1
|
Jung H, Kang J, Han KM, Kim H. Prognostic Value of Pentraxin3 Protein Expression in Human Malignancies: A Systematic Review and Meta-Analysis. Cancers (Basel) 2024; 16:3754. [PMID: 39594709 PMCID: PMC11593206 DOI: 10.3390/cancers16223754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Pentraxin 3 (PTX3), a member of the pentraxin superfamily, plays diverse roles in immunity and inflammation. Its dual role in tumorigenesis, exhibiting both protumoral and antitumoral effects, has been the subject of conflicting reports. High PTX3 expression levels in serum and tumor tissues have been associated with poor prognosis in various malignancies, suggesting its potential as a prognostic biomarker. Through this meta-analysis, we aim to comprehensively assess the prognostic significance of PTX3 protein expression in human malignancies and evaluate its potential as a pan-cancer prognostic marker. METHODS A systematic literature search was conducted across the PubMed, Embase, Web of Science, MEDLINE, and Cochrane Library databases. Studies were included if they assessed the association between PTX3 protein expression and overall survival (OS) in cancer patients. Hazard ratios (HRs) were pooled using a random-effects model. Subgroup analyses were performed based on the method of PTX3 assessment, and publication bias was evaluated using Egger's and Begg's tests. RESULTS Nine studies encompassing 1215 patients were included in the analysis. High PTX3 expression was significantly associated with poorer OS (HR = 1.89, 95% CI = 1.55-2.32, p < 0.01) with no significant heterogeneity (I2 = 0%). Subgroup analysis revealed consistent results across different assessment methods (immunohistochemistry: HR = 1.93, p < 0.01; immunoassay: HR = 1.86, p < 0.01). However, publication bias was detected (Egger's test, p = 0.03). CONCLUSIONS High PTX3 protein expression is associated with a poor prognosis in various malignancies, supporting its potential as a prognostic biomarker.
Collapse
Affiliation(s)
| | | | | | - Hyunchul Kim
- Department of Pathology, CHA Ilsan Medical Center, Goyang-si 10414, Gyeonggi-do, Republic of Korea (J.K.); (K.-M.H.)
| |
Collapse
|
2
|
Li D, Hao Z, Nan Y, Chen Y. Role of long pentraxin PTX3 in cancer. Clin Exp Med 2023; 23:4401-4411. [PMID: 37438568 DOI: 10.1007/s10238-023-01137-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Cancer has become a leading cause of death and disease burden worldwide, closely related to rapid socioeconomic development. However, the fundamental reason is the lack of comprehensive understanding of the mechanism of cancer, accurate identification of preclinical cancer, and effective treatment of the disease. Therefore, it is particularly urgent to study specific mechanisms of cancer and develop effective prediction and treatment methods. Long Pentraxin PTX3 is a soluble pattern recognition molecule produced by various cells in inflammatory sites, which plays a role as a promoter or suppressor of cancer in multiple tumors through participating in innate immune response, neovascularization, energy metabolism, invasion, and metastasis mechanisms. Based on this, this article mainly reviews the role of PTX3 in various cancers.
Collapse
Affiliation(s)
- Duo Li
- Department of Respiratory Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an 710038, China
| | - Zhaozhao Hao
- Department of Respiratory Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an 710038, China
| | - Yandong Nan
- Department of Respiratory Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an 710038, China.
