1
|
The SH-SY5Y human neuroblastoma cell line, a relevant in vitro cell model for investigating neurotoxicology in human: focus on organic pollutants. Neurotoxicology 2022; 92:131-155. [PMID: 35914637 DOI: 10.1016/j.neuro.2022.07.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 12/18/2022]
Abstract
Investigation of the toxicity triggered by chemicals on the human brain has traditionally relied on approaches using rodent in vivo models and in vitro cell models including primary neuronal cultures and cell lines from rodents. The issues of species differences between humans and rodents, the animal ethical concerns and the time and cost required for neurotoxicity studies on in vivo animal models, do limit the use of animal-based models in neurotoxicology. In this context, human cell models appear relevant in elucidating cellular and molecular impacts of neurotoxicants and facilitating prioritization of in vivo testing. The SH-SY5Y human neuroblastoma cell line (ATCC® CRL-2266TM) is one of the most used cell lines in neurosciences, either undifferentiated or differentiated into neuron-like cells. This review presents the characteristics of the SH-SY5Y cell line and proposes the results of a systematic review of literature on the use of this in vitro cell model for neurotoxicity research by focusing on organic environmental pollutants including pesticides, 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), flame retardants, PFASs, parabens, bisphenols, phthalates, and PAHs. Organic environmental pollutants are widely present in the environment and increasingly known to cause clinical neurotoxic effects during fetal & child development and adulthood. Their effects on cultured SH-SY5Y cells include autophagy, cell death (apoptosis, pyroptosis, necroptosis, or necrosis), increased oxidative stress, mitochondrial dysfunction, disruption of neurotransmitter homeostasis, and alteration of neuritic length. Finally, the inherent advantages and limitations of the SH-SY5Y cell model are discussed in the context of chemical testing.
Collapse
|
2
|
Catalytic Hydrolysis of Tricresyl Phosphate by Ruthenium (III) Hydroxide and Iron (III) Hydroxide towards Sensing Application. SENSORS 2020; 20:s20082317. [PMID: 32325666 PMCID: PMC7219232 DOI: 10.3390/s20082317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/22/2022]
Abstract
Tricresyl phosphate (TCP) is an organophosphorous neurotoxin that has been detected in water, soil and air. Exposure to TCP in cockpit and cabin air poses a severe threat to flight safety and the health of the aircraft cabin occupants. Conventional methods for the detection of TCP in various samples are gas or liquid chromatography coupled to mass spectrometry, which are complex and expensive. To develop a simple low-cost methodology for the real-time monitoring of TCP in the environment, an effective catalyst is demanded for the hydrolysis of TCP under neutral condition. In this study, Ruthenium (III) hydroxide and Iron (III) hydroxide are found to facilitate the production of the alcoholysis and hydrolysis products of TCP, suggesting their role as a catalyst. With this finding, these metal hydroxides provide new potential to realize not only simple colorimetric or electrochemical detection of TCP, but also a simple detoxication strategy for TCP in environment. In addition, the catalytic capability of Ru (III) or Fe (III) hydroxide for TCP gives a hint that they can potentially serve as catalysts for the hydrolysis of alcolyolysis of many other organophosphate compounds.
Collapse
|
3
|
Liu C, Zhou W, Li Z, Ren J, Li X, Li S, Liu Q, Song F, Hao A, Wang F. Melatonin Protects Neural Stem Cells Against Tri-Ortho-Cresyl Phosphate-Induced Autophagy. Front Mol Neurosci 2020; 13:25. [PMID: 32210763 PMCID: PMC7069477 DOI: 10.3389/fnmol.2020.00025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/03/2020] [Indexed: 01/04/2023] Open
Abstract
Tri-ortho-cresyl phosphate (TOCP) is an extensively used organophosphate in industry. It has been proven to lead to toxicity in different organ systems, especially in the nervous system. Neural stem cells (NSCs) play important roles in both embryonic and adult nervous systems. However, whether TOCP induces cytotoxicity in embryonic NSCs remains unclear. In this study, mouse NSCs were exposed to different concentrations of TOCP for 24 h. The results showed that TOCP led to impaired proliferation of NSCs and induced the autophagy of NSCs by increasing the generation of intracellular reactive oxygen species (ROS) and decreasing the phosphorylation of extracellular regulated protein kinase (ERK1/2). Melatonin has been reported to exert neuroprotective effects via various mechanisms. Therefore, we further investigate whether melatonin has potential protective effects against TOCP-induced cytotoxicity on NSCs. Our data showed that melatonin pretreatment attenuated TOCP-induced autophagy by suppressing oxidative stress and restoring ERK1/2 phosphorylation consistently. Taken together, the results indicated that TOCP induced the autophagy in mouse NSCs, and melatonin may effectively protect NSCs against TOCP-induced autophagy.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Wenjuan Zhou
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Zhaopei Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jun Ren
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xian Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Shan Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Qian Liu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Fuyong Song
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, China
| | - Aijun Hao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Fuwu Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
4
|
Shen J, Yang D, Zhou X, Wang Y, Tang S, Yin H, Wang J, Chen R, Chen J. Role of Autophagy in Zinc Oxide Nanoparticles-Induced Apoptosis of Mouse LEYDIG Cells. Int J Mol Sci 2019; 20:ijms20164042. [PMID: 31430870 PMCID: PMC6720004 DOI: 10.3390/ijms20164042] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/12/2019] [Accepted: 08/16/2019] [Indexed: 12/19/2022] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) have shown adverse health impact on the human male reproductive system, with evidence of inducing apoptosis. However, whether or not ZnO NPs could promote autophagy, and the possible role of autophagy in the progress of apoptosis, remain unclear. In the current study, in vitro and in vivo toxicological responses of ZnO NPs were explored by using a mouse model and mouse Leydig cell line. It was found that intragastrical exposure of ZnO NPs to mice for 28 days at the concentrations of 100, 200, and 400 mg/kg/day disrupted the seminiferous epithelium of the testis and decreased the sperm density in the epididymis. Furthermore, serum testosterone levels were markedly reduced. The induction of apoptosis and autophagy in the testis tissues was disclosed by up-regulating the protein levels of cleaved Caspase-8, cleaved Caspase-3, Bax, LC3-II, Atg 5, and Beclin 1, accompanied by down-regulation of Bcl 2. In vitro tests showed that ZnO NPs could induce apoptosis and autophagy with the generation of oxidative stress. Specific inhibition of autophagy pathway significantly decreased the cell viability and up-regulated the apoptosis level in mouse Leydig TM3 cells. In summary, ZnO NPs can induce apoptosis and autophagy via oxidative stress, and autophagy might play a protective role in ZnO NPs-induced apoptosis of mouse Leydig cells.
