed for the SAMP strains with those seen in the control strain, SAMR1. In social approach experiments, the 2 SAMP strains showed decreased sociability compared to SAMR1 as shown by their reluctance to spend time near a stranger mouse and increased immobility. In object recognition experiments, SAMP strains spent more time in the thigmotaxis zone and less time in the more exposed central zone than SAMR1 mice. From a behavioral standpoint, SAMP mice were less interactive and showed increased anxiety-like behavior compared to SAMR1.
Collapse
|
5
|
Lee YJ, Jeong BH, Choi EK, Carp RI, Kim YS. Complete genome sequences of new xenotropic murine leukemia viruses from the senescence-accelerated mouse (SAM): molecular and phylogenetic analyses. PLoS One 2013; 8:e55669. [PMID: 23393596 PMCID: PMC3564811 DOI: 10.1371/journal.pone.0055669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/28/2012] [Indexed: 01/18/2023] Open
Abstract
Approximately 10% of the mouse genome is constituted by endogenous retroviruses (ERVs), and a number of mouse ERVs remain active. Many copies of endogenous murine leukemia viruses (MuLVs) are detected in the genomes of inbred mouse strains. Some of these MuLVs are transcriptionally active or produce infectious virus particles. Previously, we identified partial env sequences of new xenotropic MuLVs (X-MuLVs) from a senescence-accelerated mouse (SAM) strain. In the present study, we investigated and characterized the complete sequences of the X-MuLVs. The complete genomes and open reading frames (ORFs) of two X-MuLVs, designated xmlv15 and xmlv18 (accession nos. HQ154630 and HQ154631, respectively), were molecularly cloned from the genome of the SAM mice. We confirmed that the xmlv15 and xmlv18 sequences are distinct from all known MuLV genomes and are most similar to DG-75 MuLV. Moreover, we found that common strains of laboratory mice carry our newly identified xmlvs. Additionally, the expression levels of xmlv15-related sequences were much higher in C57BL and ICR mice than in the SAM strains without any stimulators. Our findings suggest that a specific group of endogenous MuLVs is constitutively expressed in the brain and that they may participate in normal functions and/or pathogenic conditions.
Collapse
Affiliation(s)
- Yun-Jung Lee
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
| | - Byung-Hoon Jeong
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea
| | - Eun-Kyoung Choi
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea
| | - Richard I. Carp
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
- * E-mail:
| |
Collapse
|
6
|
Kim BH, Song JH, Jeon YC, Jeong BH, Yun SK, Cho HC, Carp RI, Kim YS. Spontaneous immortalization of oligodendroglial cells derived from an SV40 T antigen-positive human glioblastoma multiforme. Cancer Lett 2009; 283:212-21. [PMID: 19394139 DOI: 10.1016/j.canlet.2009.03.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 03/29/2009] [Accepted: 03/30/2009] [Indexed: 11/26/2022]
Abstract
The polyoma group of viruses, including SV40, is known to be oncogenic in certain species. Here we report for the first time naturally occurring, immortalized tumor cells from a patient with glioblastoma multiforme (GBM); the cells were shown to be oligodendroglia; cells had developed remarkable chromosomal changes and were positive for SV40 T antigen. Therefore, we postulated that the main cause of immortalization of these cells was the expression of SV40 T antigen gene and protein. Since the cells are naturally generated, they will provide a useful model to study the function of oligodendroglial cells and the development of GBM.
Collapse
Affiliation(s)
- Boe-Hyun Kim
- Ilsong Institute of Life Science, Hallym University, Ilsong B/D 1605-4, Gwanyang-dong, Dongan-gu, Anyang, Gyeonggi-do 431-060, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Takeda T. Senescence-accelerated mouse (SAM) with special references to neurodegeneration models, SAMP8 and SAMP10 mice. Neurochem Res 2009; 34:639-59. [PMID: 19199030 DOI: 10.1007/s11064-009-9922-y] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2008] [Indexed: 12/16/2022]
Abstract
The SAM strains, a group of related inbred strains consisting of senescence-prone inbred strains (SAMP) and senescence-resistant inbred strains (SAMR), have been successfully developed by selective inbreeding of the AKR/J strain of mice donated by the Jackson laboratory in 1968. The characteristic feature of aging common to the SAMP and SAMR is accelerated senescence and normal aging, respectively. Furthermore, SAMP and SAMR strains of mice manifest various pathobiological phenotypes spontaneously. Among SAMP strains, SAMP8 and SAMP10 mice show age-related behavioral deterioration such as deficits in learning and memory, emotional disorders (reduced anxiety-like behavior and depressive behavior) and altered circadian rhythm associated with certain pathological, biochemical and pharmacological changes. Here, the previous and recent literature on SAM mice are reviewed with an emphasis on SAMP8 and SAMP10 mice. A spontaneous model like SAM with distinct advantages over the gene-modified model is hoped by investigators to be used more widely as a biogerontological resource to explore the etiopathogenesis of accelerated senescence and neurodegenerative disorders.