| | - Yanwei Chen
- Department of Respiratory Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an 710038, China
| |
Collapse
|
3
|
You G, Zheng Z, Huang Y, Liu G, Luo W, Huang J, Zhuo L, Tang B, Liu S, Lin C. scRNA-seq and proteomics reveal the distinction of M2-like macrophages between primary and recurrent malignant glioma and its critical role in the recurrence. CNS Neurosci Ther 2023; 29:3391-3405. [PMID: 37194413 PMCID: PMC10580349 DOI: 10.1111/cns.14269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023] Open
Abstract
AIMS Tumor-associated macrophages (TAMs) in the immune microenvironment play an important role in the increased drug resistance and recurrence of malignant glioma, but the mechanism remains incompletely inventoried. The focus of this study was to investigate the distinctions of M2-like TAMs in the immune microenvironment between primary and recurrent malignant glioma and its influence in the recurrence. METHODS We employed single-cell RNA sequencing to construct a single-cell atlas for a total of 23,010 individual cells from 6 patients with primary or recurrent malignant glioma and identified 5 cell types, including TAMs and malignant cells. Immunohistochemical techniques and proteomics analysis were performed to investigate the role of intercellular interaction between malignant cells and TAMs in the recurrence of malignant glioma. RESULTS Six subgroups of TAMs were annotated and M2-like TAMs were found to increase in recurrent malignant glioma significantly. A pseudotime trajectory and a dynamic gene expression profiling during the recurrence of malignant glioma were reconstructed. Up-regulation of several cancer pathways and intercellular interaction-related genes are associated with the recurrence of malignant glioma. Moreover, the M2-like TAMs can activate the PI3K/Akt/HIF-1α/CA9 pathway in the malignant glioma cells via SPP1-CD44-mediated intercellular interaction. Interestingly, high expression of CA9 can trigger the immunosuppressive response in the malignant glioma, thus promoting the degree of malignancy and drug resistance. CONCLUSION Our study uncovers the distinction of M2-like TAMs between primary and recurrent glioma, which offers unparalleled insights into the immune microenvironment of primary and recurrent malignant glioma.
Collapse
Affiliation(s)
- Guiting You
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhenyu Zheng
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Medical University, Fuzhou, China
| | - Yulong Huang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Medical University, Fuzhou, China
| | - Guifen Liu
- Department of Gynaecology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Wei Luo
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Medical University, Fuzhou, China
| | - Jianhuang Huang
- Department of Neurosurgery, Affiliated Hospital of Putian University, Putian, China
| | - Longjin Zhuo
- Pingtan Comprehensive Experimental Area Hospital, Fuzhou, China
| | - Binghua Tang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Medical University, Fuzhou, China
| | - Shunyi Liu
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Medical University, Fuzhou, China
| | - Caihou Lin
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
4
|
Cao C, Zhang L, Sorensen MD, Reifenberger G, Kristensen BW, McIntyre TM, Lin F. D-2-hydroxyglutarate regulates human brain vascular endothelial cell proliferation and barrier function. J Neuropathol Exp Neurol 2023; 82:921-933. [PMID: 37740942 PMCID: PMC10588003 DOI: 10.1093/jnen/nlad072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023] Open
Abstract
Gain-of-function mutations in isocitrate dehydrogenase (IDH) genes result in excessive production of (D)-2-hydroxyglutarate (D-2HG) which intrinsically modifies tumor cell epigenetics and impacts surrounding noncancerous cells through nonepigenetic pathways. However, whether D-2HG has a paracrine effect on endothelial cells in the tumor microenvironment needs further clarification. We quantified microvessel density by immunohistochemistry using tissue sections from 60 high-grade astrocytic gliomas with or without IDH mutation. Microvessel density was found to be reduced in tumors carrying an IDH mutation. Ex vivo experiments showed that D-2HG inhibited endothelial cell migration, wound healing, and tube formation by suppressing cell proliferation but not viability, possibly through reduced activation of the mTOR/STAT3 pathway. Further, D-2HG reduced fluorescent dextran permeability and decreased paracellular T-cell transendothelial migration by augmenting expression of junctional proteins thereby collectively increasing endothelial barrier function. These results indicate that D-2HG may influence the tumor vascular microenvironment by reducing the intratumoral vasculature density and by inhibiting the transport of metabolites and extravasation of circulating cells into the astrocytoma microenvironment. These observations provide a rationale for combining IDH inhibition with antitumor immunological/angiogenic approaches and suggest a molecular basis for resistance to antiangiogenic drugs in patients whose tumors express a mutant IDH allele.
