1
|
Ryniejska M, El‐Hachami H, Mrzyglod A, Liu J, Thom M. The prevalence of chronic traumatic encephalopathy in a historical epilepsy post-mortem collection. Brain Pathol 2025; 35:e13317. [PMID: 39528258 PMCID: PMC11961211 DOI: 10.1111/bpa.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Previous post-mortem epilepsy series showed phosphorylated tau (pTau) accumulation in relation to traumatic brain injury (TBI) rather than driven by seizure frequency. The Corsellis Epilepsy Collection, established in the mid-20th century, represents brain samples collected from patients living with a range of epilepsies from the 1880s to 1990s. Our aim was to interrogate this historical archive to explore relationships between epilepsy, trauma and tau pathology. AT8 immunohistochemistry for pTau was carried out in 102 cases (55% male, with mean age at death of 62 years) on frontal, temporal, amygdala, hippocampal and lesional cortical regions and evaluated using current NINDS criteria for chronic traumatic encephalopathy (CTE) and Braak staging with beta-amyloid, AT8-GFAP and other pTau markers (CP13, PHF1, AT100, AT180) in selected cases. CTE-neuropathologic change (CTE-NC) was identified in 15.7% and was associated with the presence of astroglial tau, a younger age of onset of epilepsy, evidence of TBI and institutionalisation for epilepsy compared to cases without CTE-NC, but not for seizure type or frequency. Memory impairment was noted in 43% of cases with CTE-NC, and a significantly younger age of death; more frequent reports of sudden and unexpected death (p <0.05-0.001) were noted in cases with CTE-NC. In contrast, a higher Braak stage was associated with late-onset epilepsy and cognitive decline. Of note, 9% of cases showed no pTau, including cases with long epilepsy duration, poor seizure control and a history of prior TBI. In summary, this cohort includes patients with more severe and diverse forms of epilepsy, with CTE-NC observed more frequently than reported in non-epilepsy community-based studies (0%-8%) but lower than published series from contact sports participants (32%-87%). Although the literature does not report increased epilepsy occurring in CTE syndrome, our findings support an increased risk of CTE in epilepsy syndromes, likely primarily related to increased TBI.
Collapse
Affiliation(s)
- Maritchka Ryniejska
- Department of Clinical and Experimental EpilepsyUniversity College London (UCL) Queen Square Institute of NeurologyLondonUK
| | - Hanaa El‐Hachami
- Department of Clinical and Experimental EpilepsyUniversity College London (UCL) Queen Square Institute of NeurologyLondonUK
| | - Alicja Mrzyglod
- Department of Clinical and Experimental EpilepsyUniversity College London (UCL) Queen Square Institute of NeurologyLondonUK
| | - Joan Liu
- Department of Clinical and Experimental EpilepsyUniversity College London (UCL) Queen Square Institute of NeurologyLondonUK
- School of Life SciencesUniversity of WestminsterLondonUK
| | - Maria Thom
- Department of Clinical and Experimental EpilepsyUniversity College London (UCL) Queen Square Institute of NeurologyLondonUK
| |
Collapse
|
2
|
Danics K, Forrest SL, Kovacs GG. Chronic traumatic encephalopathy neuropathologic change in homeless. Acta Neuropathol 2025; 149:28. [PMID: 40131532 DOI: 10.1007/s00401-025-02867-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025]
Affiliation(s)
- Krisztina Danics
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Shelley L Forrest
- Tanz Centre for Research in Neurodegenerative Disease (CRND), University of Toronto, Krembil Discovery Tower, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Gabor G Kovacs
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary.
- Tanz Centre for Research in Neurodegenerative Disease (CRND), University of Toronto, Krembil Discovery Tower, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada.
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.
- Laboratory Medicine Program & Krembil Brain Institute, University Health Network, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Affleck AJ, Suter CM, Cropley JE, Pearce AJ, Buckland ME. The neuropathology of chronic traumatic encephalopathy. Pathology 2025; 57:248-252. [PMID: 39827066 DOI: 10.1016/j.pathol.2024.12.387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025]
Abstract
Chronic traumatic encephalopathy (CTE) is a progressive tauopathy causally linked to repetitive mild traumatic brain injury. Currently, there are no established clinical diagnostic criteria for CTE, making post-mortem neuropathological examination essential for diagnosis. The pathological hallmark of CTE is the presence of perivascular neuronal p-tau aggregates at cortical sulcal depths. In this commentary, we share our diagnostic experience, highlight emerging diagnostic protocols for CTE, and discuss the challenges in CTE diagnosis and its differentiation from comorbid conditions. Beyond the neuropathological insights, we explore the broader implications of CTE for the community, including the need for prevention strategies and the role of public health policy. By advancing understanding of CTE pathology, neuropathologists are positioned to inform prevention and treatment efforts, ultimately contributing to the mitigation of this preventable disease.
Collapse
Affiliation(s)
- Andrew J Affleck
- Australian Sports Brain Bank, Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; School of Medical Sciences, University of Sydney, NSW, Australia
| | - Catherine M Suter
- Australian Sports Brain Bank, Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; School of Medical Sciences, University of Sydney, NSW, Australia
| | - Jennifer E Cropley
- Australian Sports Brain Bank, Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; School of Medical Sciences, University of Sydney, NSW, Australia
| | - Alan J Pearce
- Australian Sports Brain Bank, Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Swinburne Neuroimaging Facility, School of Health, Swinburne University of Technology, Hawthorn, Vic, Australia
| | - Michael E Buckland
- Australian Sports Brain Bank, Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; School of Medical Sciences, University of Sydney, NSW, Australia.
| |
Collapse
|
4
|
Agrawal S, Yu L, Leurgans SE, Kapasi A, Barnes LL, Bennett DA, Boyle PA, Schneider JA. Grey matter ageing-related tau astrogliopathy: associations with brain pathologies and cognitive decline. Brain 2024; 147:3501-3512. [PMID: 39045644 PMCID: PMC11449137 DOI: 10.1093/brain/awae250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/29/2024] [Accepted: 06/30/2024] [Indexed: 07/25/2024] Open
Abstract
Grey matter ageing-related tau astrogliopathy (ARTAG) pathology is common in aged brains and detected in multiple brain regions. However, the associations of grey matter ARTAG with Alzheimer's disease and other common age-related proteinopathies, in addition to clinical phenotypes, including Alzheimer's dementia and cognitive decline, remain unclear. We examined 442 decedents (mean age at death = 90 years, males = 32%) from three longitudinal community-based clinical-pathological studies. Using AT8 immunohistochemistry, grey matter ARTAG pathology was counted in the superior frontal region, anterior temporal tip and amygdala and summarized as a severity score ranging from zero (none) to six (severe). Alzheimer's disease and other common age-related neuropathologies were also evaluated. The diagnosis of Alzheimer's dementia was based on clinical evaluations; annual tests of cognitive performance were summarized as global cognition and five cognitive domains. Multivariable logistic regression tested the associations of grey matter ARTAG pathology with an array of age-related neuropathologies. To evaluate associations of grey matter ARTAG pathology with Alzheimer's dementia and cognitive decline, we used logistic regression and linear mixed-effect models. Grey matter ARTAG pathology was seen in 324 (73%) participants, of which 303 (68%) participants had ARTAG in the amygdala, 246 (56%) in the anterior temporal tip and 137 (31%) in the superior frontal region. Grey matter ARTAG pathology from each of the three regions was associated with a pathological diagnosis of Alzheimer's disease and limbic-predominant age-related TAR DNA-binding protein 43 encephalopathy-neuropathological change but not with vascular pathology. In fully adjusted models that controlled for demographics, Alzheimer's disease and common age-related pathologies, an increase in severity of grey matter ARTAG pathology in the superior frontal cortex, but not in the amygdala or the anterior temporal tip, was associated with higher odds of Alzheimer's dementia and faster decline in global cognition, episodic memory and semantic memory. These results provide compelling evidence that grey matter ARTAG, specifically in the superior frontal cortex, contributes to Alzheimer's dementia and cognitive decline in old age.
Collapse
Affiliation(s)
- Sonal Agrawal
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lei Yu
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sue E Leurgans
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Alifiya Kapasi
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lisa L Barnes
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Patricia A Boyle
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Julie A Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
5
|
Nelson PT, Fardo DW, Wu X, Aung KZ, Cykowski MD, Katsumata Y. Limbic-predominant age-related TDP-43 encephalopathy (LATE-NC): Co-pathologies and genetic risk factors provide clues about pathogenesis. J Neuropathol Exp Neurol 2024; 83:396-415. [PMID: 38613823 PMCID: PMC11110076 DOI: 10.1093/jnen/nlae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is detectable at autopsy in more than one-third of people beyond age 85 years and is robustly associated with dementia independent of other pathologies. Although LATE-NC has a large impact on public health, there remain uncertainties about the underlying biologic mechanisms. Here, we review the literature from human studies that may shed light on pathogenetic mechanisms. It is increasingly clear that certain combinations of pathologic changes tend to coexist in aging brains. Although "pure" LATE-NC is not rare, LATE-NC often coexists in the same brains with Alzheimer disease neuropathologic change, brain arteriolosclerosis, hippocampal sclerosis of aging, and/or age-related tau astrogliopathy (ARTAG). The patterns of pathologic comorbidities provide circumstantial evidence of mechanistic interactions ("synergies") between the pathologies, and also suggest common upstream influences. As to primary mediators of vulnerability to neuropathologic changes, genetics may play key roles. Genes associated with LATE-NC include TMEM106B, GRN, APOE, SORL1, ABCC9, and others. Although the anatomic distribution of TDP-43 pathology defines the condition, important cofactors for LATE-NC may include Tau pathology, endolysosomal pathways, and blood-brain barrier dysfunction. A review of the human phenomenology offers insights into disease-driving mechanisms, and may provide clues for diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Peter T Nelson
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - David W Fardo
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Xian Wu
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Khine Zin Aung
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Matthew D Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Yuriko Katsumata
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
6
|
Shepherd CE, McCann H, McLean CA, Iverson GL, Gardner AJ. Chronic traumatic encephalopathy neuropathologic change in former Australian rugby players. Neuropathol Appl Neurobiol 2024; 50:e12972. [PMID: 38502287 DOI: 10.1111/nan.12972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
AIMS We applied the 2021 consensus criteria for both chronic traumatic encephalopathy neuropathological change and traumatic encephalopathy syndrome in a small case series of six former elite-level Australian rugby code players. METHODS Neuropathological assessment of these cases was carried out at the Sydney and Victorian Brain Banks. Clinical data were collected via clinical interviews and health questionnaires completed by the participants and/or their next of kin, and neuropsychological testing was conducted with participants who were capable of completing this testing. RESULTS All cases exhibited progressive cognitive impairment during life. Chronic traumatic encephalopathy neuropathological change was identified in four out of the six cases. However, coexisting neuropathologies were common, with limbic-predominant age-related TDP-43 encephalopathy and ageing-related tau astrogliopathy seen in all cases, intermediate or high Alzheimer's disease neuropathological change seen in four cases and hippocampal sclerosis seen in two of the six cases. CONCLUSION The presence of multiple neuropathologies in these cases complicates clinical diagnostic efforts for traumatic encephalopathy syndrome. It will be important for further clinicopathological studies on larger groups to report all neuropathological comorbidities found in cases diagnosed with either chronic traumatic encephalopathy neuropathological change and/or traumatic encephalopathy syndrome.
Collapse
Affiliation(s)
- Claire E Shepherd
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Heather McCann
- Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Catriona A McLean
- Department of Anatomical Pathology, Alfred Health, Melbourne, Victoria, Australia
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Schoen Adams Research Institute at Spaulding Rehabilitation, Charlestown, Massachusetts, USA
- Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Charlestown, Massachusetts, USA
- Mass General for Children Sports Concussion Program, Boston, Massachusetts, USA
| | - Andrew J Gardner
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
7
|
Agrawal S, Leurgans SE, Barnes LL, Dams-O’Connor K, Mez J, Bennett DA, Schneider JA. Chronic traumatic encephalopathy and aging-related tau astrogliopathy in community-dwelling older persons with and without moderate-to-severe traumatic brain injury. J Neuropathol Exp Neurol 2024; 83:181-193. [PMID: 38300796 PMCID: PMC10880068 DOI: 10.1093/jnen/nlae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
This study examined the frequency of chronic traumatic encephalopathy-neuropathologic change (CTE-NC) and aging-related tau astrogliopathy (ARTAG) in community-dwelling older adults and tested the hypothesis that these tau pathologies are associated with a history of moderate-to-severe traumatic brain injury (msTBI), defined as a TBI with loss of consciousness >30 minutes. We evaluated CTE-NC, ARTAG, and Alzheimer disease pathologies in 94 participants with msTBI and 94 participants without TBI matched by age, sex, education, and dementia status TBI from the Rush community-based cohorts. Six (3%) of brains showed the pathognomonic lesion of CTE-NC; only 3 of these had a history of msTBI. In contrast, ARTAG was common in older brains (gray matter ARTAG = 77%; white matter ARTAG = 54%; subpial ARTAG = 51%); there were no differences in severity, type, or distribution of ARTAG pathology with respect to history of msTBI. Furthermore, those with msTBI did not have higher levels of PHF-tau tangles density but had higher levels of amyloid-β load (Estimate = 0.339, SE = 0.164, p = 0.040). These findings suggest that CTE-NC is infrequent while ARTAG is common in the community and that both pathologies are unrelated to msTBI. The association of msTBI with amyloid-β, rather than with tauopathies suggests differential mechanisms of neurodegeneration in msTBI.
Collapse
Affiliation(s)
- Sonal Agrawal
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
| | - Sue E Leurgans
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Lisa L Barnes
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Kristen Dams-O’Connor
- Department of Rehabilitation and Human Performance, Mt Sinai School of Medicine, New York, New York, USA
- Department of Neurology, Mt Sinai School of Medicine, New York, New York, USA
| | - Jesse Mez
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Boston University Chronic Traumatic Encephalopathy Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Julie A Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
8
|
Katsumata Y, Wu X, Aung KZ, Gauthreaux K, Mock C, Forrest SL, Kovacs GG, Nelson PT. Pathologic correlates of aging-related tau astrogliopathy: ARTAG is associated with LATE-NC and cerebrovascular pathologies, but not with ADNC. Neurobiol Dis 2024; 191:106412. [PMID: 38244935 PMCID: PMC10892903 DOI: 10.1016/j.nbd.2024.106412] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024] Open
Abstract
Age-related tau astrogliopathy (ARTAG) is detectable in the brains of over one-third of autopsied persons beyond age 80, but the pathoetiology of ARTAG is poorly understood. Insights can be gained by analyzing risk factors and comorbid pathologies. Here we addressed the question of which prevalent co-pathologies are observed with increased frequency in brains with ARTAG. The study sample was the National Alzheimer's Coordinating Center (NACC) data set, derived from multiple Alzheimer's disease research centers (ADRCs) in the United States. Data from persons with unusual conditions (e.g. frontotemporal dementia) were excluded leaving 504 individual autopsied research participants, clustering from 20 different ADRCs, autopsied since 2020; ARTAG was reported in 222 (44.0%) of included participants. As has been shown previously, ARTAG was increasingly frequent with older age and in males. The presence and severity of other common subtypes of pathology that were previously linked to dementia were analyzed, stratifying for the presence of ARTAG. In logistical regression-based statistical models that included age and sex as covariates, ARTAG was relatively more likely to be found in brains with limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC), and in brains with comorbid cerebrovascular pathology (arteriolosclerosis and/or brain infarcts). However, ARTAG was not associated with severe Alzheimer's disease neuropathologic change (ADNC), or primary age-related tauopathy (PART). In a subset analysis of 167 participants with neurocognitive testing data, there was a marginal trend for ARTAG pathology to be associated with cognitive impairment as assessed with MMSE scores (P = 0.07, adjusting for age, sex, interval between final clinic visit and death, and ADNC severity). A limitation of the study was that there were missing data about ARTAG pathologies, with incomplete operationalization of ARTAG according to anatomic region and pathologic subtypes (e.g., thorn-shaped or granular-fuzzy astrocytes). In summary, ARTAG was not associated with ADNC, whereas prior observations about ARTAG occurring with increased frequency in aging, males, and brains with LATE-NC were replicated. It remains to be determined whether the increased frequency of ARTAG in brains with comorbid cerebrovascular pathology is related to local infarctions or neuroinflammatory signaling, or with some other set of correlated factors including blood-brain barrier dysfunction.
Collapse
Affiliation(s)
- Yuriko Katsumata
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, United States of America; Department of Biostatistics, University of Kentucky, Lexington, KY 40506, United States of America
| | - Xian Wu
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, United States of America; Department of Biostatistics, University of Kentucky, Lexington, KY 40506, United States of America
| | - Khine Zin Aung
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, United States of America; Department of Biostatistics, University of Kentucky, Lexington, KY 40506, United States of America
| | - Kathryn Gauthreaux
- National Alzheimer's Coordinating Center, Department of Epidemiology, University of Washington, Seattle, WA 98105, United States of America
| | - Charles Mock
- National Alzheimer's Coordinating Center, Department of Epidemiology, University of Washington, Seattle, WA 98105, United States of America
| | - Shelley L Forrest
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada; Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, Canada
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada; Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, Canada
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, United States of America; Department of Pathology, Division of Neuropathology, University of Kentucky, Lexington, KY, United States of America.
| |
Collapse
|
9
|
Eagle SR, Grashow R, DiGregorio H, Terry DP, Baggish A, Weisskopf MG, Okonkwo DO, Zafonte R. Interaction of Medical Conditions and Football Exposures Associated with Premortem Chronic Traumatic Encephalopathy Diagnosis in Former Professional American Football Players. Sports Med 2023:10.1007/s40279-023-01942-w. [PMID: 37798551 DOI: 10.1007/s40279-023-01942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Despite being a postmortem diagnosis, former professional American-style football players report receiving chronic traumatic encephalopathy (CTE) diagnoses from medical care providers. However, many players also report other health conditions that manifest with cognitive and psychological symptoms. The purpose of this study was to identify how medical conditions, psychological disorders, and football exposure combinations are associated with former athletes reporting a premortem CTE diagnosis. METHODS This study was a cross-sectional cohort survey from 2015 to 2019 of 4033 former professional American-style football players. Demographics (age, race, domestic status, primary care recipient), football-related factors (position, years of professional play, burden of symptoms following head impacts, performance-enhancing drug use), and comorbidities (sleep apnea, psychological disorder status [depression and anxiety; either depression or anxiety; neither depression nor anxiety], diabetes mellitus, attention-deficit/hyperactivity disorder, hypertension, heart conditions, high cholesterol, stroke, cancer, low testosterone, chronic pain, current and maximum body mass index) were recorded. A Chi-square automatic interaction detection (CHAID) decision tree model identified interactive effects between demographics, health conditions, and football exposures on the CTE diagnosis. RESULTS Depression showed the strongest univariate association with premortem CTE diagnoses (odds ratio [OR] = 9.5, 95% confidence interval [CI] 6.0-15.3). CHAID differentiated participants with premortem CTE diagnoses with 98.2% accuracy and area under the curve = 0.81. Participants reporting both depression and anxiety were more likely to have a CTE diagnosis compared with participants who reported no psychological disorders (OR = 12.2; 95% CI 7.3-21.1) or one psychological disorder (OR = 4.5; 95% CI 1.9-13.0). Sleep apnea was also associated with a CTE diagnosis amongst those with both depression and anxiety (OR = 2.7; 95% CI 1.4-5.2). CONCLUSIONS Clinical phenotypes including psychological disorders and sleep apnea were strongly associated with an increased likelihood of having received a pre-mortem CTE diagnosis in former professional football players. Depression, anxiety, and sleep apnea produce cognitive symptoms, are treatable conditions, and should be distinguished from neurodegenerative disease.
Collapse
Affiliation(s)
- Shawn R Eagle
- University of Pittsburgh, 3550 Terrace St, Pittsburgh, PA, 15261, USA.
| | | | | | | | | | | | - David O Okonkwo
- University of Pittsburgh, 3550 Terrace St, Pittsburgh, PA, 15261, USA
| | | |
Collapse
|
10
|
Iverson GL, Jamshidi P, Fisher-Hubbard AO, Deep-Soboslay A, Hyde TM, Kleinman JE, deJong JL, Shepherd CE, Hazrati LN, Castellani RJ. Chronic traumatic encephalopathy neuropathologic change is uncommon in men who played amateur American football. Front Neurol 2023; 14:1143882. [PMID: 37404944 PMCID: PMC10315537 DOI: 10.3389/fneur.2023.1143882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/02/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction We examined postmortem brain tissue from men, over the age of 50, for chronic traumatic encephalopathy neuropathologic change (CTE-NC). We hypothesized that (i) a small percentage would have CTE-NC, (ii) those who played American football during their youth would be more likely to have CTE-NC than those who did not play contact or collision sports, and (iii) there would be no association between CTE-NC and suicide as a manner of death. Methods Brain tissue from 186 men and accompanying clinical information were obtained from the Lieber Institute for Brain Development. Manner of death was determined by a board-certified forensic pathologist. Information was obtained from next of kin telephone interviews, including medical, social, demographic, family, and psychiatric history. The 2016 and 2021 consensus definitions were used for CTE-NC. Two authors screened all cases, using liberal criteria for identifying "possible" CTE-NC, and five authors examined the 15 selected cases. Results The median age at the time of death was 65 years (interquartile range = 57-75; range = 50-96). There were 25.8% with a history of playing American football and 36.0% who had suicide as their manner of death. No case was rated as definitively having "features" of CTE-NC by all five authors. Ten cases were rated as having features of CTE-NC by three or more authors (5.4% of the sample), including 8.3% of those with a personal history of playing American football and 3.9% of those who did not play contact or collision sports. Of those with mood disorders during life, 5.5% had features of CTE-NC compared to 6.0% of those who did not have a reported mood disorder. Of those with suicide as a manner of death, 6.0% had features of CTE-NC compared to 5.0% of those who did not have suicide as a manner of death. Discussion We did not identify a single definitive case of CTE-NC, from the perspective of all raters, and only 5.4% of cases were identified as having possible features of CTE-NC by some raters. CTE-NC was very uncommon in men who played amateur American football, those with mood disorders during life, and those with suicide as a manner of death.