Collapse
Affiliation(s)
- Toshio Takeda
- The Council for SAM Research, 24 Nishi-ohtake-cho Mibu, Nakagyo-ku, Kyoto, 604-8856, Japan.
| |
Collapse
|
8
|
Kim BH, Meeker HC, Shin HY, Kim JI, Jeong BH, Choi EK, Carp RI, Kim YS. Physiological properties of astroglial cell lines derived from mice with high (SAMP8) and low (SAMR1, ICR) levels of endogenous retrovirus. Retrovirology 2008; 5:104. [PMID: 19032740 PMCID: PMC2607306 DOI: 10.1186/1742-4690-5-104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Accepted: 11/25/2008] [Indexed: 11/10/2022] Open
Abstract
Previous studies have reported that various inbred SAM mouse strains differ markedly with regard to a variety of parameters, such as capacity for learning and memory, life spans and brain histopathology. A potential cause of differences seen in these strains may be based on the fact that some strains have a high concentration of infectious murine leukemia virus (MuLV) in the brain, whereas other strains have little or no virus. To elucidate the effect of a higher titer of endogenous retrovirus in astroglial cells of the brain, we established astroglial cell lines from SAMR1 and SAMP8 mice, which are, respectively, resistant and prone to deficit in learning and memory and shortened life span. MuLV-negative astroglial cell lines established from ICR mice served as controls. Comparison of these cell lines showed differences in: 1) levels of the capsid antigen CAgag in both cell lysates and culture media, 2) expression of genomic retroelements, 3) the number of virus particles, 4) titer of infectious virus, 5) morphology, 6) replication rate of cells in culture and final cell concentrations, 7) expression pattern of proinflammatory cytokine genes. The results show that the expression of MuLV is much higher in SAMP8 than SAMR1 astrocyte cultures and that there are physiological differences in astroglia from the 2 strains. These results raise the possibility that the distinct physiological differences between SAMP8 and SAMR1 are a function of activation of endogenous retrovirus.
Collapse
Affiliation(s)
- Boe-Hyun Kim
- Ilsong Institute of Life Science, Hallym University, 1605-4 Gwanyang-dong Dongan-gu, Anyang, Gyeonggi-do 431-060, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Nogués MR, Giralt M, Romeu M, Mulero M, Sánchez-Martos V, Rodríguez E, Acuña-Castroviejo D, Mallol J. Melatonin reduces oxidative stress in erythrocytes and plasma of senescence-accelerated mice. J Pineal Res 2006; 41:142-9. [PMID: 16879320 DOI: 10.1111/j.1600-079x.2006.00344.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been suggested that oxidative stress is a feature of aging. The goal of the present study was to assess the oxidant effects related to aging and the protective role of exogenous melatonin in senescence-accelerated mice (SAMP8). Two groups of SAMP8 mice (males and females) were compared with their respective control groups of SAMR1 mice (senescence-resistant inbred strain) to determine their oxidative status without melatonin treatment. Four other groups of the same characteristics were treated with melatonin (10 mg/kg/day) in their drinking water. The melatonin concentration in the feeding bottles was titrated according to water consumption and body weight (i.e. 0.06 mg/mL for 30 g of body weight and 5 mL/day of water consumption). The treatment began when animals were 1-month old and continued for 9 months. When mice were 10-month old, they were anesthetized and blood was obtained. Plasma and erythrocytes were processed to examine oxidative stress markers: reduced glutathione (GSH), oxidized glutathione (GSSG), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR), glutathione S-transferase (GST), thiobarbituric acid reactive substances (TBARS), and hemolysis. The results showed greater oxidative stress in SAMP8 than in SAMR1, largely because of a decrease in GSH levels and to an increase in GSSG and TBARS with the subsequent induction of the antioxidant enzymes GPX and GR. Melatonin, as an antioxidant molecule, improved the glutathione-related parameters, prevented the induction of GPX in senescent groups, and promoted a decrease in SOD and TBARS in almost all the groups.