Collapse
Affiliation(s)
- Chun Cao
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lingjun Zhang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mia D Sorensen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Bjarne W Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Thomas M McIntyre
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Feng Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Lin P, He L, Tian N, Qi X. The evaluation of six genes combined value in glioma diagnosis and prognosis. J Cancer Res Clin Oncol 2023; 149:12413-12433. [PMID: 37439825 DOI: 10.1007/s00432-023-05082-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE Glioma is the most common and fatal type of brain tumour. Owing to its aggressiveness and lethality, early diagnosis and prediction of patient survival are very important. This study aimed to identify key genes and biomarkers for glioma that can guide clinicians in making rapid diagnosis and prognostication. METHODS Data mining of The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), Repository of Molecular Brain Neoplasia Data, and Genotype-Tissue Expression Project brain expression data revealed significantly differentially expressed genes (DEGs), and the risk scores of individual patients were calculated. WGCNA was utilized to screen for genes most related to clinical diagnosis. Prognostic genes associated with glioma were selected via combining the LASSO regression with univariate and multivariate Cox regression and protein-protein interaction network analyses. Then, a nomogram was constructed. And CGGA dataset was utilized to validated. The protein expression levels of the signature were detected using the human protein atlas. Drug response prediction was carried out using the package "pRRophetic". RESULTS A six-gene signature (KLF6, CHI3L1, SERPINE1, ANGPT2, TGFBR1, and PTX3) was identified and used to stratify patients into low- and high-risk groups. Survival, ROC curve, and Cox analyses clarified that the six hub genes were a favourable independent prognostic factor for patients with glioma. A nomogram was set up by integrating clinical parameters with risk signatures, showing high precision for predicting 2-, 3-, 4-, 5-years survival. In addition, the expression of most genes was consistent with protein expression. Furthermore, the sensitivity to the top ten drugs in the GDSC database of the high-risk group was significantly higher than the low-risk group. CONCLUSION Based on genetic profiles and clinicopathological features, including age, grade, isocitrate dehydrogenase mutation status, we constructed a comprehensive prognostic model for patients with glioma. These signatures can be regarded as biomarkers to predict the prognosis of gliomas, possibly providing more therapeutic strategies for future clinical research.
Collapse
Affiliation(s)
- Ping Lin
- Department of Medical Research Center, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Lingyan He
- Department of Traditional Chinese Medicine, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Nan Tian
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China.
| |
Collapse
|
6
|
Chen B, Ojha DP, Toyonaga T, Tong J, Pracitto R, Thomas MA, Liu M, Kapinos M, Zhang L, Zheng MQ, Holden D, Fowles K, Ropchan J, Nabulsi N, De Feyter H, Carson RE, Huang Y, Cai Z. Preclinical evaluation of a brain penetrant PARP PET imaging probe in rat glioblastoma and nonhuman primates. Eur J Nucl Med Mol Imaging 2023; 50:2081-2099. [PMID: 36849748 DOI: 10.1007/s00259-023-06162-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/18/2023] [Indexed: 03/01/2023]
Abstract
PURPOSE Currently, there are multiple active clinical trials involving poly(ADP-ribose) polymerase (PARP) inhibitors in the treatment of glioblastoma. The noninvasive quantification of baseline PARP expression using positron emission tomography (PET) may provide prognostic information and lead to more precise treatment. Due to the lack of brain-penetrant PARP imaging agents, the reliable and accurate in vivo quantification of PARP in the brain remains elusive. Herein, we report the synthesis of a brain-penetrant PARP PET tracer, (R)-2-(2-methyl-1-(methyl-11C)pyrrolidin-2-yl)-1H-benzo[d]imidazole-4-carboxamide ([11C]PyBic), and its preclinical evaluations in a syngeneic RG2 rat glioblastoma model and healthy nonhuman primates. METHODS We synthesized [11C]PyBic using veliparib as the labeling precursor, performed dynamic PET scans on RG2 tumor-bearing rats and calculated the distribution volume ratio (DVR) using simplified reference region method 2 (SRTM2) with the contralateral nontumor brain region as the reference region. We performed biodistribution studies, western blot, and immunostaining studies to validate the in vivo PET quantification results. We characterized the brain kinetics and binding specificity of [11C]PyBic in nonhuman primates on FOCUS220 scanner and calculated the volume of distribution (VT), nondisplaceable volume of distribution (VND), and nondisplaceable binding potential (BPND) in selected brain regions. RESULTS [11C]PyBic was synthesized efficiently in one step, with greater than 97% radiochemical and chemical purity and molar activity of 148 ± 85 MBq/nmol (n = 6). [11C]PyBic demonstrated PARP-specific binding in RG2 tumors, with 74% of tracer binding in tumors blocked by preinjected veliparib (i.v., 5 mg/kg). The in vivo PET imaging results were corroborated by ex vivo biodistribution, PARP1 immunohistochemistry and immunoblotting data. Furthermore, brain penetration of [11C]PyBic was confirmed by quantitative monkey brain PET, which showed high specific uptake (BPND > 3) and low nonspecific uptake (VND < 3 mL/cm3) in the monkey brain. CONCLUSION [11C]PyBic is the first brain-penetrant PARP PET tracer validated in a rat glioblastoma model and healthy nonhuman primates. The brain kinetics of [11C]PyBic are suitable for noninvasive quantification of available PARP binding in the brain, which posits [11C]PyBic to have broad applications in oncology and neuroimaging.