Collapse
Affiliation(s)
- Grant L. Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, United States
- Department of Physical Medicine and Rehabilitation, Schoen Adams Research Institute at Spaulding Rehabilitation, Charlestown, MA, United States
- MassGeneral Hospital for Children Sports Concussion Program, Boston, MA, United States
- Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Charlestown, MA, United States
| | - Pouya Jamshidi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Amanda O. Fisher-Hubbard
- Department of Pathology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Amy Deep-Soboslay
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Joel E. Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Joyce L. deJong
- Department of Pathology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Claire E. Shepherd
- Neuroscience Research Australia, Randwick, NSW, Australia
- School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - Lili-Naz Hazrati
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Rudolph J. Castellani
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
11
|
Iverson GL, Castellani RJ, Cassidy JD, Schneider GM, Schneider KJ, Echemendia RJ, Bailes JE, Hayden KA, Koerte IK, Manley GT, McNamee M, Patricios JS, Tator CH, Cantu RC, Dvorak J. Examining later-in-life health risks associated with sport-related concussion and repetitive head impacts: a systematic review of case-control and cohort studies. Br J Sports Med 2023; 57:810-821. [PMID: 37316187 DOI: 10.1136/bjsports-2023-106890] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Concern exists about possible problems with later-in-life brain health, such as cognitive impairment, mental health problems and neurological diseases, in former athletes. We examined the future risk for adverse health effects associated with sport-related concussion, or exposure to repetitive head impacts, in former athletes. DESIGN Systematic review. DATA SOURCES Search of MEDLINE, Embase, Cochrane, CINAHL Plus and SPORTDiscus in October 2019 and updated in March 2022. ELIGIBILITY CRITERIA Studies measuring future risk (cohort studies) or approximating that risk (case-control studies). RESULTS Ten studies of former amateur athletes and 18 studies of former professional athletes were included. No postmortem neuropathology studies or neuroimaging studies met criteria for inclusion. Depression was examined in five studies in former amateur athletes, none identifying an increased risk. Nine studies examined suicidality or suicide as a manner of death, and none found an association with increased risk. Some studies comparing professional athletes with the general population reported associations between sports participation and dementia or amyotrophic lateral sclerosis (ALS) as a cause of death. Most did not control for potential confounding factors (eg, genetic, demographic, health-related or environmental), were ecological in design and had high risk of bias. CONCLUSION Evidence does not support an increased risk of mental health or neurological diseases in former amateur athletes with exposure to repetitive head impacts. Some studies in former professional athletes suggest an increased risk of neurological disorders such as ALS and dementia; these findings need to be confirmed in higher quality studies with better control of confounding factors. PROSPERO REGISTRATION NUMBER CRD42022159486.
Collapse
Affiliation(s)
- Grant L Iverson
- Sports Concussion Program, MassGeneral Hospital for Children, Boston, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Schoen Adams Research Institute at Spaulding Rehabilitation, Charlestown, Massachusetts, USA
- Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Rudolph J Castellani
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - J David Cassidy
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Geoff M Schneider
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kathryn J Schneider
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Ruben J Echemendia
- Department of Psychology, University of Missouri-Kansas City, Kansas City, Missouri, USA
- University Orthopedic Centre, Concussion Care Clinic, State College, Pennsylvania, USA
| | - Julian E Bailes
- Department of Neurosurgery, NorthShore University HealthSystem, Evanston, Illinois, USA
- Department of Neurosurgery, University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | - K Alix Hayden
- Libraries and Cultural Resources, University of Calgary, Calgary, Alberta, Canada
| | - Inga K Koerte
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Mass General Brigham, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Geoffrey T Manley
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | - Michael McNamee
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
- School of Sport and Exercise Sciences, Swansea University, Swansea, UK
| | - Jon S Patricios
- Wits Sport and Health (WiSH), School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Charles H Tator
- Department of Surgery and Division of Neurosurgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Canadian Concussion Centre, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Robert C Cantu
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
- Robert C. Cantu Concussion Center, Emerson Hospital, Concord, Massachusetts, USA
| | - Jiri Dvorak
- Schulthess Clinic Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
McKee AC, Stein TD, Huber BR, Crary JF, Bieniek K, Dickson D, Alvarez VE, Cherry JD, Farrell K, Butler M, Uretsky M, Abdolmohammadi B, Alosco ML, Tripodis Y, Mez J, Daneshvar DH. Chronic traumatic encephalopathy (CTE): criteria for neuropathological diagnosis and relationship to repetitive head impacts. Acta Neuropathol 2023; 145:371-394. [PMID: 36759368 PMCID: PMC10020327 DOI: 10.1007/s00401-023-02540-w] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/11/2023]
Abstract
Over the last 17 years, there has been a remarkable increase in scientific research concerning chronic traumatic encephalopathy (CTE). Since the publication of NINDS-NIBIB criteria for the neuropathological diagnosis of CTE in 2016, and diagnostic refinements in 2021, hundreds of contact sport athletes and others have been diagnosed at postmortem examination with CTE. CTE has been reported in amateur and professional athletes, including a bull rider, boxers, wrestlers, and American, Canadian, and Australian rules football, rugby union, rugby league, soccer, and ice hockey players. The pathology of CTE is unique, characterized by a pathognomonic lesion consisting of a perivascular accumulation of neuronal phosphorylated tau (p-tau) variably alongside astrocytic aggregates at the depths of the cortical sulci, and a distinctive molecular structural configuration of p-tau fibrils that is unlike the changes observed with aging, Alzheimer's disease, or any other tauopathy. Computational 3-D and finite element models predict the perivascular and sulcal location of p-tau pathology as these brain regions undergo the greatest mechanical deformation during head impact injury. Presently, CTE can be definitively diagnosed only by postmortem neuropathological examination; the corresponding clinical condition is known as traumatic encephalopathy syndrome (TES). Over 97% of CTE cases published have been reported in individuals with known exposure to repetitive head impacts (RHI), including concussions and nonconcussive impacts, most often experienced through participation in contact sports. While some suggest there is uncertainty whether a causal relationship exists between RHI and CTE, the preponderance of the evidence suggests a high likelihood of a causal relationship, a conclusion that is strengthened by the absence of any evidence for plausible alternative hypotheses. There is a robust dose-response relationship between CTE and years of American football play, a relationship that remains consistent even when rigorously accounting for selection bias. Furthermore, a recent study suggests that selection bias underestimates the observed risk. Here, we present the advances in the neuropathological diagnosis of CTE culminating with the development of the NINDS-NIBIB criteria, the multiple international studies that have used these criteria to report CTE in hundreds of contact sports players and others, and the evidence for a robust dose-response relationship between RHI and CTE.
Collapse
Affiliation(s)
- Ann C McKee
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA.
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA.
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA.
- VA Bedford Healthcare System, Bedford, MA, USA.
| | - Thor D Stein
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Bertrand R Huber
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - John F Crary
- Departments of Pathology, Neuroscience, and Artificial Intelligence and Human Health, Neuropathology Brain Bank and Research Core, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kevin Bieniek
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Dennis Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Victor E Alvarez
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Jonathan D Cherry
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Kurt Farrell
- Departments of Pathology, Neuroscience, and Artificial Intelligence and Human Health, Neuropathology Brain Bank and Research Core, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Morgane Butler
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
| | - Madeline Uretsky
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
| | - Bobak Abdolmohammadi
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Daniel H Daneshvar
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
| |
Collapse
|
13
|
Ramsay D, Miller A, Baykeens B, Hassan H, Gentleman S. Football (Soccer) as a Probable Cause of Long-Term Neurological Impairment and Neurodegeneration: A Narrative Review of the Debate. Cureus 2023; 15:e34279. [PMID: 36855480 PMCID: PMC9968489 DOI: 10.7759/cureus.34279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2023] [Indexed: 01/28/2023] Open
Abstract
Football (soccer) is the most widely played sport across the globe. Due to some recent high-profile cases and epidemiological studies suggesting football can lead to neurodegeneration, scientific and public interest has been piqued. This has resulted in research into whether an association between football participation and neurodegeneration or neurological impairment is present. It has been theorised that a combination of repeated sub-concussive and concussive injuries, due to ball-heading and head collisions, may lead to neurodegeneration. However, evidence remains conflicting. Due to the popularity of the sport, and the serious conditions it has been linked to, it is important to determine whether repeated head impacts during football participation can play a causative role in neurodegenerative disease. To answer this question, a review of the current literature was carried out. Epidemiological evidence showed a higher incidence of amyotrophic lateral sclerosis amongst amateur and professional footballers and that footballers in positions that involve less contact and heading, e.g., goalkeepers lead significantly longer lives. Additionally, imaging studies reach a similar conclusion, reporting changes in brain structure, blood flow, and inflammatory markers in footballers when compared to controls. However, studies looking at an association between heading frequency and cognition show a lack of consensus on whether a higher heading exposure results in reduced cognition. Similarly, in neuropathological studies, signs of chronic traumatic encephalopathy (CTE) have been found in some former players, with contrasting studies suggesting low levels of CTE-type pathology are found in the general population, regardless of exposure to head trauma. The majority of studies suggest a link between football and neurodegenerative disease. However, the high prevalence of retrospective cohort and cross-sectional studies, often plagued by recall bias, undermine the conclusions drawn. Therefore, until larger prospective cohort studies are conducted, concrete conclusions cannot be made. However, caution can be exercised to limit head impacts.
Collapse
Affiliation(s)
- Daniele Ramsay
- School of Medicine, Imperial College London, London, GBR
| | - Alice Miller
- School of Medicine, Imperial College London, London, GBR
| | - Bibire Baykeens
- School of Medicine, Imperial College London, London, GBR
- School of Medicine, Peninsula School of Medicine, Plymouth, GBR
| | - Hamaas Hassan
- School of Medicine, Imperial College London, London, GBR
| | | |
Collapse
|
14
|
Butler MLMD, Dixon E, Stein TD, Alvarez VE, Huber B, Buckland ME, McKee AC, Cherry JD. Tau Pathology in Chronic Traumatic Encephalopathy is Primarily Neuronal. J Neuropathol Exp Neurol 2022; 81:773-780. [PMID: 35903039 PMCID: PMC9487650 DOI: 10.1093/jnen/nlac065] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Millions of individuals are exposed to repetitive head impacts (RHI) each year through contact sports, military blast, and interpersonal violence. RHI is the major risk factor for developing chronic traumatic encephalopathy (CTE), a neurodegenerative tauopathy. Recent consensus criteria defined the pathognomonic lesion in CTE as perivascular, hyperphosphorylated tau (p-tau) in neuronal aggregates. Astroglial p-tau is an inconsistent supporting feature and not in itself diagnostic of CTE. This study quantitated the spatial and cellular distribution of p-tau pathology in postmortem dorsolateral frontal cortex of 150 individuals with CTE, from ages 21 to 80 years old, without comorbid pathology. p-Tau-immunoreactive cells were quantitated in the gray matter sulcus, crest, subpial region, and within pathognomonic CTE lesions. Significantly more neuronal p-tau than astrocytic p-tau was found across all cortical regions (p < 0.0001). Sulcal astrocytic p-tau was primarily (75%, p < 0.0001) localized to subpial regions as thorn-shaped astrocytes, a form of age-related tau astrogliopathy. Neuronal p-tau was significantly associated with age, years of RHI exposure, and CTE severity; astrocytic p-tau pathology was only significantly associated with age. These findings strongly support neuronal degeneration as a driving feature of CTE and will help inform future research and the development of fluid biomarkers for the detection of neuronal degeneration in CTE.
Collapse
Affiliation(s)
- Morgane L M D Butler
- From the Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
- VA Boston Healthcare System, Jamaica Plain, Massachusetts, USA
- Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Erin Dixon
- VA Boston Healthcare System, Jamaica Plain, Massachusetts, USA
- Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Thor D Stein
- VA Boston Healthcare System, Jamaica Plain, Massachusetts, USA
- Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Victor E Alvarez
- VA Boston Healthcare System, Jamaica Plain, Massachusetts, USA
- Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts, USA
- National Center for PTSD, VA Boston Healthcare System, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
| | - Bertrand Huber
- VA Boston Healthcare System, Jamaica Plain, Massachusetts, USA
- Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts, USA
- National Center for PTSD, VA Boston Healthcare System, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
| | - Michael E Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Ann C McKee
- From the Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
- VA Boston Healthcare System, Jamaica Plain, Massachusetts, USA
- Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts, USA
- National Center for PTSD, VA Boston Healthcare System, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jonathan D Cherry
- VA Boston Healthcare System, Jamaica Plain, Massachusetts, USA
- Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Nowinski CJ, Bureau SC, Buckland ME, Curtis MA, Daneshvar DH, Faull RLM, Grinberg LT, Hill-Yardin EL, Murray HC, Pearce AJ, Suter CM, White AJ, Finkel AM, Cantu RC. Applying the Bradford Hill Criteria for Causation to Repetitive Head Impacts and Chronic Traumatic Encephalopathy. Front Neurol 2022; 13:938163. [PMID: 35937061 PMCID: PMC9355594 DOI: 10.3389/fneur.2022.938163] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with a history of repetitive head impacts (RHI). CTE was described in boxers as early as the 1920s and by the 1950s it was widely accepted that hits to the head caused some boxers to become "punch drunk." However, the recent discovery of CTE in American and Australian-rules football, soccer, rugby, ice hockey, and other sports has resulted in renewed debate on whether the relationship between RHI and CTE is causal. Identifying the strength of the evidential relationship between CTE and RHI has implications for public health and medico-legal issues. From a public health perspective, environmentally caused diseases can be mitigated or prevented. Medico-legally, millions of children are exposed to RHI through sports participation; this demographic is too young to legally consent to any potential long-term risks associated with this exposure. To better understand the strength of evidence underlying the possible causal relationship between RHI and CTE, we examined the medical literature through the Bradford Hill criteria for causation. The Bradford Hill criteria, first proposed in 1965 by Sir Austin Bradford Hill, provide a framework to determine if one can justifiably move from an observed association to a verdict of causation. The Bradford Hill criteria include nine viewpoints by which to evaluate human epidemiologic evidence to determine if causation can be deduced: strength, consistency, specificity, temporality, biological gradient, plausibility, coherence, experiment, and analogy. We explored the question of causation by evaluating studies on CTE as it relates to RHI exposure. Through this lens, we found convincing evidence of a causal relationship between RHI and CTE, as well as an absence of evidence-based alternative explanations. By organizing the CTE literature through this framework, we hope to advance the global conversation on CTE mitigation efforts.
Collapse
Affiliation(s)
- Christopher J. Nowinski
- Concussion Legacy Foundation, Boston, MA, United States,*Correspondence: Christopher J. Nowinski
| | | | - Michael E. Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia,School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Maurice A. Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Daniel H. Daneshvar
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States,Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, MA, United States,Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Richard L. M. Faull
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Lea T. Grinberg
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States,Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States,Department of Pathology, University of Sao Paulo Medical School, São Paulo, Brazil,Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
| | - Elisa L. Hill-Yardin
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC, Australia,Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Helen C. Murray
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Alan J. Pearce
- College of Science, Health, and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Catherine M. Suter
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia,School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Adam J. White
- Department of Sport, Health Science, and Social Work, Oxford Brookes University, Oxford, United Kingdom,Concussion Legacy Foundation UK, Cheltenham, United Kingdom
| | - Adam M. Finkel
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Robert C. Cantu
- Concussion Legacy Foundation, Boston, MA, United States,Department of Neurology, Boston University School of Medicine, Boston, MA, United States,Department of Neurosurgery, Emerson Hospital, Concord, MA, United States
| |
Collapse
|
16
|
Maxwell SP, Cash MK, Darvesh S. Neuropathology and cholinesterase expression in the brains of octogenarians and older. Chem Biol Interact 2022; 364:110065. [PMID: 35872043 DOI: 10.1016/j.cbi.2022.110065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
A subset of octogenarians and older maintain normal cognitive function (CNOO) despite high prevalence and incidence of cognitive decline attributed to neurodegeneration or aging in the population. The rostral prefrontal cortex (rPFC) and hippocampal formation are brain regions integral to cognition, namely attention and memory, facilitated in part by cholinergic innervation. We hypothesized that preserved cholinergic neurotransmission in these regions contributes to intact cognition in the CNOO. To test this, we evaluated the burden of neuropathological and cholinesterase-associated protein aggregates in the rPFC and hippocampal formation. Tissues from age- and sex-matched CNOO and Alzheimer's disease (AD) rPFC and hippocampal formation were stained for β-amyloid (Aβ), tau, α-synuclein, phosphorylated TAR DNA-binding protein 43 (pTDP-43), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE). The relative abundance of neuropathological aggregates was semi-quantitatively scored. Deposition of Aβ plaques, tau neurofibrillary tangles (NFT) and pTDP-43 inclusions were comparable between CNOO and AD cases. Intraneuronal Aβ and tau-positive thorny astrocytes consistent with aging-related tau astrogliopathy, were also noted in the rPFC. Abundance of BChE-positive plaque pathology was significantly higher in AD than in CNOO cases in most regions of interest, followed closely by abundance of AChE-positive plaque pathology. BChE- and AChE-activities were also associated with varied NFT morphologies. CNOO cases maintained cognition despite a high neuropathological burden in the rPFC and hippocampal formation. BChE-positive and, to a lesser extent, AChE-positive pathologies were significantly lower in most regions in the CNOO compared to AD. This suggests a specificity of cholinesterase-associated neuropathology with AD. We conclude that while CNOO have cholinesterase-associated neuropathology in the rPFC and hippocampal formation, abundance in this population is significantly lower compared to AD which may contribute to their intact cognition.
Collapse
Affiliation(s)
- Selena P Maxwell
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Meghan K Cash
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sultan Darvesh
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Medicine (Neurology & Geriatric Medicine), Dalhousie University, Halifax, Nova Scotia, Canada; Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
17
|
Olfati N, Shoeibi A, Litvan I. Clinical Spectrum of Tauopathies. Front Neurol 2022; 13:944806. [PMID: 35911892 PMCID: PMC9329580 DOI: 10.3389/fneur.2022.944806] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/20/2022] [Indexed: 11/20/2022] Open
Abstract
Tauopathies are both clinical and pathological heterogeneous disorders characterized by neuronal and/or glial accumulation of misfolded tau protein. It is now well understood that every pathologic tauopathy may present with various clinical phenotypes based on the primary site of involvement and the spread and distribution of the pathology in the nervous system making clinicopathological correlation more and more challenging. The clinical spectrum of tauopathies includes syndromes with a strong association with an underlying primary tauopathy, including Richardson syndrome (RS), corticobasal syndrome (CBS), non-fluent agrammatic primary progressive aphasia (nfaPPA)/apraxia of speech, pure akinesia with gait freezing (PAGF), and behavioral variant frontotemporal dementia (bvFTD), or weak association with an underlying primary tauopathy, including Parkinsonian syndrome, late-onset cerebellar ataxia, primary lateral sclerosis, semantic variant PPA (svPPA), and amnestic syndrome. Here, we discuss clinical syndromes associated with various primary tauopathies and their distinguishing clinical features and new biomarkers becoming available to improve in vivo diagnosis. Although the typical phenotypic clinical presentations lead us to suspect specific underlying pathologies, it is still challenging to differentiate pathology accurately based on clinical findings due to large phenotypic overlaps. Larger pathology-confirmed studies to validate the use of different biomarkers and prospective longitudinal cohorts evaluating detailed clinical, biofluid, and imaging protocols in subjects presenting with heterogenous phenotypes reflecting a variety of suspected underlying pathologies are fundamental for a better understanding of the clinicopathological correlations.
Collapse
Affiliation(s)
- Nahid Olfati
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- UC San Diego Department of Neurosciences, Parkinson and Other Movement Disorder Center, San Diego, CA, United States
| | - Ali Shoeibi
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Irene Litvan
- UC San Diego Department of Neurosciences, Parkinson and Other Movement Disorder Center, San Diego, CA, United States
| |
Collapse
|
18
|
McCann H, Bahar AY, Burkhardt K, Gardner AJ, Halliday GM, Iverson GL, Shepherd CE. Prevalence of chronic traumatic encephalopathy in the Sydney Brain Bank. Brain Commun 2022; 4:fcac189. [PMID: 35950093 PMCID: PMC9356727 DOI: 10.1093/braincomms/fcac189] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/15/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Chronic traumatic encephalopathy neuropathologic change can only be definitively diagnosed post-mortem. It has been associated with repetitive mild neurotrauma sustained in amateur and professional contact, collision and combat sports, although it has also been documented in people with a single severe traumatic brain injury and in some people with no known history of brain injury. The characteristic neuropathology is an accumulation of perivascular neuronal and astrocytic phosphorylated tau in the depths of the cortical sulci. The tau-immunopositive neurons and astrocytes that are considered pathognomonic for chronic traumatic encephalopathy are morphologically indistinguishable from Alzheimer-related neurofibrillary tangles and ageing-related tau astrogliopathy, respectively, although they are found in different spatial distributions throughout the cortex. The Sydney Brain Bank collection consists of neurodegenerative diseases and neurologically normal controls. We screened 636 of these cases for chronic traumatic encephalopathy neuropathologic change. A subset of 109 cases had a known history of traumatic brain injury. Three cortical regions were screened for the presence of neuronal and astrocytic phosphorylated tau according to the current 2021 National Institute on Neurological Disorders and Stroke/National Institute of Biomedical Imaging and Bioengineering consensus criteria for chronic traumatic encephalopathy. Five cases (0.79%) showed pathological evidence of chronic traumatic encephalopathy and three of these had a history of traumatic brain injury. Three cases had coexisting Alzheimer’s and/or Lewy body disease pathology meeting criteria for neurodegenerative disease. Another eight cases almost met criteria for chronic traumatic encephalopathy neuropathological change except for an absence of neuronal tau or a strict perivascular arrangement. Ageing-related tau astrogliopathy was found in all eight cases as a coexisting neuropathology. Traumatic brain injury was associated with increased odds ratio [1.79, confidence interval 1.18–2.72] of having a higher neurofibrillary tangle stage and phosphorylated TAR DNA binding protein 43 (OR 2.48, confidence interval 1.35–4.54). Our study shows a very low rate of chronic traumatic encephalopathy neuropathological change in brains with or without neurodegenerative disease from the Sydney Brain Bank. Our evidence suggests that isolated traumatic brain injury in the general population is unlikely to cause chronic traumatic encephalopathy neuropathologic change but may be associated with increased brain ageing.