Collapse
Affiliation(s)
- Jingcao Shen
- Department of Physiology, Medical College of Nanchang University, Nanchang 330006, China
| | - Dan Yang
- Department of Physiology, Medical College of Nanchang University, Nanchang 330006, China
| | - Xingfan Zhou
- Key Laboratory of Occupational Health and Safety, Beijing Municipal Institute of Labor Protection, Beijing 100054, China
| | - Yuqian Wang
- Key Laboratory of Occupational Health and Safety, Beijing Municipal Institute of Labor Protection, Beijing 100054, China
| | - Shichuan Tang
- Key Laboratory of Occupational Health and Safety, Beijing Municipal Institute of Labor Protection, Beijing 100054, China
| | - Hong Yin
- School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Bundoora, VIC 3083, Australia
| | - Jinglei Wang
- Department of Physiology, Medical College of Nanchang University, Nanchang 330006, China
| | - Rui Chen
- Key Laboratory of Occupational Health and Safety, Beijing Municipal Institute of Labor Protection, Beijing 100054, China.
| | - Jiaxiang Chen
- Department of Physiology, Medical College of Nanchang University, Nanchang 330006, China.
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang 330006, China.
| |
Collapse
|
5
|
Xu HY, Wang P, Sun YJ, Xu MY, Zhu L, Wu YJ. Activation of Neuregulin 1/ErbB Signaling Is Involved in the Development of TOCP-Induced Delayed Neuropathy. Front Mol Neurosci 2018; 11:129. [PMID: 29740279 PMCID: PMC5925568 DOI: 10.3389/fnmol.2018.00129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/29/2018] [Indexed: 01/03/2023] Open
Abstract
Organophosphate-induced delayed neuropathy (OPIDN) is characterized by progressive axonal degeneration and demyelination of the spinal cord and sciatic nerves. The neuregulin 1/epidermal growth factor receptor (ErbB) signaling pathway is crucial for axonal myelination. In this study, we investigated whether the neuregulin 1/ErbB signaling pathway mediated the progression of OPIDN. Adult hens were given tri-o-cresyl phosphate (TOCP), a typical neuropathic organophosphorus compound, to induce OPIDN. The ErbB inhibitor lapatinib was administered to hens 4 h prior to and 4 days after TOCP exposure. The neuregulin 1/ErbB signaling pathway was examined for their role in maintaining spinal cord and sciatic nerve fiber integrity. Schwann cell line sNF96.2 was used as the in vitro cell model. The in vivo results showed that TOCP (750 mg/kg body weight, p.o.) induced prominent ataxia and significant axon degeneration in the spinal cord and sciatic nerves. Lapatinib (25 mg/kg body weight, p.o.) treatment attenuated OPIDN clinically and histopathlogically and partially prevented the TOCP-induced activation of neuregulin 1/ErbB signaling pathway. Lapatinib also prevented the TOCP-induced inhibition of neuropathy target esterase (NTE), a key enzyme during the development of OPIDN, and the disturbed metabolism of phosphatidylcholine in sciatic nerves. In addition, lapatinib was shown, in vitro, to protect sNF96.2 cells from TOCP-induced dedifferentiation through neuregulin 1/ErbB signaling. Our results suggest that neuregulin 1/ErbB, through regulation of NTE activity in the peripheral nervous system, mediates the progression of OPIDN. Thus, this signal may serve as a potential target for the treatment of OPIDN.
Collapse
Affiliation(s)
- Hai-Yang Xu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pan Wang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ying-Jian Sun
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Department of Veterinary Medicine and Animal Science, Beijing University of Agriculture, Beijing, China
| | - Ming-Yuan Xu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Li Zhu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|