Collapse
Affiliation(s)
- Baosheng Chen
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Devi Prasan Ojha
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Takuya Toyonaga
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Jie Tong
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Richard Pracitto
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Monique A Thomas
- Magnetic Resonance Research Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Michael Liu
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Michael Kapinos
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Li Zhang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Ming-Qiang Zheng
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Daniel Holden
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Krista Fowles
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Jim Ropchan
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Nabeel Nabulsi
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Henk De Feyter
- Magnetic Resonance Research Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Richard E Carson
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Yiyun Huang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Zhengxin Cai
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA.
| |
Collapse
|
7
|
Shi S, Zhong J, Peng W, Yin H, Zhong D, Cui H, Sun X. System analysis based on the migration- and invasion-related gene sets identifies the infiltration-related genes of glioma. Front Oncol 2023; 13:1075716. [PMID: 37091145 PMCID: PMC10117932 DOI: 10.3389/fonc.2023.1075716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
The current database has no information on the infiltration of glioma samples. Here, we assessed the glioma samples' infiltration in The Cancer Gene Atlas (TCGA) through the single-sample Gene Set Enrichment Analysis (ssGSEA) with migration and invasion gene sets. The Weighted Gene Co-expression Network Analysis (WGCNA) and the differentially expressed genes (DEGs) were used to identify the genes most associated with infiltration. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the major biological processes and pathways. Protein-protein interaction (PPI) network analysis and the least absolute shrinkage and selection operator (LASSO) were used to screen the key genes. Furthermore, the nomograms and receiver operating characteristic (ROC) curve were used to evaluate the prognostic and predictive accuracy of this clinical model in patients in TCGA and the Chinese Glioma Genome Atlas (CGGA). The results showed that turquoise was selected as the hub module, and with the intersection of DEGs, we screened 104 common genes. Through LASSO regression, TIMP1, EMP3, IGFBP2, and the other nine genes were screened mostly in correlation with infiltration and prognosis. EMP3 was selected to be verified in vitro. These findings could help researchers better understand the infiltration of gliomas and provide novel therapeutic targets for the treatment of gliomas.
Collapse
Affiliation(s)
- Shuang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiacheng Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Haoyang Yin
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dong Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Schnöller LE, Piehlmaier D, Weber P, Brix N, Fleischmann DF, Nieto AE, Selmansberger M, Heider T, Hess J, Niyazi M, Belka C, Lauber K, Unger K, Orth M. Systematic in vitro analysis of therapy resistance in glioblastoma cell lines by integration of clonogenic survival data with multi-level molecular data. Radiat Oncol 2023; 18:51. [PMID: 36906590 PMCID: PMC10007763 DOI: 10.1186/s13014-023-02241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023] Open
Abstract
Despite intensive basic scientific, translational, and clinical efforts in the last decades, glioblastoma remains a devastating disease with a highly dismal prognosis. Apart from the implementation of temozolomide into the clinical routine, novel treatment approaches have largely failed, emphasizing the need for systematic examination of glioblastoma therapy resistance in order to identify major drivers and thus, potential vulnerabilities for therapeutic intervention. Recently, we provided proof-of-concept for the systematic identification of combined modality radiochemotherapy treatment vulnerabilities via integration of clonogenic survival data upon radio(chemo)therapy with low-density transcriptomic profiling data in a panel of established human glioblastoma cell lines. Here, we expand this approach to multiple molecular levels, including genomic copy number, spectral karyotyping, DNA methylation, and transcriptome data. Correlation of transcriptome data with inherent therapy resistance on the single gene level yielded