Collapse
Affiliation(s)
- Heather McCann
- Neuroscience Research Australia , Randwick, NSW 2031 , Australia
| | - Anita Y Bahar
- Neuroscience Research Australia , Randwick, NSW 2031 , Australia
| | - Karim Burkhardt
- School of Medical Sciences, University of New South Wales , Kensington, NSW 2052 , Australia
| | - Andrew J Gardner
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle , Callaghan, NSW 2308 , Australia
| | - Glenda M Halliday
- Neuroscience Research Australia , Randwick, NSW 2031 , Australia
- Faculty of Medicine and Health School of Medical Sciences, University of Sydney Brain and Mind Centre , Camperdown, NSW 2050 , Australia
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School , Boston, MA 02114 , USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital , Charlestown, MA 02114 , USA
- Home Base, A Red Sox Foundation and Massachusetts General Hospital Program , Charlestown, MA 02114 , USA
- MassGeneral Hospital for Children Sports Concussion Program , Boston, MA 02114 , USA
| | - Claire E Shepherd
- Neuroscience Research Australia , Randwick, NSW 2031 , Australia
- School of Medical Sciences, University of New South Wales , Kensington, NSW 2052 , Australia
| |
Collapse
|
19
|
Forrest SL, Wagner S, Kim A, Kovacs GG. Association of glial tau pathology and LATE-NC in the ageing brain. Neurobiol Aging 2022; 119:77-88. [DOI: 10.1016/j.neurobiolaging.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022]
|
20
|
Buckland ME, Affleck AJ, Pearce AJ, Suter CM. Chronic Traumatic Encephalopathy as a Preventable Environmental Disease. Front Neurol 2022; 13:880905. [PMID: 35769361 PMCID: PMC9234108 DOI: 10.3389/fneur.2022.880905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
In this Perspective we explore the evolution of our understanding of chronic traumatic encephalopathy (CTE) and its relationship with repetitive head injury. As with many neurodegenerative conditions, there is an imperfect correspondence between neuropathology and clinical phenotype, but unlike other neurodegenerative diseases, CTE has a discrete and easily modifiable risk factor: exposure to repetitive head injury. Consequently, evaluation of the evidence regarding exposure to repetitive head injury and CTE risk should be undertaken using public or occupational health frameworks of medical knowledge. The current debate over the existence of CTE as a disease of concern is fuelled in part by immediate medico-legal considerations, and the involvement of high-profile athletes, with inevitable media interest. Moving beyond this debate has significant potential to address and reduce disease impact in the near future, and provide novel insights into mechanisms underlying abnormal protein accumulation in CTE and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Michael E. Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
- *Correspondence: Michael E. Buckland
| | - Andrew J. Affleck
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Alan J. Pearce
- College of Science, Health and Engineering, La Trobe University, Bundoora, VIC, Australia
| | - Catherine M. Suter
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
21
|
Priemer DS, Iacono D, Rhodes CH, Olsen CH, Perl DP. Chronic Traumatic Encephalopathy in the Brains of Military Personnel. N Engl J Med 2022; 386:2169-2177. [PMID: 35675177 DOI: 10.1056/nejmoa2203199] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Persistent neuropsychiatric sequelae may develop in military personnel who are exposed to combat; such sequelae have been attributed in some cases to chronic traumatic encephalopathy (CTE). Only limited data regarding CTE in the brains of military service members are available. METHODS We performed neuropathological examinations for the presence of CTE in 225 consecutive brains from a brain bank dedicated to the study of deceased service members. In addition, we reviewed information obtained retrospectively regarding the decedents' histories of blast exposure, contact sports, other types of traumatic brain injury (TBI), and neuropsychiatric disorders. RESULTS Neuropathological findings of CTE were present in 10 of the 225 brains (4.4%) we examined; half the CTE cases had only a single pathognomonic lesion. Of the 45 brains from decedents who had a history of blast exposure, 3 had CTE, as compared with 7 of 180 brains from those without a history of blast exposure (relative risk, 1.71; 95% confidence interval [CI], 0.46 to 6.37); 3 of 21 brains from decedents with TBI from an injury during military service caused by the head striking a physical object without associated blast exposure (military impact TBI) had CTE, as compared with 7 of 204 without this exposure (relative risk, 4.16; 95% CI, 1.16 to 14.91). All brains with CTE were from decedents who had participated in contact sports; 10 of 60 contact-sports participants had CTE, as compared with 0 of 165 who had not participated in contact sports (point estimate of relative risk not computable; 95% CI, 6.16 to infinity). CTE was present in 8 of 44 brains from decedents with non-sports-related TBI in civilian life, as compared with 2 of 181 brains from those without such exposure in civilian life (relative risk, 16.45; 95% CI, 3.62 to 74.79). CONCLUSIONS Evidence of CTE was infrequently found in a series of brains from military personnel and was usually reflected by minimal neuropathologic changes. Risk ratios for CTE were numerically higher among decedents who had contact-sports exposure and other exposures to TBI in civilian life than among those who had blast exposure or other military TBI, but the small number of CTE cases and wide confidence intervals preclude causal conclusions. (Funded by the Department of Defense-Uniformed Services University Brain Tissue Repository and Neuropathology Program and the Henry M. Jackson Foundation for the Advancement of Military Medicine.).
Collapse
Affiliation(s)
- David S Priemer
- From the Department of Defense-Uniformed Services University Brain Tissue Repository (D.S.P., D.I., C.H.R., D.P.P.), the Departments of Neurology (D.I.), Pathology (D.S.P., D.I., D.P.P.), and Preventative Medicine and Biostatistics (C.H.O.), and the Neuroscience Graduate Program, Department of Anatomy, Physiology, and Genetics (D.I.), F. Edward Hébert School of Medicine, Uniformed Services University, and the Henry M. Jackson Foundation for the Advancement of Military Medicine (D.S.P., D.I., C.H.R.) - both in Bethesda, MD
| | - Diego Iacono
- From the Department of Defense-Uniformed Services University Brain Tissue Repository (D.S.P., D.I., C.H.R., D.P.P.), the Departments of Neurology (D.I.), Pathology (D.S.P., D.I., D.P.P.), and Preventative Medicine and Biostatistics (C.H.O.), and the Neuroscience Graduate Program, Department of Anatomy, Physiology, and Genetics (D.I.), F. Edward Hébert School of Medicine, Uniformed Services University, and the Henry M. Jackson Foundation for the Advancement of Military Medicine (D.S.P., D.I., C.H.R.) - both in Bethesda, MD
| | - C Harker Rhodes
- From the Department of Defense-Uniformed Services University Brain Tissue Repository (D.S.P., D.I., C.H.R., D.P.P.), the Departments of Neurology (D.I.), Pathology (D.S.P., D.I., D.P.P.), and Preventative Medicine and Biostatistics (C.H.O.), and the Neuroscience Graduate Program, Department of Anatomy, Physiology, and Genetics (D.I.), F. Edward Hébert School of Medicine, Uniformed Services University, and the Henry M. Jackson Foundation for the Advancement of Military Medicine (D.S.P., D.I., C.H.R.) - both in Bethesda, MD
| | - Cara H Olsen
- From the Department of Defense-Uniformed Services University Brain Tissue Repository (D.S.P., D.I., C.H.R., D.P.P.), the Departments of Neurology (D.I.), Pathology (D.S.P., D.I., D.P.P.), and Preventative Medicine and Biostatistics (C.H.O.), and the Neuroscience Graduate Program, Department of Anatomy, Physiology, and Genetics (D.I.), F. Edward Hébert School of Medicine, Uniformed Services University, and the Henry M. Jackson Foundation for the Advancement of Military Medicine (D.S.P., D.I., C.H.R.) - both in Bethesda, MD
| | - Daniel P Perl
- From the Department of Defense-Uniformed Services University Brain Tissue Repository (D.S.P., D.I., C.H.R., D.P.P.), the Departments of Neurology (D.I.), Pathology (D.S.P., D.I., D.P.P.), and Preventative Medicine and Biostatistics (C.H.O.), and the Neuroscience Graduate Program, Department of Anatomy, Physiology, and Genetics (D.I.), F. Edward Hébert School of Medicine, Uniformed Services University, and the Henry M. Jackson Foundation for the Advancement of Military Medicine (D.S.P., D.I., C.H.R.) - both in Bethesda, MD
| |
Collapse
|
22
|
Ameen-Ali KE, Bretzin A, Lee EB, Folkerth R, Hazrati LN, Iacono D, Keene CD, Kofler J, Kovacs GG, Nolan A, Perl DP, Priemer DS, Smith DH, Wiebe DJ, Stewart W. Detection of astrocytic tau pathology facilitates recognition of chronic traumatic encephalopathy neuropathologic change. Acta Neuropathol Commun 2022; 10:50. [PMID: 35410438 PMCID: PMC8996534 DOI: 10.1186/s40478-022-01353-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 02/08/2023] Open
Abstract
Traumatic brain injury (TBI) is associated with the development of a range of neurodegenerative pathologies, including chronic traumatic encephalopathy (CTE). Current consensus diagnostic criteria define the pathognomonic cortical lesion of CTE neuropathologic change (CTE-NC) as a patchy deposition of hyperphosphorylated tau in neurons, with or without glial tau in thorn-shaped astrocytes, typically towards the depths of sulci and clustered around small blood vessels. Nevertheless, although incorporated into consensus diagnostic criteria, the contribution of the individual cellular components to identification of CTE-NC has not been formally evaluated. To address this, from the Glasgow TBI Archive, cortical tissue blocks were selected from consecutive brain donations from contact sports athletes in which there was known to be either CTE-NC (n = 12) or Alzheimer's disease neuropathologic change (n = 4). From these tissue blocks, adjacent tissue sections were stained for tau antibodies selected to reveal either solely neuronal pathology (3R tau; GT-38) or mixed neuronal and astroglial pathologies (4R tau; PHF-1). These stained sections were then randomised and independently assessed by a panel of expert neuropathologists, blind to patient clinical history and primary antibody applied to each section, who were asked to record whether CTE-NC was present. Results demonstrate that, in sections stained for either 4R tau or PHF-1, consensus recognition of CTE-NC was high. In contrast, recognition of CTE-NC in sections stained for 3R tau or GT-38 was poor; in the former no better than chance. Our observations demonstrate that the presence of both neuronal and astroglial tau pathologies facilitates detection of CTE-NC, with its detection less consistent when neuronal tau pathology alone is visible. The combination of both glial and neuronal pathologies, therefore, may be required for detection of CTE-NC.
Collapse
Affiliation(s)
- Kamar E Ameen-Ali
- Institute of Neuroscience and Psychology, University of Glasgow, Queen Elizabeth University Hospital, Glasgow, UK
| | - Abigail Bretzin
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca Folkerth
- Office of Chief Medical Examiner, New York, NY, USA
- Department of Forensic Medicine, New York University School of Medicine, New York, NY, USA
| | - Lili-Naz Hazrati
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Pathology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Diego Iacono
- Department of Defense/Uniformed Services, University Brain Tissue Repository and Neuropathology Program, Uniformed Services University, Bethesda, MD, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
- Neurodegeneration Disorders Clinic, National Institute of Neurological Disorders and Stroke, NINDS, NIH, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Julia Kofler
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease (CRND) and Department of Laboratory Medicine and Pathobiology, Krembil Discovery Tower, University of Toronto, 60 Leonard Ave, Toronto, ON, Canada
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Amber Nolan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Daniel P Perl
- Department of Defense/Uniformed Services, University Brain Tissue Repository and Neuropathology Program, Uniformed Services University, Bethesda, MD, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - David S Priemer
- Department of Defense/Uniformed Services, University Brain Tissue Repository and Neuropathology Program, Uniformed Services University, Bethesda, MD, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Douglas H Smith
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas J Wiebe
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William Stewart
- Institute of Neuroscience and Psychology, University of Glasgow, Queen Elizabeth University Hospital, Glasgow, UK.
- Department of Neuropathology, Laboratory Medicine Building, Elizabeth University Hospital, Glasgow, Queen, UK.
| |
Collapse
|
23
|
Abstract
Neurodegenerative diseases are a pathologically, clinically and genetically diverse group of disorders without effective disease-modifying therapies. Pathologically, these disorders are characterised by disease-specific protein aggregates in neurons and/or glia and referred to as proteinopathies. Many neurodegenerative diseases show pathological overlap with the same abnormally deposited protein occurring in anatomically distinct regions, which give rise to specific patterns of cognitive and motor clinical phenotypes. Sequential distribution patterns of protein inclusions throughout the brain have been described. Rather than occurring in isolation, it is increasingly recognised that combinations of one or more proteinopathies with or without cerebrovascular disease frequently occur in individuals with neurodegenerative diseases. In addition, complex constellations of ageing-related and incidental pathologies associated with tau, TDP-43, Aβ, α-synuclein deposition have been commonly reported in longitudinal ageing studies. This review provides an overview of current classification of neurodegenerative and age-related pathologies and presents the spectrum and complexity of mixed pathologies in community-based, longitudinal ageing studies, in major proteinopathies, and genetic conditions. Mixed pathologies are commonly reported in individuals >65 years with and without cognitive impairment; however, they are increasingly recognised in younger individuals (<65 years). Mixed pathologies are thought to lower the threshold for developing cognitive impairment and dementia. Hereditary neurodegenerative diseases also show a diverse range of mixed pathologies beyond the proteinopathy primarily linked to the genetic abnormality. Cases with mixed pathologies might show a different clinical course, which has prognostic relevance and obvious implications for biomarker and therapy development, and stratifying patients for clinical trials.
Collapse
|
24
|
Neal J, Hutchings PB, Phelps C, Williams D. Football and Dementia: Understanding the Link. Front Psychiatry 2022; 13:849876. [PMID: 35693952 PMCID: PMC9184440 DOI: 10.3389/fpsyt.2022.849876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/19/2022] [Indexed: 11/18/2022] Open
Abstract
Football, also known as soccer or association football, is popular but has a potential link with dementia developing in retired players. The FA and soccer regulators in the USA have imposed guidelines limiting players exposure to heading, despite controversy whether this dementia is caused by heading the ball, a form of mild repetitive head injury (RHI), over many years. Substantial data exist showing that many ex-North American Football players develop a specific neurodegenerative disease: chronic traumatic encephalopathy (CTE), the neuropathological disorder of boxers. In the United Kingdom evidence for the neuropathological basis of footballers' dementia has been slow to emerge. A 2017 study revealed that in six ex-soccer players four had CTE with Alzheimer's disease (AD) and two had AD. A 2019 study showed that ex-footballers were 3.5 times more likely to die from dementia or other neuro-degenerative diseases than matched controls. We argue that in childhood and adolescence the brain is vulnerable to heading, predicated on its disproportionate size and developmental immaturity. RHI in young individuals is associated with early neuroinflammation, a potential trigger for promoting neurodegeneration in later life. Evidence is available to support the guidelines limiting heading for players of all ages, while professional and non-players should be included in prospective studies to investigate the link between soccer and dementia.
Collapse
Affiliation(s)
- James Neal
- Institute of Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Paul B Hutchings
- Centre for Psychology and Counselling, Institute of Education and Humanities, University of Wales Trinity Saint David, Swansea, United Kingdom
| | - Ceri Phelps
- Centre for Psychology and Counselling, Institute of Education and Humanities, University of Wales Trinity Saint David, Swansea, United Kingdom
| | | |
Collapse
|
25
|
Symons GF, Clough M, Fielding J, O'Brien WT, Shepherd CE, Wright DK, Shultz SR. The Neurological Consequences of Engaging in Australian Collision Sports. J Neurotrauma 2021; 37:792-809. [PMID: 32056505 DOI: 10.1089/neu.2019.6884] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Collision sports are an integral part of Australian culture. The most common collision sports in Australia are Australian rules football, rugby union, and rugby league. Each of these sports often results in participants sustaining mild brain traumas, such as concussive and subconcussive injuries. However, the majority of previous studies and reviews pertaining to the neurological implications of sustaining mild brain traumas, while engaging in collision sports, have focused on those popular in North America and Europe. As part of this 2020 International Neurotrauma Symposium special issue, which highlights Australian neurotrauma research, this article will therefore review the burden of mild brain traumas in Australian collision sports athletes. Specifically, this review will first provide an overview of the consequences of mild brain trauma in Australian collision sports, followed by a summary of the previous studies that have investigated neurocognition, ocular motor function, neuroimaging, and fluid biomarkers, as well as neuropathological outcomes in Australian collision sports athletes. A review of the literature indicates that although Australians have contributed to the field, several knowledge gaps and limitations currently exist. These include important questions related to sex differences, the identification and implementation of blood and imaging biomarkers, the need for consistent study designs and common data elements, as well as more multi-modal studies. We conclude that although Australia has had an active history of investigating the neurological impact of collision sports participation, further research is clearly needed to better understand these consequences in Australian athletes and how they can be mitigated.
Collapse
Affiliation(s)
- Georgia F Symons
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Meaghan Clough
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Joanne Fielding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - William T O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Claire E Shepherd
- Neuroscience Research Australia, The University of New South Wales, Sydney, New South Wales, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
26
|
McCann H, Durand B, Shepherd CE. Aging-Related Tau Astrogliopathy in Aging and Neurodegeneration. Brain Sci 2021; 11:brainsci11070927. [PMID: 34356161 PMCID: PMC8306417 DOI: 10.3390/brainsci11070927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Astrocytes are of vital importance to neuronal function and the health of the central nervous system (CNS), and astrocytic dysfunction as a primary or secondary event may predispose to neurodegeneration. Until recently, the main astrocytic tauopathies were the frontotemporal lobar degeneration with tau (FTLD-tau) group of disorders; however, aging-related tau astrogliopathy (ARTAG) has now been defined. This condition is a self-describing neuropathology mainly found in individuals over 60 years of age. Astrocytic tau accumulates with a thorny or granular/fuzzy morphology and is commonly found in normal aging as well as coexisting with diverse neurodegenerative disorders. However, there are still many unknown factors associated with ARTAG, including the cause/s, the progression, and the nature of any clinical associations. In addition to FTLD-tau, ARTAG has recently been associated with chronic traumatic encephalopathy (CTE), where it has been proposed as a potential precursor to these conditions, with the different ARTAG morphological subtypes perhaps having separate etiologies. This is an emerging area of exciting research that encompasses complex neurobiological and clinicopathological investigation.
Collapse
Affiliation(s)
- Heather McCann
- Neuroscience Research Australia, Barker Street, Sydney, NSW 2031, Australia; (H.M.); (B.D.)
| | - Briony Durand
- Neuroscience Research Australia, Barker Street, Sydney, NSW 2031, Australia; (H.M.); (B.D.)
| | - Claire E. Shepherd
- Neuroscience Research Australia, Barker Street, Sydney, NSW 2031, Australia; (H.M.); (B.D.)
- Department of Pathology, The University of New South Wales, Kensington, Sydney, NSW 2031, Australia
- Correspondence:
| |
Collapse
|
27
|
Danics K, Forrest SL, Kapas I, Erber I, Schmid S, Törő K, Majtenyi K, Kovacs GG. Neurodegenerative proteinopathies associated with neuroinfections. J Neural Transm (Vienna) 2021; 128:1551-1566. [PMID: 34223998 PMCID: PMC8255726 DOI: 10.1007/s00702-021-02371-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 06/20/2021] [Indexed: 01/23/2023]
Abstract
Infectious agents, including viruses and bacteria, are proposed to be involved in the pathogenesis of Alzheimer’s disease (AD). According to this hypothesis, these agents have capacity to evade the host immune system leading to chronic infection, inflammation, and subsequent deposition of Aβ and phosphorylated-tau in the brain. Co-existing proteinopathies and age-related pathologies are common in AD and the brains of elderly individuals, but whether these are also related to neuroinfections remain to be established. This study determined the prevalence and distribution of neurodegenerative proteinopathies in patients with infection-induced acute or chronic inflammation associated with herpes simplex virus (HSV) encephalitis (n = 13) and neurosyphilis (n = 23). The mean age at death in HSV patients was 53 ± 12 years (range 24–65 years) and survival was 9 days–6 years following initial infection. The mean age at death and survival in neurosyphilis patients was 60 ± 15 years (range 36–86 years) and 1–5 years, respectively. Neuronal tau-immunoreactivity and neurites were observed in 8 HSV patients and 19 neurosyphilis patients, and in approximately half of these, this was found in regions associated with inflammation and expanding beyond regions expected from the Braak stage of neurofibrillary degeneration. Five neurosyphilis patients had cortical ageing-related tau astrogliopathy. Aβ-plaques were found in 4 HSV patients and 11 neurosyphilis patients. Lewy bodies were observed in one HSV patient and two neurosyphilis patients. TDP-43 pathology was absent. These observations provide insights into deposition of neurodegenerative proteins in neuroinfections, which might have implications for COVID-19 patients with chronic and/or post-infectious neurological symptoms and encephalitis.
Collapse
Affiliation(s)
- Krisztina Danics
- Department of Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary.,Neuropathology and Prion Disease Reference Center, Department of Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Shelley L Forrest
- Dementia Research Centre, School of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.,Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Istvan Kapas
- Department of Neurology, St. Janos Hospital, Budapest, Hungary
| | - Irene Erber
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Susanne Schmid
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Klára Törő
- Department of Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Katalin Majtenyi
- Neuropathology and Prion Disease Reference Center, Department of Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease and Department of Laboratory Medicine and Pathobiology, University of Toronto, Krembil Discovery Tower, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada. .,Laboratory Medicine Program & Krembil Brain Institute, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
28
|
Katz DI, Bernick C, Dodick DW, Mez J, Mariani ML, Adler CH, Alosco ML, Balcer LJ, Banks SJ, Barr WB, Brody DL, Cantu RC, Dams-O'Connor K, Geda YE, Jordan BD, McAllister TW, Peskind ER, Petersen RC, Wethe JV, Zafonte RD, Foley ÉM, Babcock DJ, Koroshetz WJ, Tripodis Y, McKee AC, Shenton ME, Cummings JL, Reiman EM, Stern RA. National Institute of Neurological Disorders and Stroke Consensus Diagnostic Criteria for Traumatic Encephalopathy Syndrome. Neurology 2021; 96:848-863. [PMID: 33722990 PMCID: PMC8166432 DOI: 10.1212/wnl.0000000000011850] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To develop evidence-informed, expert consensus research diagnostic criteria for traumatic encephalopathy syndrome (TES), the clinical disorder associated with neuropathologically diagnosed chronic traumatic encephalopathy (CTE). METHODS A panel of 20 expert clinician-scientists in neurology, neuropsychology, psychiatry, neurosurgery, and physical medicine and rehabilitation, from 11 academic institutions, participated in a modified Delphi procedure to achieve consensus, initiated at the First National Institute of Neurological Disorders and Stroke Consensus Workshop to Define the Diagnostic Criteria for TES, April, 2019. Before consensus, panelists reviewed evidence from all published cases of CTE with neuropathologic confirmation, and they examined the predictive validity data on clinical features in relation to CTE pathology from a large clinicopathologic study (n = 298). RESULTS Consensus was achieved in 4 rounds of the Delphi procedure. Diagnosis of TES requires (1) substantial exposure to repetitive head impacts (RHIs) from contact sports, military service, or other causes; (2) core clinical features of cognitive impairment (in episodic memory and/or executive functioning) and/or neurobehavioral dysregulation; (3) a progressive course; and (4) that the clinical features are not fully accounted for by any other neurologic, psychiatric, or medical conditions. For those meeting criteria for TES, functional dependence is graded on 5 levels, ranging from independent to severe dementia. A provisional level of certainty for CTE pathology is determined based on specific RHI exposure thresholds, core clinical features, functional status, and additional supportive features, including delayed onset, motor signs, and psychiatric features. CONCLUSIONS New consensus diagnostic criteria for TES were developed with a primary goal of facilitating future CTE research. These criteria will be revised as updated clinical and pathologic information and in vivo biomarkers become available.