Collapse
Affiliation(s)
- M Rosa Nogués
- Unit of Pharmacology, School of Medicine and Health Sciences, Rovira i Virgili University, Reus, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lee KH, Jeong BH, Jin JK, Meeker HC, Kim JI, Carp RI, Kim YS. Scrapie infection activates the replication of ecotropic, xenotropic, and polytropic murine leukemia virus (MuLV) in brains and spinal cords of senescence-accelerated mice: implication of MuLV in progression of scrapie pathogenesis. Biochem Biophys Res Commun 2006; 349:122-30. [PMID: 16930537 DOI: 10.1016/j.bbrc.2006.08.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 08/02/2006] [Indexed: 11/25/2022]
Abstract
Senescence-accelerated mice (SAMP8) have a short life span, whereas SAMR1 mice are resistant to accelerated senescence. Previously it has been reported that the Akv strain of ecotropic murine leukemia virus (E-MuLV) was detected in brains of SAMP8 mice but not in brains of SAMR1 mice. In order to determine the change of MuLV levels following scrapie infection, we analyzed the E-MuLV titer and the RNA expression levels of E-MuLV, xenotropic MuLV, and polytropic MuLV in brains and spinal cords of scrapie-infected SAM mice. The expression levels of the 3 types of MuLV were increased in scrapie-infected mice compared to control mice; E-MuLV expression was detected in infected SAMR1 mice, but only in the terminal stage of scrapie disease. We also examined incubation periods and the levels of PrPSc in scrapie-infected SAMR1 (sR1) and SAMP8 (sP8) mice. We confirmed that the incubation period was shorter in sP8 (210+/-5 days) compared to sR1 (235+/-10 days) after intraperitoneal injection. The levels of PrPSc in sP8 were significantly greater than sR1 at 210+/-5 days, but levels of PrPSc at the terminal stage of scrapie in both SAM strains were virtually identical. These results show the activation of MuLV expression by scrapie infection and suggest acceleration of the progression of scrapie pathogenesis by MuLV.
Collapse
Affiliation(s)
- Kyung-Hee Lee
- Ilsong Institute of Life Science, Hallym University, 1605-4 Gwanyang-dong, Dongan-gu, Anyang, Kyounggi-do 431-060, South Korea
| | | | | | | | | | | | | |
Collapse
|
11
|
Canudas AM, Gutierrez-Cuesta J, Rodríguez MI, Acuña-Castroviejo D, Sureda FX, Camins A, Pallàs M. Hyperphosphorylation of microtubule-associated protein tau in senescence-accelerated mouse (SAM). Mech Ageing Dev 2005; 126:1300-4. [PMID: 16171847 DOI: 10.1016/j.mad.2005.07.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2005] [Indexed: 01/29/2023]
Abstract
Tau is a neuronal microtubule-associated protein found predominantly on axons. Tau phosphorylation regulates both normal and pathological functions of this protein. Hyperphosphorylation impairs the microtubule binding function of tau, resulting in the destabilization of microtubules in brain, ultimately leading to the degeneration of the affected neurons. Numerous serine/threonine kinases, including GSK-3beta and Cdk5 can phosphorylate tau. SAMR1 and SAMP8 are murine strains of senescence. We show an increase in hyperphosphorylated forms of tau in SAMP8 (senescent mice) in comparison with resistant strain SAMR1. Moreover, an increase in Cdk5 expression and activation is described but analysis of GSK3beta isoforms failed to show differences in SAMP8 in comparison to age-matched SAMR1. In conclusion, tau hyperphosphorylation occurs in SAMP-8 (early senescent) mice, indicating a link between aging and tau modifications in this murine model.