several candidates that were so far underappreciated in this context and for which clinically approved drugs are readily available, such as the androgen receptor (AR). Gene set enrichment analyses confirmed these results, and identified additional gene sets, including reactive oxygen species detoxification, mammalian target of rapamycin complex 1 (MTORC1) signaling, and ferroptosis/autophagy-related regulatory circuits to be associated with inherent therapy resistance in glioblastoma cells. To identify pharmacologically accessible genes within those gene sets, leading edge analyses were performed yielding candidates with functions in thioredoxin/peroxiredoxin metabolism, glutathione synthesis, chaperoning of proteins, prolyl hydroxylation, proteasome function, and DNA synthesis/repair. Our study thus confirms previously nominated targets for mechanism-based multi-modal glioblastoma therapy, provides proof-of-concept for this workflow of multi-level data integration, and identifies novel candidates for which pharmacological inhibitors are readily available and whose targeting in combination with radio(chemo)therapy deserves further examination. In addition, our study also reveals that the presented workflow requires mRNA expression data, rather than genomic copy number or DNA methylation data, since no stringent correlation between these data levels could be observed. Finally, the data sets generated in the present study, including functional and multi-level molecular data of commonly used glioblastoma cell lines, represent a valuable toolbox for other researchers in the field of glioblastoma therapy resistance.
Collapse
Affiliation(s)
- Leon Emanuel Schnöller
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany
| | - Daniel Piehlmaier
- Research Unit Radiation Cytogenetics (ZYTO), Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Peter Weber
- Research Unit Radiation Cytogenetics (ZYTO), Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Nikko Brix
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany
| | - Daniel Felix Fleischmann
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Edward Nieto
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany
| | - Martin Selmansberger
- Research Unit Radiation Cytogenetics (ZYTO), Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Theresa Heider
- Research Unit Radiation Cytogenetics (ZYTO), Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Julia Hess
- Research Unit Radiation Cytogenetics (ZYTO), Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,Bavarian Cancer Research Center (BKFZ), Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,Bavarian Cancer Research Center (BKFZ), Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,German Cancer Consortium (DKTK), Munich, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics (ZYTO), Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany. .,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.
| | - Michael Orth
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.
| |
Collapse
|
9
|
Kaushal P, Zhu J, Wan Z, Chen H, Ye J, Luo C. Prognosis and Immune Landscapes in Glioblastoma Based on Gene-Signature Related to Reactive-Oxygen-Species. Neuromolecular Med 2023; 25:102-119. [PMID: 35779207 DOI: 10.1007/s12017-022-08719-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022]
Abstract
Glioblastoma (GBM) is the most malignant and aggressive primary brain tumor and is highly resistant to current therapeutic strategies. Previous studies have demonstrated that reactive oxygen species (ROS) play an important role in the regulation of signal transduction and immunosuppressive environment in GBM. To further study the role of ROS in prognosis, tumor micro-environment (TME) and immunotherapeutic response in GBM, an ROS-related nine-gene signature was constructed using the Lasso-Cox regression method and validated using three other datasets in our research, based on the hallmark ROS-pathway-related gene sets and the Cancer Genome Atlas GBM dataset. Differences in prognosis, TME scores, immune cell infiltration, immune checkpoint expression levels, and drug sensitivity between high-risk and low-risk subgroups were analyzed using R software. Collectively, our research uncovered a novel ROS-related prognostic model for primary GBM, which could prove to be a potential tool for clinical diagnosis of GBM, and help assess the immune and molecular characteristics of ROS in the tumorigenesis and immunosuppression of GBM. Our research also revealed that the expressions of ROS-related genes-HSPB1, LSP1, and PTX3-were closely related to the cell markers of tumor-associated macrophages (TAMs) and M2 macrophages validated by quantitative RT-PCR, suggesting them could be potential targets of immunotherapy for GBM.