Collapse
Affiliation(s)
- Douglas I. Katz
- From the Boston University CTE Center (D.I.K.), Department of Neurology, Boston University School of Medicine, Boston; Brain Injury Program (D.I.K.), Encompass Health Braintree Rehabilitation Hospital, Braintree, MA; University of Washington Memory & Brain Wellness Clinic (C.B.), Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology (D.W.D., C.H.A.), Mayo Clinic, Scottsdale, AZ; Boston University CTE Center (J.M., M.L.A.), Boston University Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine; Boston University CTE Center (M.L.M.), Boston University School of Medicine, MA; Departments of Neurology (L.J.B.), Ophthalmology, and Population Health, New York University Grossman School of Medicine; Departments of Neurosciences and Psychiatry University of California San Diego (S.J.B.), La Jolla; Departments of Neurology and Psychiatry (W.B.B.), New York University Grossman School of Medicine; Center for Neuroscience and Regenerative Medicine (D.L.B.), Uniformed Services University of the Health Sciences, Department of Neurology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Boston University CTE Center (R.C.C.), Boston University Alzheimer's Disease Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, MA; Departments of Rehabilitation Medicine and Neurology (K.D.-O.C.), Icahn School of Medicine, Mount Sinai, New York; Department of Neurology (Y.E.G.), Barrow Neurological Institute, Phoenix, AZ; Rancho Los Amigos National Rehabilitation Center (B.D.J.), Downey, CA; Department of Neurology (B.D.J.), Keck School of Medicine of USC. Los Angeles, CA; Departments of Psychiatry and Neurology (T.W.M.), Indiana University School of Medicine, Indianapolis; Veterans Affairs Northwest Mental Illness (E.R.P.), Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Mayo Clinic Alzheimer's Disease Research Center (R.C.P.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.V.W.), Mayo Clinic, Scottsdale, AZ; Department of Physical Medicine and Rehabilitation (R.D.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston; Faculty of Psychology and Neuroscience (É.M.F.), Maastricht University, the Netherlands, Department of Psychiatry, University of Cambridge, United Kingdom; National Institute of Neurological Disorders and Stroke (D.J.B.), National Institutes of Health; National Institute of Neurological Disorders and Stroke (W.J.K.), Bethesda, MD; Boston University CTE Center (Y.T.), Boston University Alzheimer's Disease Center, Boston University School of Medicine, Department of Biostatistics, Boston University School of Public Health; Boston University CTE Center (A.C.M.), Boston University Alzheimer's Disease Center, Departments of Neurology and Pathology & Laboratory Medicine, Boston University School of Medicine; VA Boston Healthcare System (A.C.M.), US Department of Veteran Affairs, MA; Psychiatry Neuroimaging Laboratory (M.E.S.), Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, University of Nevada School of Integrated Health Sciences; Cleveland Clinic Lou Ruvo Center for Brain Health (J.L.C.), Las Vegas, NV; Banner Alzheimer's Institute (E.M.R.), Arizona State University; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix, AZ; and Boston University CTE Center (R.A.S.), Boston University Alzheimer's Disease Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, MA
| | - Charles Bernick
- From the Boston University CTE Center (D.I.K.), Department of Neurology, Boston University School of Medicine, Boston; Brain Injury Program (D.I.K.), Encompass Health Braintree Rehabilitation Hospital, Braintree, MA; University of Washington Memory & Brain Wellness Clinic (C.B.), Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology (D.W.D., C.H.A.), Mayo Clinic, Scottsdale, AZ; Boston University CTE Center (J.M., M.L.A.), Boston University Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine; Boston University CTE Center (M.L.M.), Boston University School of Medicine, MA; Departments of Neurology (L.J.B.), Ophthalmology, and Population Health, New York University Grossman School of Medicine; Departments of Neurosciences and Psychiatry University of California San Diego (S.J.B.), La Jolla; Departments of Neurology and Psychiatry (W.B.B.), New York University Grossman School of Medicine; Center for Neuroscience and Regenerative Medicine (D.L.B.), Uniformed Services University of the Health Sciences, Department of Neurology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Boston University CTE Center (R.C.C.), Boston University Alzheimer's Disease Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, MA; Departments of Rehabilitation Medicine and Neurology (K.D.-O.C.), Icahn School of Medicine, Mount Sinai, New York; Department of Neurology (Y.E.G.), Barrow Neurological Institute, Phoenix, AZ; Rancho Los Amigos National Rehabilitation Center (B.D.J.), Downey, CA; Department of Neurology (B.D.J.), Keck School of Medicine of USC. Los Angeles, CA; Departments of Psychiatry and Neurology (T.W.M.), Indiana University School of Medicine, Indianapolis; Veterans Affairs Northwest Mental Illness (E.R.P.), Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Mayo Clinic Alzheimer's Disease Research Center (R.C.P.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.V.W.), Mayo Clinic, Scottsdale, AZ; Department of Physical Medicine and Rehabilitation (R.D.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston; Faculty of Psychology and Neuroscience (É.M.F.), Maastricht University, the Netherlands, Department of Psychiatry, University of Cambridge, United Kingdom; National Institute of Neurological Disorders and Stroke (D.J.B.), National Institutes of Health; National Institute of Neurological Disorders and Stroke (W.J.K.), Bethesda, MD; Boston University CTE Center (Y.T.), Boston University Alzheimer's Disease Center, Boston University School of Medicine, Department of Biostatistics, Boston University School of Public Health; Boston University CTE Center (A.C.M.), Boston University Alzheimer's Disease Center, Departments of Neurology and Pathology & Laboratory Medicine, Boston University School of Medicine; VA Boston Healthcare System (A.C.M.), US Department of Veteran Affairs, MA; Psychiatry Neuroimaging Laboratory (M.E.S.), Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, University of Nevada School of Integrated Health Sciences; Cleveland Clinic Lou Ruvo Center for Brain Health (J.L.C.), Las Vegas, NV; Banner Alzheimer's Institute (E.M.R.), Arizona State University; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix, AZ; and Boston University CTE Center (R.A.S.), Boston University Alzheimer's Disease Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, MA
| | - David W. Dodick
- From the Boston University CTE Center (D.I.K.), Department of Neurology, Boston University School of Medicine, Boston; Brain Injury Program (D.I.K.), Encompass Health Braintree Rehabilitation Hospital, Braintree, MA; University of Washington Memory & Brain Wellness Clinic (C.B.), Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology (D.W.D., C.H.A.), Mayo Clinic, Scottsdale, AZ; Boston University CTE Center (J.M., M.L.A.), Boston University Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine; Boston University CTE Center (M.L.M.), Boston University School of Medicine, MA; Departments of Neurology (L.J.B.), Ophthalmology, and Population Health, New York University Grossman School of Medicine; Departments of Neurosciences and Psychiatry University of California San Diego (S.J.B.), La Jolla; Departments of Neurology and Psychiatry (W.B.B.), New York University Grossman School of Medicine; Center for Neuroscience and Regenerative Medicine (D.L.B.), Uniformed Services University of the Health Sciences, Department of Neurology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Boston University CTE Center (R.C.C.), Boston University Alzheimer's Disease Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, MA; Departments of Rehabilitation Medicine and Neurology (K.D.-O.C.), Icahn School of Medicine, Mount Sinai, New York; Department of Neurology (Y.E.G.), Barrow Neurological Institute, Phoenix, AZ; Rancho Los Amigos National Rehabilitation Center (B.D.J.), Downey, CA; Department of Neurology (B.D.J.), Keck School of Medicine of USC. Los Angeles, CA; Departments of Psychiatry and Neurology (T.W.M.), Indiana University School of Medicine, Indianapolis; Veterans Affairs Northwest Mental Illness (E.R.P.), Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Mayo Clinic Alzheimer's Disease Research Center (R.C.P.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.V.W.), Mayo Clinic, Scottsdale, AZ; Department of Physical Medicine and Rehabilitation (R.D.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston; Faculty of Psychology and Neuroscience (É.M.F.), Maastricht University, the Netherlands, Department of Psychiatry, University of Cambridge, United Kingdom; National Institute of Neurological Disorders and Stroke (D.J.B.), National Institutes of Health; National Institute of Neurological Disorders and Stroke (W.J.K.), Bethesda, MD; Boston University CTE Center (Y.T.), Boston University Alzheimer's Disease Center, Boston University School of Medicine, Department of Biostatistics, Boston University School of Public Health; Boston University CTE Center (A.C.M.), Boston University Alzheimer's Disease Center, Departments of Neurology and Pathology & Laboratory Medicine, Boston University School of Medicine; VA Boston Healthcare System (A.C.M.), US Department of Veteran Affairs, MA; Psychiatry Neuroimaging Laboratory (M.E.S.), Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, University of Nevada School of Integrated Health Sciences; Cleveland Clinic Lou Ruvo Center for Brain Health (J.L.C.), Las Vegas, NV; Banner Alzheimer's Institute (E.M.R.), Arizona State University; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix, AZ; and Boston University CTE Center (R.A.S.), Boston University Alzheimer's Disease Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, MA
| | - Jesse Mez
- From the Boston University CTE Center (D.I.K.), Department of Neurology, Boston University School of Medicine, Boston; Brain Injury Program (D.I.K.), Encompass Health Braintree Rehabilitation Hospital, Braintree, MA; University of Washington Memory & Brain Wellness Clinic (C.B.), Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology (D.W.D., C.H.A.), Mayo Clinic, Scottsdale, AZ; Boston University CTE Center (J.M., M.L.A.), Boston University Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine; Boston University CTE Center (M.L.M.), Boston University School of Medicine, MA; Departments of Neurology (L.J.B.), Ophthalmology, and Population Health, New York University Grossman School of Medicine; Departments of Neurosciences and Psychiatry University of California San Diego (S.J.B.), La Jolla; Departments of Neurology and Psychiatry (W.B.B.), New York University Grossman School of Medicine; Center for Neuroscience and Regenerative Medicine (D.L.B.), Uniformed Services University of the Health Sciences, Department of Neurology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Boston University CTE Center (R.C.C.), Boston University Alzheimer's Disease Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, MA; Departments of Rehabilitation Medicine and Neurology (K.D.-O.C.), Icahn School of Medicine, Mount Sinai, New York; Department of Neurology (Y.E.G.), Barrow Neurological Institute, Phoenix, AZ; Rancho Los Amigos National Rehabilitation Center (B.D.J.), Downey, CA; Department of Neurology (B.D.J.), Keck School of Medicine of USC. Los Angeles, CA; Departments of Psychiatry and Neurology (T.W.M.), Indiana University School of Medicine, Indianapolis; Veterans Affairs Northwest Mental Illness (E.R.P.), Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Mayo Clinic Alzheimer's Disease Research Center (R.C.P.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.V.W.), Mayo Clinic, Scottsdale, AZ; Department of Physical Medicine and Rehabilitation (R.D.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston; Faculty of Psychology and Neuroscience (É.M.F.), Maastricht University, the Netherlands, Department of Psychiatry, University of Cambridge, United Kingdom; National Institute of Neurological Disorders and Stroke (D.J.B.), National Institutes of Health; National Institute of Neurological Disorders and Stroke (W.J.K.), Bethesda, MD; Boston University CTE Center (Y.T.), Boston University Alzheimer's Disease Center, Boston University School of Medicine, Department of Biostatistics, Boston University School of Public Health; Boston University CTE Center (A.C.M.), Boston University Alzheimer's Disease Center, Departments of Neurology and Pathology & Laboratory Medicine, Boston University School of Medicine; VA Boston Healthcare System (A.C.M.), US Department of Veteran Affairs, MA; Psychiatry Neuroimaging Laboratory (M.E.S.), Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, University of Nevada School of Integrated Health Sciences; Cleveland Clinic Lou Ruvo Center for Brain Health (J.L.C.), Las Vegas, NV; Banner Alzheimer's Institute (E.M.R.), Arizona State University; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix, AZ; and Boston University CTE Center (R.A.S.), Boston University Alzheimer's Disease Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, MA
| | - Megan L. Mariani
- From the Boston University CTE Center (D.I.K.), Department of Neurology, Boston University School of Medicine, Boston; Brain Injury Program (D.I.K.), Encompass Health Braintree Rehabilitation Hospital, Braintree, MA; University of Washington Memory & Brain Wellness Clinic (C.B.), Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology (D.W.D., C.H.A.), Mayo Clinic, Scottsdale, AZ; Boston University CTE Center (J.M., M.L.A.), Boston University Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine; Boston University CTE Center (M.L.M.), Boston University School of Medicine, MA; Departments of Neurology (L.J.B.), Ophthalmology, and Population Health, New York University Grossman School of Medicine; Departments of Neurosciences and Psychiatry University of California San Diego (S.J.B.), La Jolla; Departments of Neurology and Psychiatry (W.B.B.), New York University Grossman School of Medicine; Center for Neuroscience and Regenerative Medicine (D.L.B.), Uniformed Services University of the Health Sciences, Department of Neurology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Boston University CTE Center (R.C.C.), Boston University Alzheimer's Disease Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, MA; Departments of Rehabilitation Medicine and Neurology (K.D.-O.C.), Icahn School of Medicine, Mount Sinai, New York; Department of Neurology (Y.E.G.), Barrow Neurological Institute, Phoenix, AZ; Rancho Los Amigos National Rehabilitation Center (B.D.J.), Downey, CA; Department of Neurology (B.D.J.), Keck School of Medicine of USC. Los Angeles, CA; Departments of Psychiatry and Neurology (T.W.M.), Indiana University School of Medicine, Indianapolis; Veterans Affairs Northwest Mental Illness (E.R.P.), Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Mayo Clinic Alzheimer's Disease Research Center (R.C.P.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.V.W.), Mayo Clinic, Scottsdale, AZ; Department of Physical Medicine and Rehabilitation (R.D.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston; Faculty of Psychology and Neuroscience (É.M.F.), Maastricht University, the Netherlands, Department of Psychiatry, University of Cambridge, United Kingdom; National Institute of Neurological Disorders and Stroke (D.J.B.), National Institutes of Health; National Institute of Neurological Disorders and Stroke (W.J.K.), Bethesda, MD; Boston University CTE Center (Y.T.), Boston University Alzheimer's Disease Center, Boston University School of Medicine, Department of Biostatistics, Boston University School of Public Health; Boston University CTE Center (A.C.M.), Boston University Alzheimer's Disease Center, Departments of Neurology and Pathology & Laboratory Medicine, Boston University School of Medicine; VA Boston Healthcare System (A.C.M.), US Department of Veteran Affairs, MA; Psychiatry Neuroimaging Laboratory (M.E.S.), Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, University of Nevada School of Integrated Health Sciences; Cleveland Clinic Lou Ruvo Center for Brain Health (J.L.C.), Las Vegas, NV; Banner Alzheimer's Institute (E.M.R.), Arizona State University; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix, AZ; and Boston University CTE Center (R.A.S.), Boston University Alzheimer's Disease Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, MA
| | - Charles H. Adler
- From the Boston University CTE Center (D.I.K.), Department of Neurology, Boston University School of Medicine, Boston; Brain Injury Program (D.I.K.), Encompass Health Braintree Rehabilitation Hospital, Braintree, MA; University of Washington Memory & Brain Wellness Clinic (C.B.), Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology (D.W.D., C.H.A.), Mayo Clinic, Scottsdale, AZ; Boston University CTE Center (J.M., M.L.A.), Boston University Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine; Boston University CTE Center (M.L.M.), Boston University School of Medicine, MA; Departments of Neurology (L.J.B.), Ophthalmology, and Population Health, New York University Grossman School of Medicine; Departments of Neurosciences and Psychiatry University of California San Diego (S.J.B.), La Jolla; Departments of Neurology and Psychiatry (W.B.B.), New York University Grossman School of Medicine; Center for Neuroscience and Regenerative Medicine (D.L.B.), Uniformed Services University of the Health Sciences, Department of Neurology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Boston University CTE Center (R.C.C.), Boston University Alzheimer's Disease Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, MA; Departments of Rehabilitation Medicine and Neurology (K.D.-O.C.), Icahn School of Medicine, Mount Sinai, New York; Department of Neurology (Y.E.G.), Barrow Neurological Institute, Phoenix, AZ; Rancho Los Amigos National Rehabilitation Center (B.D.J.), Downey, CA; Department of Neurology (B.D.J.), Keck School of Medicine of USC. Los Angeles, CA; Departments of Psychiatry and Neurology (T.W.M.), Indiana University School of Medicine, Indianapolis; Veterans Affairs Northwest Mental Illness (E.R.P.), Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Mayo Clinic Alzheimer's Disease Research Center (R.C.P.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.V.W.), Mayo Clinic, Scottsdale, AZ; Department of Physical Medicine and Rehabilitation (R.D.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston; Faculty of Psychology and Neuroscience (É.M.F.), Maastricht University, the Netherlands, Department of Psychiatry, University of Cambridge, United Kingdom; National Institute of Neurological Disorders and Stroke (D.J.B.), National Institutes of Health; National Institute of Neurological Disorders and Stroke (W.J.K.), Bethesda, MD; Boston University CTE Center (Y.T.), Boston University Alzheimer's Disease Center, Boston University School of Medicine, Department of Biostatistics, Boston University School of Public Health; Boston University CTE Center (A.C.M.), Boston University Alzheimer's Disease Center, Departments of Neurology and Pathology & Laboratory Medicine, Boston University School of Medicine; VA Boston Healthcare System (A.C.M.), US Department of Veteran Affairs, MA; Psychiatry Neuroimaging Laboratory (M.E.S.), Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, University of Nevada School of Integrated Health Sciences; Cleveland Clinic Lou Ruvo Center for Brain Health (J.L.C.), Las Vegas, NV; Banner Alzheimer's Institute (E.M.R.), Arizona State University; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix, AZ; and Boston University CTE Center (R.A.S.), Boston University Alzheimer's Disease Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, MA
| | - Michael L. Alosco
- From the Boston University CTE Center (D.I.K.), Department of Neurology, Boston University School of Medicine, Boston; Brain Injury Program (D.I.K.), Encompass Health Braintree Rehabilitation Hospital, Braintree, MA; University of Washington Memory & Brain Wellness Clinic (C.B.), Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology (D.W.D., C.H.A.), Mayo Clinic, Scottsdale, AZ; Boston University CTE Center (J.M., M.L.A.), Boston University Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine; Boston University CTE Center (M.L.M.), Boston University School of Medicine, MA; Departments of Neurology (L.J.B.), Ophthalmology, and Population Health, New York University Grossman School of Medicine; Departments of Neurosciences and Psychiatry University of California San Diego (S.J.B.), La Jolla; Departments of Neurology and Psychiatry (W.B.B.), New York University Grossman School of Medicine; Center for Neuroscience and Regenerative Medicine (D.L.B.), Uniformed Services University of the Health Sciences, Department of Neurology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Boston University CTE Center (R.C.C.), Boston University Alzheimer's Disease Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, MA; Departments of Rehabilitation Medicine and Neurology (K.D.-O.C.), Icahn School of Medicine, Mount Sinai, New York; Department of Neurology (Y.E.G.), Barrow Neurological Institute, Phoenix, AZ; Rancho Los Amigos National Rehabilitation Center (B.D.J.), Downey, CA; Department of Neurology (B.D.J.), Keck School of Medicine of USC. Los Angeles, CA; Departments of Psychiatry and Neurology (T.W.M.), Indiana University School of Medicine, Indianapolis; Veterans Affairs Northwest Mental Illness (E.R.P.), Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Mayo Clinic Alzheimer's Disease Research Center (R.C.P.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.V.W.), Mayo Clinic, Scottsdale, AZ; Department of Physical Medicine and Rehabilitation (R.D.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston; Faculty of Psychology and Neuroscience (É.M.F.), Maastricht University, the Netherlands, Department of Psychiatry, University of Cambridge, United Kingdom; National Institute of Neurological Disorders and Stroke (D.J.B.), National Institutes of Health; National Institute of Neurological Disorders and Stroke (W.J.K.), Bethesda, MD; Boston University CTE Center (Y.T.), Boston University Alzheimer's Disease Center, Boston University School of Medicine, Department of Biostatistics, Boston University School of Public Health; Boston University CTE Center (A.C.M.), Boston University Alzheimer's Disease Center, Departments of Neurology and Pathology & Laboratory Medicine, Boston University School of Medicine; VA Boston Healthcare System (A.C.M.), US Department of Veteran Affairs, MA; Psychiatry Neuroimaging Laboratory (M.E.S.), Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, University of Nevada School of Integrated Health Sciences; Cleveland Clinic Lou Ruvo Center for Brain Health (J.L.C.), Las Vegas, NV; Banner Alzheimer's Institute (E.M.R.), Arizona State University; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix, AZ; and Boston University CTE Center (R.A.S.), Boston University Alzheimer's Disease Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, MA
| | - Laura J. Balcer
- From the Boston University CTE Center (D.I.K.), Department of Neurology, Boston University School of Medicine, Boston; Brain Injury Program (D.I.K.), Encompass Health Braintree Rehabilitation Hospital, Braintree, MA; University of Washington Memory & Brain Wellness Clinic (C.B.), Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology (D.W.D., C.H.A.), Mayo Clinic, Scottsdale, AZ; Boston University CTE Center (J.M., M.L.A.), Boston University Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine; Boston University CTE Center (M.L.M.), Boston University School of Medicine, MA; Departments of Neurology (L.J.B.), Ophthalmology, and Population Health, New York University Grossman School of Medicine; Departments of Neurosciences and Psychiatry University of California San Diego (S.J.B.), La Jolla; Departments of Neurology and Psychiatry (W.B.B.), New York University Grossman School of Medicine; Center for Neuroscience and Regenerative Medicine (D.L.B.), Uniformed Services University of the Health Sciences, Department of Neurology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Boston University CTE Center (R.C.C.), Boston University Alzheimer's Disease Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, MA; Departments of Rehabilitation Medicine and Neurology (K.D.-O.C.), Icahn School of Medicine, Mount Sinai, New York; Department of Neurology (Y.E.G.), Barrow Neurological Institute, Phoenix, AZ; Rancho Los Amigos National Rehabilitation Center (B.D.J.), Downey, CA; Department of Neurology (B.D.J.), Keck School of Medicine of USC. Los Angeles, CA; Departments of Psychiatry and Neurology (T.W.M.), Indiana University School of Medicine, Indianapolis; Veterans Affairs Northwest Mental Illness (E.R.P.), Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Mayo Clinic Alzheimer's Disease Research Center (R.C.P.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.V.W.), Mayo Clinic, Scottsdale, AZ; Department of Physical Medicine and Rehabilitation (R.D.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston; Faculty of Psychology and Neuroscience (É.M.F.), Maastricht University, the Netherlands, Department of Psychiatry, University of Cambridge, United Kingdom; National Institute of Neurological Disorders and Stroke (D.J.B.), National Institutes of Health; National Institute of Neurological Disorders and Stroke (W.J.K.), Bethesda, MD; Boston University CTE Center (Y.T.), Boston University Alzheimer's Disease Center, Boston University School of Medicine, Department of Biostatistics, Boston University School of Public Health; Boston University CTE Center (A.C.M.), Boston University Alzheimer's Disease Center, Departments of Neurology and Pathology & Laboratory Medicine, Boston University School of Medicine; VA Boston Healthcare System (A.C.M.), US Department of Veteran Affairs, MA; Psychiatry Neuroimaging Laboratory (M.E.S.), Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, University of Nevada School of Integrated Health Sciences; Cleveland Clinic Lou Ruvo Center for Brain Health (J.L.C.), Las Vegas, NV; Banner Alzheimer's Institute (E.M.R.), Arizona State University; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix, AZ; and Boston University CTE Center (R.A.S.), Boston University Alzheimer's Disease Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, MA