Collapse
Affiliation(s)
- Anna M Canudas
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Universitat de Barcelona, Nucli Universitari de Pedralbes, E-08028 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
12
|
Getchell TV, Peng X, Green CP, Stromberg AJ, Chen KC, Mattson MP, Getchell ML. In silico analysis of gene expression profiles in the olfactory mucosae of aging senescence-accelerated mice. J Neurosci Res 2004; 77:430-52. [PMID: 15248299 DOI: 10.1002/jnr.20157] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We utilized high-density Affymetrix oligonucleotide arrays to investigate gene expression in the olfactory mucosae of near age-matched aging senescence-accelerated mice (SAM). The senescence-prone (SAMP) strain has a significantly shorter lifespan than does the senescence-resistant (SAMR) strain. To analyze our data, we applied biostatistical methods that included a correlation analysis to evaluate sources of methodologic and biological variability; a two-sided t-test to identify a subpopulation of Present genes with a biologically relevant P-value <0.05; and a false discovery rate (FDR) analysis adjusted to a stringent 5% level that yielded 127 genes with a P-value of <0.001 that were differentially regulated in near age-matched SAMPs (SAMP-Os; 13.75 months) compared to SAMRs (SAMR-Os, 12.5 months). Volcano plots related the variability in the mean hybridization signals as determined by the two-sided t-test to fold changes in gene expression. The genes were categorized into the six functional groups used previously in gene profiling experiments to identify candidate genes that may be relevant for senescence at the genomic and cellular levels in the aging mouse brain (Lee et al. [2000] Nat Genet 25:294-297) and in the olfactory mucosa (Getchell et al. [2003] Ageing Res Rev 2:211-243), which serves several functions that include chemosensory detection, immune barrier function, xenobiotic metabolism, and neurogenesis. Because SAMR-Os and SAMP-Os have substantially different median lifespans, we related the rate constant alpha in the Gompertz equation on aging to intrinsic as opposed to environmental mechanisms of senescence based on our analysis of genes modulated during aging in the olfactory mucosa.
Collapse
Affiliation(s)
- Thomas V Getchell
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536-0230, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Kim BH, Lee HG, Choi JK, Kim JI, Choi EK, Carp RI, Kim YS. The cellular prion protein (PrPC) prevents apoptotic neuronal cell death and mitochondrial dysfunction induced by serum deprivation. ACTA ACUST UNITED AC 2004; 124:40-50. [PMID: 15093684 DOI: 10.1016/j.molbrainres.2004.02.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2004] [Indexed: 11/16/2022]
Abstract
Prion diseases are transmissible neurodegenerative disorders that are invariably fatal in humans and animals. Although the nature of the infectious agent and pathogenic mechanisms of prion diseases are not clear, it has been reported that prion diseases may be associated with aberrant metabolism of cellular prion protein (PrP(C)). In various reports, it has been postulated that PrP(C) may be involved in one or more of the following: neurotransmitter metabolism, cell adhesion, signal transduction, copper metabolism, antioxidant activity or programmed cell death. Despite suggestive results supporting each of these mechanisms, the physiological function(s) of PrP(C) is not known. To investigate whether PrP(C) can prevent apoptotic cell death in prion diseases, we established the cell lines stably expressing PrP(C) from PrP knockout (PrP(-/-)) neuronal cells and examined the role of PrP(C) under apoptosis and/or serum-deprived condition. We found that PrP(-/-) cells were vulnerable to apoptotic cell death and that this vulnerability was rescued by the expression of PrP(C). The expression levels of apoptosis-related proteins including p53, Bax, caspase-3, poly(ADP-ribose) polymerase (PARP) and cytochrome c were significantly increased in PrP(-/-) cells. In addition, Ca(2+) levels of mitochondria were increased, whereas mitochondrial membrane potentials were decreased in PrP(-/-) cells. These results strongly suggest that PrP(C) may play a central role as an effective anti-apoptotic protein through caspase-dependent apoptotic pathways in mitochondria, supporting the concept that disruption of PrP(C) and consequent reduction of anti-apoptotic capacity of PrP(C) may be one of the pathogenic mechanisms of prion diseases.
Collapse
Affiliation(s)
- Boe-Hyun Kim
- Ilsong Institute of Life Science, Hallym Academy of Sciences, Hallym University, Ilsong Building, Kwanyang-dong 1605-4, Dongan-gu, Anyang 431-060, South Korea
| | | | | | | | | | | | | |
Collapse
|