Collapse
Affiliation(s)
- Prashant Kaushal
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junle Zhu
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiping Wan
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huairui Chen
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingliang Ye
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Chun Luo
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
10
|
Han S, Zhang Z, Ma W, Gao J, Li Y. Nucleotide-Binding Oligomerization Domain (NOD)-Like Receptor Subfamily C (NLRC) as a Prognostic Biomarker for Glioblastoma Multiforme Linked to Tumor Microenvironment: A Bioinformatics, Immunohistochemistry, and Machine Learning-Based Study. J Inflamm Res 2023; 16:523-537. [PMID: 36798872 PMCID: PMC9926983 DOI: 10.2147/jir.s397305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Purpose Glioblastoma multiforme (GBM) remains the deadliest primary brain tumor. We aimed to illuminate the role of nucleotide-binding oligomerization domain (NOD)-like receptor subfamily C (NLRC) in GBM. Patients and Methods Based on public database data (mainly The Cancer Genome Atlas [TCGA]), we performed bioinformatics analysis to visually evaluate the role and mechanism of NLRCs in GBM. Then, we validated our findings in a glioma tissue microarray (TMA) by immunohistochemistry (IHC), and the prognostic value of NOD1 was assessed via random forest (RF) models. Results In GBM tissues, the expression of NLRC members was significantly increased, which was related to the low survival rate of GBM. Additionally, Cox regression analysis revealed that the expression of NOD1 (among NLRCs) served as an independent prognostic marker. A nomogram based on multivariate analysis proved the effective predictive performance of NOD1 in GBM. Enrichment analysis showed that high expression of NOD1 could regulate extracellular structure, cell adhesion, and immune response to promote tumor progression. Then, immune infiltration analysis showed that NOD1 overexpression correlated with an enhanced immune response. Then, in a glioma TMA, the results of IHC revealed that the increase in NOD1 expression indicated high recurrence and poor prognosis of human glioma. Furthermore, the expression level of NOD1 showed good prognostic value in the TMA cohort via RF. Conclusion The value of NOD1 as a biomarker for GBM was demonstrated. The possible mechanisms may lie in the regulatory role of NLRC-related pathways in the tumor microenvironment.
Collapse
Affiliation(s)
- Shiyuan Han
- Department of Neurosurgery, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), Beijing, People’s Republic of China
| | - Zimu Zhang
- Department of General Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), Beijing, People’s Republic of China
| | - Wenbin Ma
- Department of Neurosurgery, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), Beijing, People’s Republic of China
| | - Jun Gao
- Department of Neurosurgery, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), Beijing, People’s Republic of China
| | - Yongning Li
- Department of Neurosurgery, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), Beijing, People’s Republic of China,Department of International Medical Service, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), Beijing, People’s Republic of China,Correspondence: Yongning Li, Department of Neurosurgery and Department of International Medical Service, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, People’s Republic of China, Tel +86 13901074129, Fax +86 1069152530, Email
| |
Collapse
|
11
|
Bogdan M, Meca AD, Turcu-Stiolica A, Oancea CN, Kostici R, Surlin MV, Florescu C. Insights into the Relationship between Pentraxin-3 and Cancer. Int J Mol Sci 2022; 23:15302. [PMID: 36499628 PMCID: PMC9739619 DOI: 10.3390/ijms232315302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022] Open
Abstract
Although cancer can be cured if detected early and treated effectively, it is still a leading cause of death worldwide. Tumor development can be limited by an appropiate immune response, but it can be promoted by chronic extensive inflammation through metabolic dysregulation and angiogenesis. In the past decade, numerous efforts have been made in order to identify novel candidates with predictive values in cancer diagnostics. In line with this, researchers have investigated the involvement of pentraxin-3 (PTX-3) in cellular proliferation and immune escape in various types of cancers, although it has not been clearly elucidated. PTX-3 is a member of the long pentraxin subfamily which plays an important role in regulating inflammation, innate immunity response, angiogenesis, and tissue remodeling. Increased synthesis of inflammatory biomarkers and activation of different cellular mechanisms can induce PTX-3 expression in various types of cells (neutrophils, monocytes, lymphocytes, myeloid dendritic cells, fibroblasts, and epithelial cells). PTX-3 has both pro- and anti-tumor functions, thus dual functions in oncogenesis. This review elucidates the potential usefulness of PTX-3 as a serum biomarker in cancer. While future investigations are needed, PTX-3 is emerging as a promising tool for cancer's diagnosis and prognosis, and also treatment monitoring.