| | - Sarah J. Banks
- From the Boston University CTE Center (D.I.K.), Department of Neurology, Boston University School of Medicine, Boston; Brain Injury Program (D.I.K.), Encompass Health Braintree Rehabilitation Hospital, Braintree, MA; University of Washington Memory & Brain Wellness Clinic (C.B.), Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology (D.W.D., C.H.A.), Mayo Clinic, Scottsdale, AZ; Boston University CTE Center (J.M., M.L.A.), Boston University Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine; Boston University CTE Center (M.L.M.), Boston University School of Medicine, MA; Departments of Neurology (L.J.B.), Ophthalmology, and Population Health, New York University Grossman School of Medicine; Departments of Neurosciences and Psychiatry University of California San Diego (S.J.B.), La Jolla; Departments of Neurology and Psychiatry (W.B.B.), New York University Grossman School of Medicine; Center for Neuroscience and Regenerative Medicine (D.L.B.), Uniformed Services University of the Health Sciences, Department of Neurology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Boston University CTE Center (R.C.C.), Boston University Alzheimer's Disease Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, MA; Departments of Rehabilitation Medicine and Neurology (K.D.-O.C.), Icahn School of Medicine, Mount Sinai, New York; Department of Neurology (Y.E.G.), Barrow Neurological Institute, Phoenix, AZ; Rancho Los Amigos National Rehabilitation Center (B.D.J.), Downey, CA; Department of Neurology (B.D.J.), Keck School of Medicine of USC. Los Angeles, CA; Departments of Psychiatry and Neurology (T.W.M.), Indiana University School of Medicine, Indianapolis; Veterans Affairs Northwest Mental Illness (E.R.P.), Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Mayo Clinic Alzheimer's Disease Research Center (R.C.P.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.V.W.), Mayo Clinic, Scottsdale, AZ; Department of Physical Medicine and Rehabilitation (R.D.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston; Faculty of Psychology and Neuroscience (É.M.F.), Maastricht University, the Netherlands, Department of Psychiatry, University of Cambridge, United Kingdom; National Institute of Neurological Disorders and Stroke (D.J.B.), National Institutes of Health; National Institute of Neurological Disorders and Stroke (W.J.K.), Bethesda, MD; Boston University CTE Center (Y.T.), Boston University Alzheimer's Disease Center, Boston University School of Medicine, Department of Biostatistics, Boston University School of Public Health; Boston University CTE Center (A.C.M.), Boston University Alzheimer's Disease Center, Departments of Neurology and Pathology & Laboratory Medicine, Boston University School of Medicine; VA Boston Healthcare System (A.C.M.), US Department of Veteran Affairs, MA; Psychiatry Neuroimaging Laboratory (M.E.S.), Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, University of Nevada School of Integrated Health Sciences; Cleveland Clinic Lou Ruvo Center for Brain Health (J.L.C.), Las Vegas, NV; Banner Alzheimer's Institute (E.M.R.), Arizona State University; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix, AZ; and Boston University CTE Center (R.A.S.), Boston University Alzheimer's Disease Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, MA
| | - William B. Barr
- From the Boston University CTE Center (D.I.K.), Department of Neurology, Boston University School of Medicine, Boston; Brain Injury Program (D.I.K.), Encompass Health Braintree Rehabilitation Hospital, Braintree, MA; University of Washington Memory & Brain Wellness Clinic (C.B.), Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology (D.W.D., C.H.A.), Mayo Clinic, Scottsdale, AZ; Boston University CTE Center (J.M., M.L.A.), Boston University Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine; Boston University CTE Center (M.L.M.), Boston University School of Medicine, MA; Departments of Neurology (L.J.B.), Ophthalmology, and Population Health, New York University Grossman School of Medicine; Departments of Neurosciences and Psychiatry University of California San Diego (S.J.B.), La Jolla; Departments of Neurology and Psychiatry (W.B.B.), New York University Grossman School of Medicine; Center for Neuroscience and Regenerative Medicine (D.L.B.), Uniformed Services University of the Health Sciences, Department of Neurology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Boston University CTE Center (R.C.C.), Boston University Alzheimer's Disease Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, MA; Departments of Rehabilitation Medicine and Neurology (K.D.-O.C.), Icahn School of Medicine, Mount Sinai, New York; Department of Neurology (Y.E.G.), Barrow Neurological Institute, Phoenix, AZ; Rancho Los Amigos National Rehabilitation Center (B.D.J.), Downey, CA; Department of Neurology (B.D.J.), Keck School of Medicine of USC. Los Angeles, CA; Departments of Psychiatry and Neurology (T.W.M.), Indiana University School of Medicine, Indianapolis; Veterans Affairs Northwest Mental Illness (E.R.P.), Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Mayo Clinic Alzheimer's Disease Research Center (R.C.P.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.V.W.), Mayo Clinic, Scottsdale, AZ; Department of Physical Medicine and Rehabilitation (R.D.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston; Faculty of Psychology and Neuroscience (É.M.F.), Maastricht University, the Netherlands, Department of Psychiatry, University of Cambridge, United Kingdom; National Institute of Neurological Disorders and Stroke (D.J.B.), National Institutes of Health; National Institute of Neurological Disorders and Stroke (W.J.K.), Bethesda, MD; Boston University CTE Center (Y.T.), Boston University Alzheimer's Disease Center, Boston University School of Medicine, Department of Biostatistics, Boston University School of Public Health; Boston University CTE Center (A.C.M.), Boston University Alzheimer's Disease Center, Departments of Neurology and Pathology & Laboratory Medicine, Boston University School of Medicine; VA Boston Healthcare System (A.C.M.), US Department of Veteran Affairs, MA; Psychiatry Neuroimaging Laboratory (M.E.S.), Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, University of Nevada School of Integrated Health Sciences; Cleveland Clinic Lou Ruvo Center for Brain Health (J.L.C.), Las Vegas, NV; Banner Alzheimer's Institute (E.M.R.), Arizona State University; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix, AZ; and Boston University CTE Center (R.A.S.), Boston University Alzheimer's Disease Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, MA
| | - David L. Brody
- From the Boston University CTE Center (D.I.K.), Department of Neurology, Boston University School of Medicine, Boston; Brain Injury Program (D.I.K.), Encompass Health Braintree Rehabilitation Hospital, Braintree, MA; University of Washington Memory & Brain Wellness Clinic (C.B.), Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology (D.W.D., C.H.A.), Mayo Clinic, Scottsdale, AZ; Boston University CTE Center (J.M., M.L.A.), Boston University Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine; Boston University CTE Center (M.L.M.), Boston University School of Medicine, MA; Departments of Neurology (L.J.B.), Ophthalmology, and Population Health, New York University Grossman School of Medicine; Departments of Neurosciences and Psychiatry University of California San Diego (S.J.B.), La Jolla; Departments of Neurology and Psychiatry (W.B.B.), New York University Grossman School of Medicine; Center for Neuroscience and Regenerative Medicine (D.L.B.), Uniformed Services University of the Health Sciences, Department of Neurology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Boston University CTE Center (R.C.C.), Boston University Alzheimer's Disease Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, MA; Departments of Rehabilitation Medicine and Neurology (K.D.-O.C.), Icahn School of Medicine, Mount Sinai, New York; Department of Neurology (Y.E.G.), Barrow Neurological Institute, Phoenix, AZ; Rancho Los Amigos National Rehabilitation Center (B.D.J.), Downey, CA; Department of Neurology (B.D.J.), Keck School of Medicine of USC. Los Angeles, CA; Departments of Psychiatry and Neurology (T.W.M.), Indiana University School of Medicine, Indianapolis; Veterans Affairs Northwest Mental Illness (E.R.P.), Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Mayo Clinic Alzheimer's Disease Research Center (R.C.P.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.V.W.), Mayo Clinic, Scottsdale, AZ; Department of Physical Medicine and Rehabilitation (R.D.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston; Faculty of Psychology and Neuroscience (É.M.F.), Maastricht University, the Netherlands, Department of Psychiatry, University of Cambridge, United Kingdom; National Institute of Neurological Disorders and Stroke (D.J.B.), National Institutes of Health; National Institute of Neurological Disorders and Stroke (W.J.K.), Bethesda, MD; Boston University CTE Center (Y.T.), Boston University Alzheimer's Disease Center, Boston University School of Medicine, Department of Biostatistics, Boston University School of Public Health; Boston University CTE Center (A.C.M.), Boston University Alzheimer's Disease Center, Departments of Neurology and Pathology & Laboratory Medicine, Boston University School of Medicine; VA Boston Healthcare System (A.C.M.), US Department of Veteran Affairs, MA; Psychiatry Neuroimaging Laboratory (M.E.S.), Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, University of Nevada School of Integrated Health Sciences; Cleveland Clinic Lou Ruvo Center for Brain Health (J.L.C.), Las Vegas, NV; Banner Alzheimer's Institute (E.M.R.), Arizona State University; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix, AZ; and Boston University CTE Center (R.A.S.), Boston University Alzheimer's Disease Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, MA
| | - Robert C. Cantu
- From the Boston University CTE Center (D.I.K.), Department of Neurology, Boston University School of Medicine, Boston; Brain Injury Program (D.I.K.), Encompass Health Braintree Rehabilitation Hospital, Braintree, MA; University of Washington Memory & Brain Wellness Clinic (C.B.), Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology (D.W.D., C.H.A.), Mayo Clinic, Scottsdale, AZ; Boston University CTE Center (J.M., M.L.A.), Boston University Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine; Boston University CTE Center (M.L.M.), Boston University School of Medicine, MA; Departments of Neurology (L.J.B.), Ophthalmology, and Population Health, New York University Grossman School of Medicine; Departments of Neurosciences and Psychiatry University of California San Diego (S.J.B.), La Jolla; Departments of Neurology and Psychiatry (W.B.B.), New York University Grossman School of Medicine; Center for Neuroscience and Regenerative Medicine (D.L.B.), Uniformed Services University of the Health Sciences, Department of Neurology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Boston University CTE Center (R.C.C.), Boston University Alzheimer's Disease Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, MA; Departments of Rehabilitation Medicine and Neurology (K.D.-O.C.), Icahn School of Medicine, Mount Sinai, New York; Department of Neurology (Y.E.G.), Barrow Neurological Institute, Phoenix, AZ; Rancho Los Amigos National Rehabilitation Center (B.D.J.), Downey, CA; Department of Neurology (B.D.J.), Keck School of Medicine of USC. Los Angeles, CA; Departments of Psychiatry and Neurology (T.W.M.), Indiana University School of Medicine, Indianapolis; Veterans Affairs Northwest Mental Illness (E.R.P.), Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Mayo Clinic Alzheimer's Disease Research Center (R.C.P.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.V.W.), Mayo Clinic, Scottsdale, AZ; Department of Physical Medicine and Rehabilitation (R.D.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston; Faculty of Psychology and Neuroscience (É.M.F.), Maastricht University, the Netherlands, Department of Psychiatry, University of Cambridge, United Kingdom; National Institute of Neurological Disorders and Stroke (D.J.B.), National Institutes of Health; National Institute of Neurological Disorders and Stroke (W.J.K.), Bethesda, MD; Boston University CTE Center (Y.T.), Boston University Alzheimer's Disease Center, Boston University School of Medicine, Department of Biostatistics, Boston University School of Public Health; Boston University CTE Center (A.C.M.), Boston University Alzheimer's Disease Center, Departments of Neurology and Pathology & Laboratory Medicine, Boston University School of Medicine; VA Boston Healthcare System (A.C.M.), US Department of Veteran Affairs, MA; Psychiatry Neuroimaging Laboratory (M.E.S.), Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, University of Nevada School of Integrated Health Sciences; Cleveland Clinic Lou Ruvo Center for Brain Health (J.L.C.), Las Vegas, NV; Banner Alzheimer's Institute (E.M.R.), Arizona State University; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix, AZ; and Boston University CTE Center (R.A.S.), Boston University Alzheimer's Disease Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, MA
| | - Kristen Dams-O'Connor
- From the Boston University CTE Center (D.I.K.), Department of Neurology, Boston University School of Medicine, Boston; Brain Injury Program (D.I.K.), Encompass Health Braintree Rehabilitation Hospital, Braintree, MA; University of Washington Memory & Brain Wellness Clinic (C.B.), Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology (D.W.D., C.H.A.), Mayo Clinic, Scottsdale, AZ; Boston University CTE Center (J.M., M.L.A.), Boston University Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine; Boston University CTE Center (M.L.M.), Boston University School of Medicine, MA; Departments of Neurology (L.J.B.), Ophthalmology, and Population Health, New York University Grossman School of Medicine; Departments of Neurosciences and Psychiatry University of California San Diego (S.J.B.), La Jolla; Departments of Neurology and Psychiatry (W.B.B.), New York University Grossman School of Medicine; Center for Neuroscience and Regenerative Medicine (D.L.B.), Uniformed Services University of the Health Sciences, Department of Neurology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Boston University CTE Center (R.C.C.), Boston University Alzheimer's Disease Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, MA; Departments of Rehabilitation Medicine and Neurology (K.D.-O.C.), Icahn School of Medicine, Mount Sinai, New York; Department of Neurology (Y.E.G.), Barrow Neurological Institute, Phoenix, AZ; Rancho Los Amigos National Rehabilitation Center (B.D.J.), Downey, CA; Department of Neurology (B.D.J.), Keck School of Medicine of USC. Los Angeles, CA; Departments of Psychiatry and Neurology (T.W.M.), Indiana University School of Medicine, Indianapolis; Veterans Affairs Northwest Mental Illness (E.R.P.), Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Mayo Clinic Alzheimer's Disease Research Center (R.C.P.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.V.W.), Mayo Clinic, Scottsdale, AZ; Department of Physical Medicine and Rehabilitation (R.D.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston; Faculty of Psychology and Neuroscience (É.M.F.), Maastricht University, the Netherlands, Department of Psychiatry, University of Cambridge, United Kingdom; National Institute of Neurological Disorders and Stroke (D.J.B.), National Institutes of Health; National Institute of Neurological Disorders and Stroke (W.J.K.), Bethesda, MD; Boston University CTE Center (Y.T.), Boston University Alzheimer's Disease Center, Boston University School of Medicine, Department of Biostatistics, Boston University School of Public Health; Boston University CTE Center (A.C.M.), Boston University Alzheimer's Disease Center, Departments of Neurology and Pathology & Laboratory Medicine, Boston University School of Medicine; VA Boston Healthcare System (A.C.M.), US Department of Veteran Affairs, MA; Psychiatry Neuroimaging Laboratory (M.E.S.), Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, University of Nevada School of Integrated Health Sciences; Cleveland Clinic Lou Ruvo Center for Brain Health (J.L.C.), Las Vegas, NV; Banner Alzheimer's Institute (E.M.R.), Arizona State University; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix, AZ; and Boston University CTE Center (R.A.S.), Boston University Alzheimer's Disease Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, MA
| | - Yonas E. Geda
- From the Boston University CTE Center (D.I.K.), Department of Neurology, Boston University School of Medicine, Boston; Brain Injury Program (D.I.K.), Encompass Health Braintree Rehabilitation Hospital, Braintree, MA; University of Washington Memory & Brain Wellness Clinic (C.B.), Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology (D.W.D., C.H.A.), Mayo Clinic, Scottsdale, AZ; Boston University CTE Center (J.M., M.L.A.), Boston University Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine; Boston University CTE Center (M.L.M.), Boston University School of Medicine, MA; Departments of Neurology (L.J.B.), Ophthalmology, and Population Health, New York University Grossman School of Medicine; Departments of Neurosciences and Psychiatry University of California San Diego (S.J.B.), La Jolla; Departments of Neurology and Psychiatry (W.B.B.), New York University Grossman School of Medicine; Center for Neuroscience and Regenerative Medicine (D.L.B.), Uniformed Services University of the Health Sciences, Department of Neurology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Boston University CTE Center (R.C.C.), Boston University Alzheimer's Disease Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, MA; Departments of Rehabilitation Medicine and Neurology (K.D.-O.C.), Icahn School of Medicine, Mount Sinai, New York; Department of Neurology (Y.E.G.), Barrow Neurological Institute, Phoenix, AZ; Rancho Los Amigos National Rehabilitation Center (B.D.J.), Downey, CA; Department of Neurology (B.D.J.), Keck School of Medicine of USC. Los Angeles, CA; Departments of Psychiatry and Neurology (T.W.M.), Indiana University School of Medicine, Indianapolis; Veterans Affairs Northwest Mental Illness (E.R.P.), Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Mayo Clinic Alzheimer's Disease Research Center (R.C.P.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.V.W.), Mayo Clinic, Scottsdale, AZ; Department of Physical Medicine and Rehabilitation (R.D.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston; Faculty of Psychology and Neuroscience (É.M.F.), Maastricht University, the Netherlands, Department of Psychiatry, University of Cambridge, United Kingdom; National Institute of Neurological Disorders and Stroke (D.J.B.), National Institutes of Health; National Institute of Neurological Disorders and Stroke (W.J.K.), Bethesda, MD; Boston University CTE Center (Y.T.), Boston University Alzheimer's Disease Center, Boston University School of Medicine, Department of Biostatistics, Boston University School of Public Health; Boston University CTE Center (A.C.M.), Boston University Alzheimer's Disease Center, Departments of Neurology and Pathology & Laboratory Medicine, Boston University School of Medicine; VA Boston Healthcare System (A.C.M.), US Department of Veteran Affairs, MA; Psychiatry Neuroimaging Laboratory (M.E.S.), Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, University of Nevada School of Integrated Health Sciences; Cleveland Clinic Lou Ruvo Center for Brain Health (J.L.C.), Las Vegas, NV; Banner Alzheimer's Institute (E.M.R.), Arizona State University; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix, AZ; and Boston University CTE Center (R.A.S.), Boston University Alzheimer's Disease Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, MA
| | - Barry D. Jordan
- From the Boston University CTE Center (D.I.K.), Department of Neurology, Boston University School of Medicine, Boston; Brain Injury Program (D.I.K.), Encompass Health Braintree Rehabilitation Hospital, Braintree, MA; University of Washington Memory & Brain Wellness Clinic (C.B.), Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology (D.W.D., C.H.A.), Mayo Clinic, Scottsdale, AZ; Boston University CTE Center (J.M., M.L.A.), Boston University Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine; Boston University CTE Center (M.L.M.), Boston University School of Medicine, MA; Departments of Neurology (L.J.B.), Ophthalmology, and Population Health, New York University Grossman School of Medicine; Departments of Neurosciences and Psychiatry University of California San Diego (S.J.B.), La Jolla; Departments of Neurology and Psychiatry (W.B.B.), New York University Grossman School of Medicine; Center for Neuroscience and Regenerative Medicine (D.L.B.), Uniformed Services University of the Health Sciences, Department of Neurology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Boston University CTE Center (R.C.C.), Boston University Alzheimer's Disease Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, MA; Departments of Rehabilitation Medicine and Neurology (K.D.-O.C.), Icahn School of Medicine, Mount Sinai, New York; Department of Neurology (Y.E.G.), Barrow Neurological Institute, Phoenix, AZ; Rancho Los Amigos National Rehabilitation Center (B.D.J.), Downey, CA; Department of Neurology (B.D.J.), Keck School of Medicine of USC. Los Angeles, CA; Departments of Psychiatry and Neurology (T.W.M.), Indiana University School of Medicine, Indianapolis; Veterans Affairs Northwest Mental Illness (E.R.P.), Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Mayo Clinic Alzheimer's Disease Research Center (R.C.P.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.V.W.), Mayo Clinic, Scottsdale, AZ; Department of Physical Medicine and Rehabilitation (R.D.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston; Faculty of Psychology and Neuroscience (É.M.F.), Maastricht University, the Netherlands, Department of Psychiatry, University of Cambridge, United Kingdom; National Institute of Neurological Disorders and Stroke (D.J.B.), National Institutes of Health; National Institute of Neurological Disorders and Stroke (W.J.K.), Bethesda, MD; Boston University CTE Center (Y.T.), Boston University Alzheimer's Disease Center, Boston University School of Medicine, Department of Biostatistics, Boston University School of Public Health; Boston University CTE Center (A.C.M.), Boston University Alzheimer's Disease Center, Departments of Neurology and Pathology & Laboratory Medicine, Boston University School of Medicine; VA Boston Healthcare System (A.C.M.), US Department of Veteran Affairs, MA; Psychiatry Neuroimaging Laboratory (M.E.S.), Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, University of Nevada School of Integrated Health Sciences; Cleveland Clinic Lou Ruvo Center for Brain Health (J.L.C.), Las Vegas, NV; Banner Alzheimer's Institute (E.M.R.), Arizona State University; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix, AZ; and Boston University CTE Center (R.A.S.), Boston University Alzheimer's Disease Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, MA
| | - Thomas W. McAllister