Collapse
Affiliation(s)
- Maria Bogdan
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Andreea-Daniela Meca
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Adina Turcu-Stiolica
- Department of Pharmacoeconomics, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Carmen Nicoleta Oancea
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Roxana Kostici
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Marin Valeriu Surlin
- Department of General Surgery, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Cristina Florescu
- Department of Cardiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
12
|
Cancer Stem Cell-Associated Immune Microenvironment in Recurrent Glioblastomas. Cells 2022; 11:cells11132054. [PMID: 35805138 PMCID: PMC9265559 DOI: 10.3390/cells11132054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most incurable tumor (due to the difficulty in complete surgical resection and the resistance to conventional chemo/radiotherapies) that displays a high relapse frequency. Cancer stem cells (CSCs) have been considered as a promising target responsible for therapy resistance and cancer recurrence. CSCs are known to organize a self-advantageous microenvironment (niche) for their maintenance and expansion. Therefore, understanding how the microenvironment is reconstructed by the remaining CSCs after conventional treatments and how it eventually causes recurrence should be essential to inhibit cancer recurrence. However, the number of studies focusing on recurrence is limited, particularly those related to tumor immune microenvironment, while numerous data have been obtained from primary resected samples. Here, we summarize recent investigations on the immune microenvironment from the viewpoint of recurrent GBM (rGBM). Based on the recurrence-associated immune cell composition reported so far, we will discuss how CSCs manipulate host immunity and create the special microenvironment for themselves to regrow. An integrated understanding of the interactions between CSCs and host immune cells at the recurrent phase will lead us to develop innovative therapies and diagnoses to achieve GBM eradication.
Collapse
|
13
|
Sørensen MD, Nielsen O, Reifenberger G, Kristensen BW. The presence of TIM-3 positive cells in WHO grade III and IV astrocytic gliomas correlates with isocitrate dehydrogenase mutation status. Brain Pathol 2021; 31:e12921. [PMID: 33244787 PMCID: PMC8412096 DOI: 10.1111/bpa.12921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022] Open
Abstract
Diffuse gliomas are aggressive brain tumors that respond poorly to immunotherapy including immune checkpoint inhibition. This resistance may arise from an immunocompromised microenvironment and deficient immune recognition of tumor cells because of low mutational burden. The most prominent genetic alterations in diffuse glioma are mutations in the isocitrate dehydrogenase (IDH) genes that generate the immunosuppressive oncometabolite d-2-hydroxyglutarate. Our objective was to explore the association between IDH mutation and presence of cells expressing the immune checkpoint proteins galectin-9 and/or T cell immunoglobulin and mucin-domain containing-3 (TIM-3). Astrocytic gliomas of World Health Organization (WHO) grades III or IV (36 IDH-mutant and 36 IDH-wild-type) from 72 patients were included in this study. A novel multiplex chromogenic immunohistochemistry panel was applied using antibodies against galectin-9, TIM-3, and the oligodendrocyte transcription factor 2 (OLIG2). Validation studies were performed using data from The Cancer Genome Atlas (TCGA) project. IDH mutation was associated with decreased levels of TIM-3+ cells (p < 0.05). No significant association was found between galectin-9 and IDH status (p = 0.10). Most TIM-3+ and galectin-9+ cells resembled microglia/macrophages, and very few TIM-3+ and/or galectin-9+ cells co-expressed OLIG2. The percentage of TIM-3+ T cells was generally low, however, IDH-mutant tumors contained significantly fewer TIM-3+ T cells (p < 0.01) and had a lower interaction rate between TIM-3+ T cells and galectin-9+ microglia/macrophages (p < 0.05). TCGA data confirmed lower TIM-3 mRNA expression in IDH-mutant compared to IDH-wild-type astrocytic gliomas (p = 0.013). Our results show that IDH mutation is associated with diminished levels of TIM-3+ cells and fewer interactions between TIM-3+ T cells and galectin-9+ microglia/macrophages, suggesting reduced activity of the galectin-9/TIM-3 immune checkpoint pathway in IDH-mutant astrocytic gliomas.
Collapse
Affiliation(s)
- Mia D Sørensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Ole Nielsen
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Guido Reifenberger
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Institute of Neuropathology, Heinrich Heine University, Düsseldorf, Germany.,German Cancer Consortium (DKT), partner site Essen/Düsseldorf, Essen, Germany
| | - Bjarne W Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|