- From the Boston University CTE Center (D.I.K.), Department of Neurology, Boston University School of Medicine, Boston; Brain Injury Program (D.I.K.), Encompass Health Braintree Rehabilitation Hospital, Braintree, MA; University of Washington Memory & Brain Wellness Clinic (C.B.), Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology (D.W.D., C.H.A.), Mayo Clinic, Scottsdale, AZ; Boston University CTE Center (J.M., M.L.A.), Boston University Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine; Boston University CTE Center (M.L.M.), Boston University School of Medicine, MA; Departments of Neurology (L.J.B.), Ophthalmology, and Population Health, New York University Grossman School of Medicine; Departments of Neurosciences and Psychiatry University of California San Diego (S.J.B.), La Jolla; Departments of Neurology and Psychiatry (W.B.B.), New York University Grossman School of Medicine; Center for Neuroscience and Regenerative Medicine (D.L.B.), Uniformed Services University of the Health Sciences, Department of Neurology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Boston University CTE Center (R.C.C.), Boston University Alzheimer's Disease Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, MA; Departments of Rehabilitation Medicine and Neurology (K.D.-O.C.), Icahn School of Medicine, Mount Sinai, New York; Department of Neurology (Y.E.G.), Barrow Neurological Institute, Phoenix, AZ; Rancho Los Amigos National Rehabilitation Center (B.D.J.), Downey, CA; Department of Neurology (B.D.J.), Keck School of Medicine of USC. Los Angeles, CA; Departments of Psychiatry and Neurology (T.W.M.), Indiana University School of Medicine, Indianapolis; Veterans Affairs Northwest Mental Illness (E.R.P.), Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Mayo Clinic Alzheimer's Disease Research Center (R.C.P.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.V.W.), Mayo Clinic, Scottsdale, AZ; Department of Physical Medicine and Rehabilitation (R.D.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston; Faculty of Psychology and Neuroscience (É.M.F.), Maastricht University, the Netherlands, Department of Psychiatry, University of Cambridge, United Kingdom; National Institute of Neurological Disorders and Stroke (D.J.B.), National Institutes of Health; National Institute of Neurological Disorders and Stroke (W.J.K.), Bethesda, MD; Boston University CTE Center (Y.T.), Boston University Alzheimer's Disease Center, Boston University School of Medicine, Department of Biostatistics, Boston University School of Public Health; Boston University CTE Center (A.C.M.), Boston University Alzheimer's Disease Center, Departments of Neurology and Pathology & Laboratory Medicine, Boston University School of Medicine; VA Boston Healthcare System (A.C.M.), US Department of Veteran Affairs, MA; Psychiatry Neuroimaging Laboratory (M.E.S.), Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, University of Nevada School of Integrated Health Sciences; Cleveland Clinic Lou Ruvo Center for Brain Health (J.L.C.), Las Vegas, NV; Banner Alzheimer's Institute (E.M.R.), Arizona State University; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix, AZ; and Boston University CTE Center (R.A.S.), Boston University Alzheimer's Disease Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, MA
| | - Elaine R. Peskind
- From the Boston University CTE Center (D.I.K.), Department of Neurology, Boston University School of Medicine, Boston; Brain Injury Program (D.I.K.), Encompass Health Braintree Rehabilitation Hospital, Braintree, MA; University of Washington Memory & Brain Wellness Clinic (C.B.), Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology (D.W.D., C.H.A.), Mayo Clinic, Scottsdale, AZ; Boston University CTE Center (J.M., M.L.A.), Boston University Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine; Boston University CTE Center (M.L.M.), Boston University School of Medicine, MA; Departments of Neurology (L.J.B.), Ophthalmology, and Population Health, New York University Grossman School of Medicine; Departments of Neurosciences and Psychiatry University of California San Diego (S.J.B.), La Jolla; Departments of Neurology and Psychiatry (W.B.B.), New York University Grossman School of Medicine; Center for Neuroscience and Regenerative Medicine (D.L.B.), Uniformed Services University of the Health Sciences, Department of Neurology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Boston University CTE Center (R.C.C.), Boston University Alzheimer's Disease Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, MA; Departments of Rehabilitation Medicine and Neurology (K.D.-O.C.), Icahn School of Medicine, Mount Sinai, New York; Department of Neurology (Y.E.G.), Barrow Neurological Institute, Phoenix, AZ; Rancho Los Amigos National Rehabilitation Center (B.D.J.), Downey, CA; Department of Neurology (B.D.J.), Keck School of Medicine of USC. Los Angeles, CA; Departments of Psychiatry and Neurology (T.W.M.), Indiana University School of Medicine, Indianapolis; Veterans Affairs Northwest Mental Illness (E.R.P.), Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Mayo Clinic Alzheimer's Disease Research Center (R.C.P.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.V.W.), Mayo Clinic, Scottsdale, AZ; Department of Physical Medicine and Rehabilitation (R.D.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston; Faculty of Psychology and Neuroscience (É.M.F.), Maastricht University, the Netherlands, Department of Psychiatry, University of Cambridge, United Kingdom; National Institute of Neurological Disorders and Stroke (D.J.B.), National Institutes of Health; National Institute of Neurological Disorders and Stroke (W.J.K.), Bethesda, MD; Boston University CTE Center (Y.T.), Boston University Alzheimer's Disease Center, Boston University School of Medicine, Department of Biostatistics, Boston University School of Public Health; Boston University CTE Center (A.C.M.), Boston University Alzheimer's Disease Center, Departments of Neurology and Pathology & Laboratory Medicine, Boston University School of Medicine; VA Boston Healthcare System (A.C.M.), US Department of Veteran Affairs, MA; Psychiatry Neuroimaging Laboratory (M.E.S.), Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, University of Nevada School of Integrated Health Sciences; Cleveland Clinic Lou Ruvo Center for Brain Health (J.L.C.), Las Vegas, NV; Banner Alzheimer's Institute (E.M.R.), Arizona State University; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix, AZ; and Boston University CTE Center (R.A.S.), Boston University Alzheimer's Disease Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, MA
| | - Ronald C. Petersen
- From the Boston University CTE Center (D.I.K.), Department of Neurology, Boston University School of Medicine, Boston; Brain Injury Program (D.I.K.), Encompass Health Braintree Rehabilitation Hospital, Braintree, MA; University of Washington Memory & Brain Wellness Clinic (C.B.), Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology (D.W.D., C.H.A.), Mayo Clinic, Scottsdale, AZ; Boston University CTE Center (J.M., M.L.A.), Boston University Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine; Boston University CTE Center (M.L.M.), Boston University School of Medicine, MA; Departments of Neurology (L.J.B.), Ophthalmology, and Population Health, New York University Grossman School of Medicine; Departments of Neurosciences and Psychiatry University of California San Diego (S.J.B.), La Jolla; Departments of Neurology and Psychiatry (W.B.B.), New York University Grossman School of Medicine; Center for Neuroscience and Regenerative Medicine (D.L.B.), Uniformed Services University of the Health Sciences, Department of Neurology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Boston University CTE Center (R.C.C.), Boston University Alzheimer's Disease Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, MA; Departments of Rehabilitation Medicine and Neurology (K.D.-O.C.), Icahn School of Medicine, Mount Sinai, New York; Department of Neurology (Y.E.G.), Barrow Neurological Institute, Phoenix, AZ; Rancho Los Amigos National Rehabilitation Center (B.D.J.), Downey, CA; Department of Neurology (B.D.J.), Keck School of Medicine of USC. Los Angeles, CA; Departments of Psychiatry and Neurology (T.W.M.), Indiana University School of Medicine, Indianapolis; Veterans Affairs Northwest Mental Illness (E.R.P.), Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Mayo Clinic Alzheimer's Disease Research Center (R.C.P.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.V.W.), Mayo Clinic, Scottsdale, AZ; Department of Physical Medicine and Rehabilitation (R.D.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston; Faculty of Psychology and Neuroscience (É.M.F.), Maastricht University, the Netherlands, Department of Psychiatry, University of Cambridge, United Kingdom; National Institute of Neurological Disorders and Stroke (D.J.B.), National Institutes of Health; National Institute of Neurological Disorders and Stroke (W.J.K.), Bethesda, MD; Boston University CTE Center (Y.T.), Boston University Alzheimer's Disease Center, Boston University School of Medicine, Department of Biostatistics, Boston University School of Public Health; Boston University CTE Center (A.C.M.), Boston University Alzheimer's Disease Center, Departments of Neurology and Pathology & Laboratory Medicine, Boston University School of Medicine; VA Boston Healthcare System (A.C.M.), US Department of Veteran Affairs, MA; Psychiatry Neuroimaging Laboratory (M.E.S.), Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, University of Nevada School of Integrated Health Sciences; Cleveland Clinic Lou Ruvo Center for Brain Health (J.L.C.), Las Vegas, NV; Banner Alzheimer's Institute (E.M.R.), Arizona State University; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix, AZ; and Boston University CTE Center (R.A.S.), Boston University Alzheimer's Disease Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, MA
| | - Jennifer V. Wethe
- From the Boston University CTE Center (D.I.K.), Department of Neurology, Boston University School of Medicine, Boston; Brain Injury Program (D.I.K.), Encompass Health Braintree Rehabilitation Hospital, Braintree, MA; University of Washington Memory & Brain Wellness Clinic (C.B.), Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology (D.W.D., C.H.A.), Mayo Clinic, Scottsdale, AZ; Boston University CTE Center (J.M., M.L.A.), Boston University Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine; Boston University CTE Center (M.L.M.), Boston University School of Medicine, MA; Departments of Neurology (L.J.B.), Ophthalmology, and Population Health, New York University Grossman School of Medicine; Departments of Neurosciences and Psychiatry University of California San Diego (S.J.B.), La Jolla; Departments of Neurology and Psychiatry (W.B.B.), New York University Grossman School of Medicine; Center for Neuroscience and Regenerative Medicine (D.L.B.), Uniformed Services University of the Health Sciences, Department of Neurology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Boston University CTE Center (R.C.C.), Boston University Alzheimer's Disease Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, MA; Departments of Rehabilitation Medicine and Neurology (K.D.-O.C.), Icahn School of Medicine, Mount Sinai, New York; Department of Neurology (Y.E.G.), Barrow Neurological Institute, Phoenix, AZ; Rancho Los Amigos National Rehabilitation Center (B.D.J.), Downey, CA; Department of Neurology (B.D.J.), Keck School of Medicine of USC. Los Angeles, CA; Departments of Psychiatry and Neurology (T.W.M.), Indiana University School of Medicine, Indianapolis; Veterans Affairs Northwest Mental Illness (E.R.P.), Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Mayo Clinic Alzheimer's Disease Research Center (R.C.P.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.V.W.), Mayo Clinic, Scottsdale, AZ; Department of Physical Medicine and Rehabilitation (R.D.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston; Faculty of Psychology and Neuroscience (É.M.F.), Maastricht University, the Netherlands, Department of Psychiatry, University of Cambridge, United Kingdom; National Institute of Neurological Disorders and Stroke (D.J.B.), National Institutes of Health; National Institute of Neurological Disorders and Stroke (W.J.K.), Bethesda, MD; Boston University CTE Center (Y.T.), Boston University Alzheimer's Disease Center, Boston University School of Medicine, Department of Biostatistics, Boston University School of Public Health; Boston University CTE Center (A.C.M.), Boston University Alzheimer's Disease Center, Departments of Neurology and Pathology & Laboratory Medicine, Boston University School of Medicine; VA Boston Healthcare System (A.C.M.), US Department of Veteran Affairs, MA; Psychiatry Neuroimaging Laboratory (M.E.S.), Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, University of Nevada School of Integrated Health Sciences; Cleveland Clinic Lou Ruvo Center for Brain Health (J.L.C.), Las Vegas, NV; Banner Alzheimer's Institute (E.M.R.), Arizona State University; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix, AZ; and Boston University CTE Center (R.A.S.), Boston University Alzheimer's Disease Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, MA
| | - Ross D. Zafonte
- From the Boston University CTE Center (D.I.K.), Department of Neurology, Boston University School of Medicine, Boston; Brain Injury Program (D.I.K.), Encompass Health Braintree Rehabilitation Hospital, Braintree, MA; University of Washington Memory & Brain Wellness Clinic (C.B.), Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology (D.W.D., C.H.A.), Mayo Clinic, Scottsdale, AZ; Boston University CTE Center (J.M., M.L.A.), Boston University Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine; Boston University CTE Center (M.L.M.), Boston University School of Medicine, MA; Departments of Neurology (L.J.B.), Ophthalmology, and Population Health, New York University Grossman School of Medicine; Departments of Neurosciences and Psychiatry University of California San Diego (S.J.B.), La Jolla; Departments of Neurology and Psychiatry (W.B.B.), New York University Grossman School of Medicine; Center for Neuroscience and Regenerative Medicine (D.L.B.), Uniformed Services University of the Health Sciences, Department of Neurology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Boston University CTE Center (R.C.C.), Boston University Alzheimer's Disease Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, MA; Departments of Rehabilitation Medicine and Neurology (K.D.-O.C.), Icahn School of Medicine, Mount Sinai, New York; Department of Neurology (Y.E.G.), Barrow Neurological Institute, Phoenix, AZ; Rancho Los Amigos National Rehabilitation Center (B.D.J.), Downey, CA; Department of Neurology (B.D.J.), Keck School of Medicine of USC. Los Angeles, CA; Departments of Psychiatry and Neurology (T.W.M.), Indiana University School of Medicine, Indianapolis; Veterans Affairs Northwest Mental Illness (E.R.P.), Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Mayo Clinic Alzheimer's Disease Research Center (R.C.P.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.V.W.), Mayo Clinic, Scottsdale, AZ; Department of Physical Medicine and Rehabilitation (R.D.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston; Faculty of Psychology and Neuroscience (É.M.F.), Maastricht University, the Netherlands, Department of Psychiatry, University of Cambridge, United Kingdom; National Institute of Neurological Disorders and Stroke (D.J.B.), National Institutes of Health; National Institute of Neurological Disorders and Stroke (W.J.K.), Bethesda, MD; Boston University CTE Center (Y.T.), Boston University Alzheimer's Disease Center, Boston University School of Medicine, Department of Biostatistics, Boston University School of Public Health; Boston University CTE Center (A.C.M.), Boston University Alzheimer's Disease Center, Departments of Neurology and Pathology & Laboratory Medicine, Boston University School of Medicine; VA Boston Healthcare System (A.C.M.), US Department of Veteran Affairs, MA; Psychiatry Neuroimaging Laboratory (M.E.S.), Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, University of Nevada School of Integrated Health Sciences; Cleveland Clinic Lou Ruvo Center for Brain Health (J.L.C.), Las Vegas, NV; Banner Alzheimer's Institute (E.M.R.), Arizona State University; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix, AZ; and Boston University CTE Center (R.A.S.), Boston University Alzheimer's Disease Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, MA
| | - Éimear M. Foley
- From the Boston University CTE Center (D.I.K.), Department of Neurology, Boston University School of Medicine, Boston; Brain Injury Program (D.I.K.), Encompass Health Braintree Rehabilitation Hospital, Braintree, MA; University of Washington Memory & Brain Wellness Clinic (C.B.), Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology (D.W.D., C.H.A.), Mayo Clinic, Scottsdale, AZ; Boston University CTE Center (J.M., M.L.A.), Boston University Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine; Boston University CTE Center (M.L.M.), Boston University School of Medicine, MA; Departments of Neurology (L.J.B.), Ophthalmology, and Population Health, New York University Grossman School of Medicine; Departments of Neurosciences and Psychiatry University of California San Diego (S.J.B.), La Jolla; Departments of Neurology and Psychiatry (W.B.B.), New York University Grossman School of Medicine; Center for Neuroscience and Regenerative Medicine (D.L.B.), Uniformed Services University of the Health Sciences, Department of Neurology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Boston University CTE Center (R.C.C.), Boston University Alzheimer's Disease Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, MA; Departments of Rehabilitation Medicine and Neurology (K.D.-O.C.), Icahn School of Medicine, Mount Sinai, New York; Department of Neurology (Y.E.G.), Barrow Neurological Institute, Phoenix, AZ; Rancho Los Amigos National Rehabilitation Center (B.D.J.), Downey, CA; Department of Neurology (B.D.J.), Keck School of Medicine of USC. Los Angeles, CA; Departments of Psychiatry and Neurology (T.W.M.), Indiana University School of Medicine, Indianapolis; Veterans Affairs Northwest Mental Illness (E.R.P.), Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Mayo Clinic Alzheimer's Disease Research Center (R.C.P.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.V.W.), Mayo Clinic, Scottsdale, AZ; Department of Physical Medicine and Rehabilitation (R.D.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston; Faculty of Psychology and Neuroscience (É.M.F.), Maastricht University, the Netherlands, Department of Psychiatry, University of Cambridge, United Kingdom; National Institute of Neurological Disorders and Stroke (D.J.B.), National Institutes of Health; National Institute of Neurological Disorders and Stroke (W.J.K.), Bethesda, MD; Boston University CTE Center (Y.T.), Boston University Alzheimer's Disease Center, Boston University School of Medicine, Department of Biostatistics, Boston University School of Public Health; Boston University CTE Center (A.C.M.), Boston University Alzheimer's Disease Center, Departments of Neurology and Pathology & Laboratory Medicine, Boston University School of Medicine; VA Boston Healthcare System (A.C.M.), US Department of Veteran Affairs, MA; Psychiatry Neuroimaging Laboratory (M.E.S.), Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, University of Nevada School of Integrated Health Sciences; Cleveland Clinic Lou Ruvo Center for Brain Health (J.L.C.), Las Vegas, NV; Banner Alzheimer's Institute (E.M.R.), Arizona State University; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix, AZ; and Boston University CTE Center (R.A.S.), Boston University Alzheimer's Disease Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, MA
| | - Debra J. Babcock
- From the Boston University CTE Center (D.I.K.), Department of Neurology, Boston University School of Medicine, Boston; Brain Injury Program (D.I.K.), Encompass Health Braintree Rehabilitation Hospital, Braintree, MA; University of Washington Memory & Brain Wellness Clinic (C.B.), Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology (D.W.D., C.H.A.), Mayo Clinic, Scottsdale, AZ; Boston University CTE Center (J.M., M.L.A.), Boston University Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine; Boston University CTE Center (M.L.M.), Boston University School of Medicine, MA; Departments of Neurology (L.J.B.), Ophthalmology, and Population Health, New York University Grossman School of Medicine; Departments of Neurosciences and Psychiatry University of California San Diego (S.J.B.), La Jolla; Departments of Neurology and Psychiatry (W.B.B.), New York University Grossman School of Medicine; Center for Neuroscience and Regenerative Medicine (D.L.B.), Uniformed Services University of the Health Sciences, Department of Neurology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Boston University CTE Center (R.C.C.), Boston University Alzheimer's Disease Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, MA; Departments of Rehabilitation Medicine and Neurology (K.D.-O.C.), Icahn School of Medicine, Mount Sinai, New York; Department of Neurology (Y.E.G.), Barrow Neurological Institute, Phoenix, AZ; Rancho Los Amigos National Rehabilitation Center (B.D.J.), Downey, CA; Department of Neurology (B.D.J.), Keck School of Medicine of USC. Los Angeles, CA; Departments of Psychiatry and Neurology (T.W.M.), Indiana University School of Medicine, Indianapolis; Veterans Affairs Northwest Mental Illness (E.R.P.), Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Mayo Clinic Alzheimer's Disease Research Center (R.C.P.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.V.W.), Mayo Clinic, Scottsdale, AZ; Department of Physical Medicine and Rehabilitation (R.D.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston; Faculty of Psychology and Neuroscience (É.M.F.), Maastricht University, the Netherlands, Department of Psychiatry, University of Cambridge, United Kingdom; National Institute of Neurological Disorders and Stroke (D.J.B.), National Institutes of Health; National Institute of Neurological Disorders and Stroke (W.J.K.), Bethesda, MD; Boston University CTE Center (Y.T.), Boston University Alzheimer's Disease Center, Boston University School of Medicine, Department of Biostatistics, Boston University School of Public Health; Boston University CTE Center (A.C.M.), Boston University Alzheimer's Disease Center, Departments of Neurology and Pathology & Laboratory Medicine, Boston University School of Medicine; VA Boston Healthcare System (A.C.M.), US Department of Veteran Affairs, MA; Psychiatry Neuroimaging Laboratory (M.E.S.), Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, University of Nevada School of Integrated Health Sciences; Cleveland Clinic Lou Ruvo Center for Brain Health (J.L.C.), Las Vegas, NV; Banner Alzheimer's Institute (E.M.R.), Arizona State University; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix, AZ; and Boston University CTE Center (R.A.S.), Boston University Alzheimer's Disease Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, MA
| | - Walter J. Koroshetz
- From the Boston University CTE Center (D.I.K.), Department of Neurology, Boston University School of Medicine, Boston; Brain Injury Program (D.I.K.), Encompass Health Braintree Rehabilitation Hospital, Braintree, MA; University of Washington Memory & Brain Wellness Clinic (C.B.), Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology (D.W.D., C.H.A.), Mayo Clinic, Scottsdale, AZ; Boston University CTE Center (J.M., M.L.A.), Boston University Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine; Boston University CTE Center (M.L.M.), Boston University School of Medicine, MA; Departments of Neurology (L.J.B.), Ophthalmology, and Population Health, New York University Grossman School of Medicine; Departments of Neurosciences and Psychiatry University of California San Diego (S.J.B.), La Jolla; Departments of Neurology and Psychiatry (W.B.B.), New York University Grossman School of Medicine; Center for Neuroscience and Regenerative Medicine (D.L.B.), Uniformed Services University of the Health Sciences, Department of Neurology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Boston University CTE Center (R.C.C.), Boston University Alzheimer's Disease Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, MA; Departments of Rehabilitation Medicine and Neurology (K.D.-O.C.), Icahn School of Medicine, Mount Sinai, New York; Department of Neurology (Y.E.G.), Barrow Neurological Institute, Phoenix, AZ; Rancho Los Amigos National Rehabilitation Center (B.D.J.), Downey, CA; Department of Neurology (B.D.J.), Keck School of Medicine of USC. Los Angeles, CA; Departments of Psychiatry and Neurology (T.W.M.), Indiana University School of Medicine, Indianapolis; Veterans Affairs Northwest Mental Illness (E.R.P.), Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Mayo Clinic Alzheimer's Disease Research Center (R.C.P.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.V.W.), Mayo Clinic, Scottsdale, AZ; Department of Physical Medicine and Rehabilitation (R.D.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston; Faculty of Psychology and Neuroscience (É.M.F.), Maastricht University, the Netherlands, Department of Psychiatry, University of Cambridge, United Kingdom; National Institute of Neurological Disorders and Stroke (D.J.B.), National Institutes of Health; National Institute of Neurological Disorders and Stroke (W.J.K.), Bethesda, MD; Boston University CTE Center (Y.T.), Boston University Alzheimer's Disease Center, Boston University School of Medicine, Department of Biostatistics, Boston University School of Public Health; Boston University CTE Center (A.C.M.), Boston University Alzheimer's Disease Center, Departments of Neurology and Pathology & Laboratory Medicine, Boston University School of Medicine; VA Boston Healthcare System (A.C.M.), US Department of Veteran Affairs, MA; Psychiatry Neuroimaging Laboratory (M.E.S.), Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, University of Nevada School of Integrated Health Sciences; Cleveland Clinic Lou Ruvo Center for Brain Health (J.L.C.), Las Vegas, NV; Banner Alzheimer's Institute (E.M.R.), Arizona State University; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix, AZ; and Boston University CTE Center (R.A.S.), Boston University Alzheimer's Disease Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, MA
| | - Yorghos Tripodis
- From the Boston University CTE Center (D.I.K.), Department of Neurology, Boston University School of Medicine, Boston; Brain Injury Program (D.I.K.), Encompass Health Braintree Rehabilitation Hospital, Braintree, MA; University of Washington Memory & Brain Wellness Clinic (C.B.), Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology (D.W.D., C.H.A.), Mayo Clinic, Scottsdale, AZ; Boston University CTE Center (J.M., M.L.A.), Boston University Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine; Boston University CTE Center (M.L.M.), Boston University School of Medicine, MA; Departments of Neurology (L.J.B.), Ophthalmology, and Population Health, New York University Grossman School of Medicine; Departments of Neurosciences and Psychiatry University of California San Diego (S.J.B.), La Jolla; Departments of Neurology and Psychiatry (W.B.B.), New York University Grossman School of Medicine; Center for Neuroscience and Regenerative Medicine (D.L.B.), Uniformed Services University of the Health Sciences, Department of Neurology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Boston University CTE Center (R.C.C.), Boston University Alzheimer's Disease Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, MA; Departments of Rehabilitation Medicine and Neurology (K.D.-O.C.), Icahn School of Medicine, Mount Sinai, New York; Department of Neurology (Y.E.G.), Barrow Neurological Institute, Phoenix, AZ; Rancho Los Amigos National Rehabilitation Center (B.D.J.), Downey, CA; Department of Neurology (B.D.J.), Keck School of Medicine of USC. Los Angeles, CA; Departments of Psychiatry and Neurology (T.W.M.), Indiana University School of Medicine, Indianapolis; Veterans Affairs Northwest Mental Illness (E.R.P.), Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Mayo Clinic Alzheimer's Disease Research Center (R.C.P.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.V.W.), Mayo Clinic, Scottsdale, AZ; Department of Physical Medicine and Rehabilitation (R.D.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston; Faculty of Psychology and Neuroscience (É.M.F.), Maastricht University, the Netherlands, Department of Psychiatry, University of Cambridge, United Kingdom; National Institute of Neurological Disorders and Stroke (D.J.B.), National Institutes of Health; National Institute of Neurological Disorders and Stroke (W.J.K.), Bethesda, MD; Boston University CTE Center (Y.T.), Boston University Alzheimer's Disease Center, Boston University School of Medicine, Department of Biostatistics, Boston University School of Public Health; Boston University CTE Center (A.C.M.), Boston University Alzheimer's Disease Center, Departments of Neurology and Pathology & Laboratory Medicine, Boston University School of Medicine; VA Boston Healthcare System (A.C.M.), US Department of Veteran Affairs, MA; Psychiatry Neuroimaging Laboratory (M.E.S.), Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, University of Nevada School of Integrated Health Sciences; Cleveland Clinic Lou Ruvo Center for Brain Health (J.L.C.), Las Vegas, NV; Banner Alzheimer's Institute (E.M.R.), Arizona State University; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix, AZ; and Boston University CTE Center (R.A.S.), Boston University Alzheimer's Disease Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, MA
| | - Ann C. McKee
- From the Boston University CTE Center (D.I.K.), Department of Neurology, Boston University School of Medicine, Boston; Brain Injury Program (D.I.K.), Encompass Health Braintree Rehabilitation Hospital, Braintree, MA; University of Washington Memory & Brain Wellness Clinic (C.B.), Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology (D.W.D., C.H.A.), Mayo Clinic, Scottsdale, AZ; Boston University CTE Center (J.M., M.L.A.), Boston University Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine; Boston University CTE Center (M.L.M.), Boston University School of Medicine, MA; Departments of Neurology (L.J.B.), Ophthalmology, and Population Health, New York University Grossman School of Medicine; Departments of Neurosciences and Psychiatry University of California San Diego (S.J.B.), La Jolla; Departments of Neurology and Psychiatry (W.B.B.), New York University Grossman School of Medicine; Center for Neuroscience and Regenerative Medicine (D.L.B.), Uniformed Services University of the Health Sciences, Department of Neurology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Boston University CTE Center (R.C.C.), Boston University Alzheimer's Disease Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, MA; Departments of Rehabilitation Medicine and Neurology (K.D.-O.C.), Icahn School of Medicine, Mount Sinai, New York; Department of Neurology (Y.E.G.), Barrow Neurological Institute, Phoenix, AZ; Rancho Los Amigos National Rehabilitation Center (B.D.J.), Downey, CA; Department of Neurology (B.D.J.), Keck School of Medicine of USC. Los Angeles, CA; Departments of Psychiatry and Neurology (T.W.M.), Indiana University School of Medicine, Indianapolis; Veterans Affairs Northwest Mental Illness (E.R.P.), Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Mayo Clinic Alzheimer's Disease Research Center (R.C.P.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.V.W.), Mayo Clinic, Scottsdale, AZ; Department of Physical Medicine and Rehabilitation (R.D.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston; Faculty of Psychology and Neuroscience (É.M.F.), Maastricht University, the Netherlands, Department of Psychiatry, University of Cambridge, United Kingdom; National Institute of Neurological Disorders and Stroke (D.J.B.), National Institutes of Health; National Institute of Neurological Disorders and Stroke (W.J.K.), Bethesda, MD; Boston University CTE Center (Y.T.), Boston University Alzheimer's Disease Center, Boston University School of Medicine, Department of Biostatistics, Boston University School of Public Health; Boston University CTE Center (A.C.M.), Boston University Alzheimer's Disease Center, Departments of Neurology and Pathology & Laboratory Medicine, Boston University School of Medicine; VA Boston Healthcare System (A.C.M.), US Department of Veteran Affairs, MA; Psychiatry Neuroimaging Laboratory (M.E.S.), Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, University of Nevada School of Integrated Health Sciences; Cleveland Clinic Lou Ruvo Center for Brain Health (J.L.C.), Las Vegas, NV; Banner Alzheimer's Institute (E.M.R.), Arizona State University; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix, AZ; and Boston University CTE Center (R.A.S.), Boston University Alzheimer's Disease Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, MA
| | - Martha E. Shenton
- From the Boston University CTE Center (D.I.K.), Department of Neurology, Boston University School of Medicine, Boston; Brain Injury Program (D.I.K.), Encompass Health Braintree Rehabilitation Hospital, Braintree, MA; University of Washington Memory & Brain Wellness Clinic (C.B.), Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology (D.W.D., C.H.A.), Mayo Clinic, Scottsdale, AZ; Boston University CTE Center (J.M., M.L.A.), Boston University Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine; Boston University CTE Center (M.L.M.), Boston University School of Medicine, MA; Departments of Neurology (L.J.B.), Ophthalmology, and Population Health, New York University Grossman School of Medicine; Departments of Neurosciences and Psychiatry University of California San Diego (S.J.B.), La Jolla; Departments of Neurology and Psychiatry (W.B.B.), New York University Grossman School of Medicine; Center for Neuroscience and Regenerative Medicine (D.L.B.), Uniformed Services University of the Health Sciences, Department of Neurology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Boston University CTE Center (R.C.C.), Boston University Alzheimer's Disease Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, MA; Departments of Rehabilitation Medicine and Neurology (K.D.-O.C.), Icahn School of Medicine, Mount Sinai, New York; Department of Neurology (Y.E.G.), Barrow Neurological Institute, Phoenix, AZ; Rancho Los Amigos National Rehabilitation Center (B.D.J.), Downey, CA; Department of Neurology (B.D.J.), Keck School of Medicine of USC. Los Angeles, CA; Departments of Psychiatry and Neurology (T.W.M.), Indiana University School of Medicine, Indianapolis; Veterans Affairs Northwest Mental Illness (E.R.P.), Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Mayo Clinic Alzheimer's Disease Research Center (R.C.P.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.V.W.), Mayo Clinic, Scottsdale, AZ; Department of Physical Medicine and Rehabilitation (R.D.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston; Faculty of Psychology and Neuroscience (É.M.F.), Maastricht University, the Netherlands, Department of Psychiatry, University of Cambridge, United Kingdom; National Institute of Neurological Disorders and Stroke (D.J.B.), National Institutes of Health; National Institute of Neurological Disorders and Stroke (W.J.K.), Bethesda, MD; Boston University CTE Center (Y.T.), Boston University Alzheimer's Disease Center, Boston University School of Medicine, Department of Biostatistics, Boston University School of Public Health; Boston University CTE Center (A.C.M.), Boston University Alzheimer's Disease Center, Departments of Neurology and Pathology & Laboratory Medicine, Boston University School of Medicine; VA Boston Healthcare System (A.C.M.), US Department of Veteran Affairs, MA; Psychiatry Neuroimaging Laboratory (M.E.S.), Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, University of Nevada School of Integrated Health Sciences; Cleveland Clinic Lou Ruvo Center for Brain Health (J.L.C.), Las Vegas, NV; Banner Alzheimer's Institute (E.M.R.), Arizona State University; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix, AZ; and Boston University CTE Center (R.A.S.), Boston University Alzheimer's Disease Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, MA
| | - Jeffrey L. Cummings
- From the Boston University CTE Center (D.I.K.), Department of Neurology, Boston University School of Medicine, Boston; Brain Injury Program (D.I.K.), Encompass Health Braintree Rehabilitation Hospital, Braintree, MA; University of Washington Memory & Brain Wellness Clinic (C.B.), Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology (D.W.D., C.H.A.), Mayo Clinic, Scottsdale, AZ; Boston University CTE Center (J.M., M.L.A.), Boston University Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine; Boston University CTE Center (M.L.M.), Boston University School of Medicine, MA; Departments of Neurology (L.J.B.), Ophthalmology, and Population Health, New York University Grossman School of Medicine; Departments of Neurosciences and Psychiatry University of California San Diego (S.J.B.), La Jolla; Departments of Neurology and Psychiatry (W.B.B.), New York University Grossman School of Medicine; Center for Neuroscience and Regenerative Medicine (D.L.B.), Uniformed Services University of the Health Sciences, Department of Neurology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Boston University CTE Center (R.C.C.), Boston University Alzheimer's Disease Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, MA; Departments of Rehabilitation Medicine and Neurology (K.D.-O.C.), Icahn School of Medicine, Mount Sinai, New York; Department of Neurology (Y.E.G.), Barrow Neurological Institute, Phoenix, AZ; Rancho Los Amigos National Rehabilitation Center (B.D.J.), Downey, CA; Department of Neurology (B.D.J.), Keck School of Medicine of USC. Los Angeles, CA; Departments of Psychiatry and Neurology (T.W.M.), Indiana University School of Medicine, Indianapolis; Veterans Affairs Northwest Mental Illness (E.R.P.), Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Mayo Clinic Alzheimer's Disease Research Center (R.C.P.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.V.W.), Mayo Clinic, Scottsdale, AZ; Department of Physical Medicine and Rehabilitation (R.D.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston; Faculty of Psychology and Neuroscience (É.M.F.), Maastricht University, the Netherlands, Department of Psychiatry, University of Cambridge, United Kingdom; National Institute of Neurological Disorders and Stroke (D.J.B.), National Institutes of Health; National Institute of Neurological Disorders and Stroke (W.J.K.), Bethesda, MD; Boston University CTE Center (Y.T.), Boston University Alzheimer's Disease Center, Boston University School of Medicine, Department of Biostatistics, Boston University School of Public Health; Boston University CTE Center (A.C.M.), Boston University Alzheimer's Disease Center, Departments of Neurology and Pathology & Laboratory Medicine, Boston University School of Medicine; VA Boston Healthcare System (A.C.M.), US Department of Veteran Affairs, MA; Psychiatry Neuroimaging Laboratory (M.E.S.), Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, University of Nevada School of Integrated Health Sciences; Cleveland Clinic Lou Ruvo Center for Brain Health (J.L.C.), Las Vegas, NV; Banner Alzheimer's Institute (E.M.R.), Arizona State University; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix, AZ; and Boston University CTE Center (R.A.S.), Boston University Alzheimer's Disease Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, MA
| | - Eric M. Reiman
- From the Boston University CTE Center (D.I.K.), Department of Neurology, Boston University School of Medicine, Boston; Brain Injury Program (D.I.K.), Encompass Health Braintree Rehabilitation Hospital, Braintree, MA; University of Washington Memory & Brain Wellness Clinic (C.B.), Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology (D.W.D., C.H.A.), Mayo Clinic, Scottsdale, AZ; Boston University CTE Center (J.M., M.L.A.), Boston University Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine; Boston University CTE Center (M.L.M.), Boston University School of Medicine, MA; Departments of Neurology (L.J.B.), Ophthalmology, and Population Health, New York University Grossman School of Medicine; Departments of Neurosciences and Psychiatry University of California San Diego (S.J.B.), La Jolla; Departments of Neurology and Psychiatry (W.B.B.), New York University Grossman School of Medicine; Center for Neuroscience and Regenerative Medicine (D.L.B.), Uniformed Services University of the Health Sciences, Department of Neurology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Boston University CTE Center (R.C.C.), Boston University Alzheimer's Disease Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, MA; Departments of Rehabilitation Medicine and Neurology (K.D.-O.C.), Icahn School of Medicine, Mount Sinai, New York; Department of Neurology (Y.E.G.), Barrow Neurological Institute, Phoenix, AZ; Rancho Los Amigos National Rehabilitation Center (B.D.J.), Downey, CA; Department of Neurology (B.D.J.), Keck School of Medicine of USC. Los Angeles, CA; Departments of Psychiatry and Neurology (T.W.M.), Indiana University School of Medicine, Indianapolis; Veterans Affairs Northwest Mental Illness (E.R.P.), Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Mayo Clinic Alzheimer's Disease Research Center (R.C.P.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.V.W.), Mayo Clinic, Scottsdale, AZ; Department of Physical Medicine and Rehabilitation (R.D.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston; Faculty of Psychology and Neuroscience (É.M.F.), Maastricht University, the Netherlands, Department of Psychiatry, University of Cambridge, United Kingdom; National Institute of Neurological Disorders and Stroke (D.J.B.), National Institutes of Health; National Institute of Neurological Disorders and Stroke (W.J.K.), Bethesda, MD; Boston University CTE Center (Y.T.), Boston University Alzheimer's Disease Center, Boston University School of Medicine, Department of Biostatistics, Boston University School of Public Health; Boston University CTE Center (A.C.M.), Boston University Alzheimer's Disease Center, Departments of Neurology and Pathology & Laboratory Medicine, Boston University School of Medicine; VA Boston Healthcare System (A.C.M.), US Department of Veteran Affairs, MA; Psychiatry Neuroimaging Laboratory (M.E.S.), Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, University of Nevada School of Integrated Health Sciences; Cleveland Clinic Lou Ruvo Center for Brain Health (J.L.C.), Las Vegas, NV; Banner Alzheimer's Institute (E.M.R.), Arizona State University; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix, AZ; and Boston University CTE Center (R.A.S.), Boston University Alzheimer's Disease Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, MA
| | - Robert A. Stern
- From the Boston University CTE Center (D.I.K.), Department of Neurology, Boston University School of Medicine, Boston; Brain Injury Program (D.I.K.), Encompass Health Braintree Rehabilitation Hospital, Braintree, MA; University of Washington Memory & Brain Wellness Clinic (C.B.), Department of Neurology, University of Washington School of Medicine, Seattle; Department of Neurology (D.W.D., C.H.A.), Mayo Clinic, Scottsdale, AZ; Boston University CTE Center (J.M., M.L.A.), Boston University Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine; Boston University CTE Center (M.L.M.), Boston University School of Medicine, MA; Departments of Neurology (L.J.B.), Ophthalmology, and Population Health, New York University Grossman School of Medicine; Departments of Neurosciences and Psychiatry University of California San Diego (S.J.B.), La Jolla; Departments of Neurology and Psychiatry (W.B.B.), New York University Grossman School of Medicine; Center for Neuroscience and Regenerative Medicine (D.L.B.), Uniformed Services University of the Health Sciences, Department of Neurology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Boston University CTE Center (R.C.C.), Boston University Alzheimer's Disease Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, MA; Departments of Rehabilitation Medicine and Neurology (K.D.-O.C.), Icahn School of Medicine, Mount Sinai, New York; Department of Neurology (Y.E.G.), Barrow Neurological Institute, Phoenix, AZ; Rancho Los Amigos National Rehabilitation Center (B.D.J.), Downey, CA; Department of Neurology (B.D.J.), Keck School of Medicine of USC. Los Angeles, CA; Departments of Psychiatry and Neurology (T.W.M.), Indiana University School of Medicine, Indianapolis; Veterans Affairs Northwest Mental Illness (E.R.P.), Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Mayo Clinic Alzheimer's Disease Research Center (R.C.P.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.V.W.), Mayo Clinic, Scottsdale, AZ; Department of Physical Medicine and Rehabilitation (R.D.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston; Faculty of Psychology and Neuroscience (É.M.F.), Maastricht University, the Netherlands, Department of Psychiatry, University of Cambridge, United Kingdom; National Institute of Neurological Disorders and Stroke (D.J.B.), National Institutes of Health; National Institute of Neurological Disorders and Stroke (W.J.K.), Bethesda, MD; Boston University CTE Center (Y.T.), Boston University Alzheimer's Disease Center, Boston University School of Medicine, Department of Biostatistics, Boston University School of Public Health; Boston University CTE Center (A.C.M.), Boston University Alzheimer's Disease Center, Departments of Neurology and Pathology & Laboratory Medicine, Boston University School of Medicine; VA Boston Healthcare System (A.C.M.), US Department of Veteran Affairs, MA; Psychiatry Neuroimaging Laboratory (M.E.S.), Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, University of Nevada School of Integrated Health Sciences; Cleveland Clinic Lou Ruvo Center for Brain Health (J.L.C.), Las Vegas, NV; Banner Alzheimer's Institute (E.M.R.), Arizona State University; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix, AZ; and Boston University CTE Center (R.A.S.), Boston University Alzheimer's Disease Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, MA
| |
Collapse
|
29
|
Bachstetter AD, Garrett FG, Jicha GA, Nelson PT. Space-occupying brain lesions, trauma-related tau astrogliopathy, and ARTAG: a report of two cases and a literature review. Acta Neuropathol Commun 2021; 9:49. [PMID: 33757579 PMCID: PMC7986305 DOI: 10.1186/s40478-021-01152-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Astrocytes with intracellular accumulations of misfolded phosphorylated tau protein have been observed in advanced-stage chronic traumatic encephalopathy (CTE) and in other neurodegenerative conditions. There is a growing awareness that astrocytic tau inclusions are also relatively common in the brains of persons over 70 years of age-affecting approximately one-third of autopsied individuals. The pathologic hallmarks of aging-related tau astrogliopathy (ARTAG) include phosphorylated tau protein within thorn-shaped astrocytes (TSA) in subpial, subependymal, perivascular, and white matter regions, whereas granular-fuzzy astrocytes are often seen in gray matter. CTE and ARTAG share molecular and histopathologic characteristics, suggesting that trauma-related mechanism(s) may predispose to the development of tau astrogliopathy. There are presently few experimental systems to study the pathobiology of astrocytic-tau aggregation, but human studies have made recent progress. For example, leucotomy (also referred to as lobotomy) is associated with a localized ARTAG-like neuropathology decades after the surgical brain injury, suggesting that chronic brain injury of any type may predispose to later life ARTAG. To examine this idea in a different context, we report clinical and pathologic features of two middle-aged men who came to autopsy with large (> 6 cm in greatest dimension) arachnoid cysts that had physically displaced and injured the subjects' left temporal lobes through chronic mechanical stress. Despite the similarity of the size and location of the arachnoid cysts, these individuals had dissimilar neurologic outcomes and neuropathologic findings. We review the evidence for ARTAG in response to brain injury, and discuss how the location and molecular properties of astroglial tau inclusions might alter the physiology of resident astrocytes. These cases and literature review point toward possible mechanism(s) of tau aggregation in astrocytes in response to chronic brain trauma.
Collapse
Affiliation(s)
- Adam D Bachstetter
- Spinal Cord and Brain Injury Research Center, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA.
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA.
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| | - Filip G Garrett
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, USA
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
30
|
Postupna N, Rose SE, Gibbons LE, Coleman NM, Hellstern LL, Ritchie K, Wilson AM, Cudaback E, Li X, Melief EJ, Beller AE, Miller JA, Nolan AL, Marshall DA, Walker R, Montine TJ, Larson EB, Crane PK, Ellenbogen RG, Lein ES, Dams-O'Connor K, Keene CD. The Delayed Neuropathological Consequences of Traumatic Brain Injury in a Community-Based Sample. Front Neurol 2021; 12:624696. [PMID: 33796061 PMCID: PMC8008107 DOI: 10.3389/fneur.2021.624696] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
The late neuropathological effects of traumatic brain injury have yet to be fully elucidated, particularly with respect to community-based cohorts. To contribute to this critical gap in knowledge, we designed a multimodal neuropathological study, integrating traditional and quantitative approaches to detect pathologic changes in 532 consecutive brain autopsies from participants in the Adult Changes in Thought (ACT) study. Diagnostic evaluation including assessment for chronic traumatic encephalopathy (CTE) and quantitative immunoassay-based methods were deployed to examine levels of pathological (hyperphosphorylated) tau (pTau) and amyloid (A) β in brains from ACT participants with (n = 107) and without (n = 425) history of remote TBI with loss of consciousness (w/LOC). Further neuropathological assessments included immunohistochemistry for α-synuclein and phospho-TDP-43 pathology and astro- (GFAP) and micro- (Iba1) gliosis, mass spectrometry analysis of free radical injury, and gene expression evaluation (RNA sequencing) in a smaller sub-cohort of matched samples (49 cases with TBI and 49 non-exposed matched controls). Out of 532 cases, only 3 (0.6%-none with TBI w/LOC history) showed evidence of the neuropathologic signature of chronic traumatic encephalopathy (CTE). Across the entire cohort, the levels of pTau and Aβ showed expected differences for brain region (higher levels in temporal cortex), neuropathological diagnosis (higher in participants with Alzheimer's disease), and APOE genotype (higher in participants with one or more APOE ε4 allele). However, no differences in PHF-tau or Aβ1-42 were identified by Histelide with respect to the history of TBI w/LOC. In a subset of TBI cases with more carefully matched control samples and more extensive analysis, those with TBI w/LOC history had higher levels of hippocampal pTau but no significant differences in Aβ, α-synuclein, pTDP-43, GFAP, Iba1, or free radical injury. RNA-sequencing also did not reveal significant gene expression associated with any measure of TBI exposure. Combined, these findings suggest long term neuropathological changes associated with TBI w/LOC may be subtle, involve non-traditional pathways of neurotoxicity and neurodegeneration, and/or differ from those in autopsy cohorts specifically selected for neurotrauma exposure.
Collapse
Affiliation(s)
- Nadia Postupna
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Shannon E. Rose
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Laura E. Gibbons
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Natalie M. Coleman
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Leanne L. Hellstern
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Kayla Ritchie
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Angela M. Wilson
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Eiron Cudaback
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Xianwu Li
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Erica J. Melief
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Allison E. Beller
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | | | - Amber L. Nolan
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Desiree A. Marshall
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Rod Walker
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, United States
| | - Thomas J. Montine
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Eric B. Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, United States
| | - Paul K. Crane
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Richard G. Ellenbogen
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States
| | - Edward S. Lein
- Allen Institute for Brain Science, Seattle, WA, United States
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States
| | - Kristen Dams-O'Connor
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
31
|
Dams-O’Connor K. The long road to in vivo diagnosis of chronic traumatic encephalopathy. Brain Commun 2021; 3:fcab016. [PMID: 33842884 PMCID: PMC8023416 DOI: 10.1093/braincomms/fcab016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kristen Dams-O’Connor
- Brain Injury Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
32
|
Iverson GL, Luoto TM, Castellani RJ. Authors' Reply: Age-Related Tau Aggregates Resemble Chronic Traumatic Encephalopathy Neuropathologic Change. J Neuropathol Exp Neurol 2021; 79:924-928. [PMID: 32688382 DOI: 10.1093/jnen/nlaa047.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts.,Spaulding Rehabilitation Hospital, Charlestown, Massachusetts.,MassGeneral Hospital for Children Sports Concussion Program, Boston, Massachusetts.,Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Boston, Massachusetts
| | - Teemu M Luoto
- Department of Neurosurgery, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Rudolph J Castellani
- Department of Pathology, Anatomy and Laboratory Medicine, Rockefeller Neuroscience Institute, Morgantown, West Virginia.,Department of Neuroscience, Rockefeller Neuroscience Institute, Morgantown, West Virginia.,West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
33
|
McKee AC, Stein TD, Crary JF, Bieniek KF, Cantu RC, Kovacs GG. Practical Considerations in the Diagnosis of Mild Chronic Traumatic Encephalopathy and Distinction From Age-Related Tau Astrogliopathy. J Neuropathol Exp Neurol 2021; 79:921-924. [PMID: 32688381 DOI: 10.1093/jnen/nlaa047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ann C McKee
- Department of Pathology and Laboratory Medicine, VA Boston Healthcare System, Boston, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts.,Department of Pathology, Boston University School of Medicine, Boston, Massachusetts.,Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts.,Bedford Veterans Affairs Medical Center, Bedford, Massachusetts
| | - Thor D Stein
- Department of Pathology and Laboratory Medicine, VA Boston Healthcare System, Boston, Massachusetts.,Department of Pathology, Boston University School of Medicine, Boston, Massachusetts.,Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts.,Bedford Veterans Affairs Medical Center, Bedford, Massachusetts
| | - John F Crary
- Department of Pathology, Nash Family Department of Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kevin F Bieniek
- Department of Pathology and Laboratory Medicine, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas.,Biggs Institute Brain Bank Core, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Robert C Cantu
- Concussion Legacy Foundation, Boston, Massachusetts.,Department of Neurosurgery, Boston University School of Medicine, Boston, Massachusetts.,Department of Neurosurgery, Emerson Hospital, Concord, Massachusetts
| | - Gabor G Kovacs
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada.,Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Bieniek KF, Cairns NJ, Crary JF, Dickson DW, Folkerth RD, Keene CD, Litvan I, Perl DP, Stein TD, Vonsattel JP, Stewart W, Dams-O’Connor K, Gordon WA, Tripodis Y, Alvarez VE, Mez J, Alosco ML, McKee AC. The Second NINDS/NIBIB Consensus Meeting to Define Neuropathological Criteria for the Diagnosis of Chronic Traumatic Encephalopathy. J Neuropathol Exp Neurol 2021; 80:210-219. [PMID: 33611507 PMCID: PMC7899277 DOI: 10.1093/jnen/nlab001] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disorder associated with exposure to head trauma. In 2015, a panel of neuropathologists funded by the NINDS/NIBIB defined preliminary consensus neuropathological criteria for CTE, including the pathognomonic lesion of CTE as "an accumulation of abnormal hyperphosphorylated tau (p-tau) in neurons and astroglia distributed around small blood vessels at the depths of cortical sulci and in an irregular pattern," based on review of 25 tauopathy cases. In 2016, the consensus panel met again to review and refine the preliminary criteria, with consideration around the minimum threshold for diagnosis and the reproducibility of a proposed pathological staging scheme. Eight neuropathologists evaluated 27 cases of tauopathies (17 CTE cases), blinded to clinical and demographic information. Generalized estimating equation analyses showed a statistically significant association between the raters and CTE diagnosis for both the blinded (OR = 72.11, 95% CI = 19.5-267.0) and unblinded rounds (OR = 256.91, 95% CI = 63.6-1558.6). Based on the challenges in assigning CTE stage, the panel proposed a working protocol including a minimum threshold for CTE diagnosis and an algorithm for the assessment of CTE severity as "Low CTE" or "High CTE" for use in future clinical, pathological, and molecular studies.
Collapse
Affiliation(s)
- Kevin F Bieniek
- Department of Pathology, Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, Texas
| | - Nigel J Cairns
- Department of Neurology, Washington University School of Medicine, Saint Louis, Missouri
| | - John F Crary
- Departments of Pathology & Neuroscience, Ronald M. Loeb Center for Alzheimer’s Disease, Freidman Brain Institute, Icahn School of Medicine at Mount Sinai School, New York, New York
| | | | - Rebecca D Folkerth
- New York City Office of Chief Medical Examiner and Department of Forensic Medicine, New York University School of Medicine, New York, New York
| | - C Dirk Keene
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington
| | - Irene Litvan
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, California
| | - Daniel P Perl
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Thor D Stein
- VA Boston Healthcare System, Boston, Massachusetts
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts; Department of Veteran Affairs Medical Center, Bedford, Massachusetts
- Alzheimer's Disease Center, CTE Program, Boston University School of Medicine, Boston, Massachusetts; Department of Veteran Affairs Medical Center, Bedford, Massachusetts
| | - Jean-Paul Vonsattel
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York
| | - William Stewart
- Department of Neuropathology, University of Glasgow Institute of Neuroscience and Psychology and Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Kristen Dams-O’Connor
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Neurology (KD-O), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Wayne A Gordon
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yorghos Tripodis
- Alzheimer's Disease Center, CTE Program, Boston University School of Medicine, Boston, Massachusetts; Department of Veteran Affairs Medical Center, Bedford, Massachusetts
| | - Victor E Alvarez
- VA Boston Healthcare System, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts; Department of Veteran Affairs Medical Center, Bedford, Massachusetts
- Alzheimer's Disease Center, CTE Program, Boston University School of Medicine, Boston, Massachusetts; Department of Veteran Affairs Medical Center, Bedford, Massachusetts
| | - Jesse Mez
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts; Department of Veteran Affairs Medical Center, Bedford, Massachusetts
- Alzheimer's Disease Center, CTE Program, Boston University School of Medicine, Boston, Massachusetts; Department of Veteran Affairs Medical Center, Bedford, Massachusetts
| | - Michael L Alosco
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts; Department of Veteran Affairs Medical Center, Bedford, Massachusetts
- Alzheimer's Disease Center, CTE Program, Boston University School of Medicine, Boston, Massachusetts; Department of Veteran Affairs Medical Center, Bedford, Massachusetts
| | - Ann C McKee
- VA Boston Healthcare System, Boston, Massachusetts
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts; Department of Veteran Affairs Medical Center, Bedford, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts; Department of Veteran Affairs Medical Center, Bedford, Massachusetts
- Alzheimer's Disease Center, CTE Program, Boston University School of Medicine, Boston, Massachusetts; Department of Veteran Affairs Medical Center, Bedford, Massachusetts
| |
Collapse
|
35
|
Robinson JL, Porta S, Garrett FG, Zhang P, Xie SX, Suh E, Van Deerlin VM, Abner EL, Jicha GA, Barber JM, Lee VMY, Lee EB, Trojanowski JQ, Nelson PT. Limbic-predominant age-related TDP-43 encephalopathy differs from frontotemporal lobar degeneration. Brain 2021; 143:2844-2857. [PMID: 32830216 DOI: 10.1093/brain/awaa219] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/01/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
TAR-DNA binding protein-43 (TDP-43) proteinopathy is seen in multiple brain diseases. A standardized terminology was recommended recently for common age-related TDP-43 proteinopathy: limbic-predominant, age-related TDP-43 encephalopathy (LATE) and the underlying neuropathological changes, LATE-NC. LATE-NC may be co-morbid with Alzheimer's disease neuropathological changes (ADNC). However, there currently are ill-defined diagnostic classification issues among LATE-NC, ADNC, and frontotemporal lobar degeneration with TDP-43 (FTLD-TDP). A practical challenge is that different autopsy cohorts are composed of disparate groups of research volunteers: hospital- and clinic-based cohorts are enriched for FTLD-TDP cases, whereas community-based cohorts have more LATE-NC cases. Neuropathological methods also differ across laboratories. Here, we combined both cases and neuropathologists' diagnoses from two research centres-University of Pennsylvania and University of Kentucky. The study was designed to compare neuropathological findings between FTLD-TDP and pathologically severe LATE-NC. First, cases were selected from the University of Pennsylvania with pathological diagnoses of either FTLD-TDP (n = 33) or severe LATE-NC (mostly stage 3) with co-morbid ADNC (n = 30). Sections from these University of Pennsylvania cases were cut from amygdala, anterior cingulate, superior/mid-temporal, and middle frontal gyrus. These sections were stained for phospho-TDP-43 immunohistochemically and evaluated independently by two University of Kentucky neuropathologists blinded to case data. A simple set of criteria hypothesized to differentiate FTLD-TDP from LATE-NC was generated based on density of TDP-43 immunoreactive neuronal cytoplasmic inclusions in the neocortical regions. Criteria-based sensitivity and specificity of differentiating severe LATE-NC from FTLD-TDP cases with blind evaluation was ∼90%. Another proposed neuropathological feature related to TDP-43 proteinopathy in aged individuals is 'Alpha' versus 'Beta' in amygdala. Alpha and Beta status was diagnosed by neuropathologists from both universities (n = 5 raters). There was poor inter-rater reliability of Alpha/Beta classification (mean κ = 0.31). We next tested a separate cohort of cases from University of Kentucky with either FTLD-TDP (n = 8) or with relatively 'pure' severe LATE-NC (lacking intermediate or severe ADNC; n = 14). The simple criteria were applied by neuropathologists blinded to the prior diagnoses at University of Pennsylvania. Again, the criteria for differentiating LATE-NC from FTLD-TDP was effective, with sensitivity and specificity ∼90%. If more representative cases from each cohort (including less severe TDP-43 proteinopathy) had been included, the overall accuracy for identifying LATE-NC was estimated at >98% for both cohorts. Also across both cohorts, cases with FTLD-TDP died younger than those with LATE-NC (P < 0.0001). We conclude that in most cases, severe LATE-NC and FTLD-TDP can be differentiated by applying simple neuropathological criteria.
Collapse
Affiliation(s)
- John L Robinson
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsyvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsyvania, Philadelphia, PA, USA
| | - Sílvia Porta
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsyvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsyvania, Philadelphia, PA, USA
| | - Filip G Garrett
- Department of Pathology, University of Kentucky, Lexington, KY, USA
| | - Panpan Zhang
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Department of Biostatistics, Epidemiology and Informatics, University of Pennsyvania, Philadelphia, PA, USA
| | - Sharon X Xie
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Department of Biostatistics, Epidemiology and Informatics, University of Pennsyvania, Philadelphia, PA, USA
| | - EunRan Suh
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsyvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsyvania, Philadelphia, PA, USA
| | - Vivianna M Van Deerlin
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsyvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsyvania, Philadelphia, PA, USA
| | - Erin L Abner
- Department of Epidemiology, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Gregory A Jicha
- Department of Neurology, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Justin M Barber
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Virginia M-Y Lee
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsyvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsyvania, Philadelphia, PA, USA
| | - Edward B Lee
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsyvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsyvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsyvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsyvania, Philadelphia, PA, USA
| | - Peter T Nelson
- Department of Pathology, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
36
|
Arena JD, Johnson VE, Lee EB, Gibbons GS, Smith DH, Trojanowski JQ, Stewart W. Astroglial tau pathology alone preferentially concentrates at sulcal depths in chronic traumatic encephalopathy neuropathologic change. Brain Commun 2020; 2:fcaa210. [PMID: 33426528 PMCID: PMC7784042 DOI: 10.1093/braincomms/fcaa210] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/06/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Current diagnostic criteria for the neuropathological evaluation of the traumatic brain injury-associated neurodegeneration, chronic traumatic encephalopathy, define the pathognomonic lesion as hyperphosphorylated tau-immunoreactive neuronal and astroglial profiles in a patchy cortical distribution, clustered around small vessels and showing preferential localization to the depths of sulci. However, despite adoption into diagnostic criteria, there has been no formal assessment of the cortical distribution of the specific cellular components defining chronic traumatic encephalopathy neuropathologic change. To address this, we performed comprehensive mapping of hyperphosphorylated tau-immunoreactive neurofibrillary tangles and thorn-shaped astrocytes contributing to chronic traumatic encephalopathy neuropathologic change. From the Glasgow Traumatic Brain Injury Archive and the University of Pennsylvania Center for Neurodegenerative Disease Research Brain Bank, material was selected from patients with known chronic traumatic encephalopathy neuropathologic change, either following exposure to repetitive mild (athletes n = 17; non-athletes n = 1) or to single moderate or severe traumatic brain injury (n = 4), together with material from patients with previously confirmed Alzheimer's disease neuropathologic changes (n = 6) and no known exposure to traumatic brain injury. Representative sections were stained for hyperphosphorylated or Alzheimer's disease conformation-selective tau, after which stereotypical neurofibrillary tangles and thorn-shaped astrocytes were identified and mapped. Thorn-shaped astrocytes in chronic traumatic encephalopathy neuropathologic change were preferentially distributed towards sulcal depths [sulcal depth to gyral crest ratio of thorn-shaped astrocytes 12.84 ± 15.47 (mean ± standard deviation)], with this pathology more evident in material from patients with a history of survival from non-sport injury than those exposed to sport-associated traumatic brain injury (P = 0.009). In contrast, neurofibrillary tangles in chronic traumatic encephalopathy neuropathologic change showed a more uniform distribution across the cortex in sections stained for either hyperphosphorylated (sulcal depth to gyral crest ratio of neurofibrillary tangles 1.40 ± 0.74) or Alzheimer's disease conformation tau (sulcal depth to gyral crest ratio 1.64 ± 1.05), which was comparable to that seen in material from patients with known Alzheimer's disease neuropathologic changes (P = 0.82 and P = 0.91, respectively). Our data demonstrate that in chronic traumatic encephalopathy neuropathologic change the astroglial component alone shows preferential distribution to the depths of cortical sulci. In contrast, the neuronal pathology of chronic traumatic encephalopathy neuropathologic change is distributed more uniformly from gyral crest to sulcal depth and echoes that of Alzheimer's disease. These observations provide new insight into the neuropathological features of chronic traumatic encephalopathy that distinguish it from other tau pathologies and suggest that current diagnostic criteria should perhaps be reviewed and refined.
Collapse
Affiliation(s)
- John D Arena
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Victoria E Johnson
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Translational Neuropathology Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Garrett S Gibbons
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas H Smith
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William Stewart
- Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK.,Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
37
|
Alosco ML, Cherry JD, Huber BR, Tripodis Y, Baucom Z, Kowall NW, Saltiel N, Goldstein LE, Katz DI, Dwyer B, Daneshvar DH, Palmisano JN, Martin B, Cantu RC, Stern RA, Alvarez VE, Mez J, Stein TD, McKee AC. Characterizing tau deposition in chronic traumatic encephalopathy (CTE): utility of the McKee CTE staging scheme. Acta Neuropathol 2020; 140:495-512. [PMID: 32778942 PMCID: PMC7914059 DOI: 10.1007/s00401-020-02197-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a tauopathy associated with repetitive head impacts (RHI) that has been neuropathologically diagnosed in American football players and other contact sport athletes. In 2013, McKee and colleagues proposed a staging scheme for characterizing the severity of the hyperphosphorylated tau (p-tau) pathology, the McKee CTE staging scheme. The staging scheme defined four pathological stages of CTE, stages I(mild)-IV(severe), based on the density and regional deposition of p-tau. The objective of this study was to test the utility of the McKee CTE staging scheme, and provide a detailed examination of the regional distribution of p-tau in CTE. We examined the relationship between the McKee CTE staging scheme and semi-quantitative and quantitative assessments of regional p-tau pathology, age at death, dementia, and years of American football play among 366 male brain donors neuropathologically diagnosed with CTE (mean age 61.86, SD 18.90). Spearman's rho correlations showed that higher CTE stage was associated with higher scores on all semi-quantitative and quantitative assessments of p-tau severity and density (p's < 0.001). The severity and distribution of CTE p-tau followed an age-dependent progression: older age was associated with increased odds for having a higher CTE stage (p < 0.001). CTE stage was independently associated with increased odds for dementia (p < 0.001). K-medoids cluster analysis of the semi-quantitative scales of p-tau across 14 regions identified 5 clusters of p-tau that conformed to increasing CTE stage (stage IV had 2 slightly different clusters), age at death, dementia, and years of American football play. There was a predilection for p-tau pathology in five regions: dorsolateral frontal cortex (DLF), superior temporal cortex, entorhinal cortex, amygdala, and locus coeruleus (LC), with CTE in the youngest brain donors and lowest CTE stage restricted to DLF and LC. These findings support the usefulness of the McKee CTE staging scheme and demonstrate the regional distribution of p-tau in CTE.
Collapse
Affiliation(s)
- Michael L Alosco
- Department of Neurology, Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, USA
| | - Jonathan D Cherry
- Department of Neurology, Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, USA
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
| | - Bertrand Russell Huber
- Department of Neurology, Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- National Center for PTSD, VA Boston Healthcare, Boston, USA
| | - Yorghos Tripodis
- Department of Neurology, Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, USA
| | - Zachary Baucom
- Department of Biostatistics, Boston University School of Public Health, Boston, USA
| | - Neil W Kowall
- Department of Neurology, Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, USA
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
| | - Nicole Saltiel
- Department of Neurology, Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, USA
| | - Lee E Goldstein
- Department of Neurology, Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, USA
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, USA
- Department of Ophthalmology, Boston University School of Medicine, Boston, USA
- Department of Biomedical Engineering, Boston University College of Engineering, Boston, USA
- Department of Electrical and Computer Engineering, Boston University College of Engineering, Boston, USA
| | - Douglas I Katz
- Department of Neurology, Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, USA
- Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Brigid Dwyer
- Department of Neurology, Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, USA
- Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Daniel H Daneshvar
- Department of Neurology, Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, USA
| | - Joseph N Palmisano
- Department of Neurology, Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, USA
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, USA
| | - Brett Martin
- Department of Neurology, Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, USA
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, USA
| | - Robert C Cantu
- Department of Neurology, Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, USA
- Department of Neurosurgery, Boston University School of Medicine, Boston, USA
- Concussion Legacy Foundation, Boston, MA, USA
- Department of Neurosurgery, Emerson Hospital, Concord, USA
| | - Robert A Stern
- Department of Neurology, Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, USA
- Department of Neurosurgery, Boston University School of Medicine, Boston, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, USA
| | - Victor E Alvarez
- Department of Neurology, Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Jesse Mez
- Department of Neurology, Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, USA
| | - Thor D Stein
- Department of Neurology, Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, USA
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Ann C McKee
- Department of Neurology, Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, USA.
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, USA.
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA.
- Department of Veterans Affairs Medical Center, Bedford, MA, USA.
| |
Collapse
|
38
|
Kovacs GG, Robinson JL, Perl DP, Lee VMY, Trojanowski JQ. Thorn-shaped astrocytes in the depth of cortical sulci in Western Pacific ALS/Parkinsonism-Dementia complex. Acta Neuropathol 2020; 140:591-593. [PMID: 32662040 PMCID: PMC7986993 DOI: 10.1007/s00401-020-02192-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Gabor G Kovacs
- Center for Neurodegenerative Disease Research (CNDR), Institute On Aging and Department of Pathology and Laboratory Medicine, University of Pennsylvania, 3600 Spruce Street, 3 Maloney Building, Philadelphia, PA, 19104-4283, USA.
- Tanz Centre for Research in Neurodegenerative Disease (CRND), University of Toronto, Krembil Discovery Tower, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada.
| | - John L Robinson
- Center for Neurodegenerative Disease Research (CNDR), Institute On Aging and Department of Pathology and Laboratory Medicine, University of Pennsylvania, 3600 Spruce Street, 3 Maloney Building, Philadelphia, PA, 19104-4283, USA
| | - Daniel P Perl
- Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research (CNDR), Institute On Aging and Department of Pathology and Laboratory Medicine, University of Pennsylvania, 3600 Spruce Street, 3 Maloney Building, Philadelphia, PA, 19104-4283, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research (CNDR), Institute On Aging and Department of Pathology and Laboratory Medicine, University of Pennsylvania, 3600 Spruce Street, 3 Maloney Building, Philadelphia, PA, 19104-4283, USA.
| |
Collapse
|
39
|
Abstract
With age, the presence of multiple neuropathologies in a single individual becomes increasingly common. Given that traumatic brain injury and the repetitive head impacts (RHIs) that occur in contact sports have been associated with the development of many neurodegenerative diseases, including chronic traumatic encephalopathy (CTE), Alzheimer's disease, Lewy body disease, and amyotrophic lateral sclerosis, it is becoming critical to understand the relationship and interactions between these pathologies. In fact, comorbid pathology is common in CTE and likely influenced by both age and the severity and type of exposure to RHI as well as underlying genetic predisposition. Here, we review the major comorbid pathologies seen with CTE and in former contact sports athletes and discuss what is known about the associations between RHI, age, and the development of neuropathologies. In addition, we examine the distinction between CTE and age-related pathology including primary age-related tauopathy and age-related tau astrogliopathy.
Collapse
Affiliation(s)
- Thor D. Stein
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts,Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts,Departments of Research and Pathology & Laboratory Medicine, VA Boston Healthcare System, Boston, Massachusetts,Department of Veterans Affairs Medical Center, Bedford, Massachusetts
| | - John F. Crary
- Department of Pathology, Neuropathology Brain Bank & Research Core, Ronald M. Loeb Center for Alzheimer’s Disease, Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York
| |
Collapse
|
40
|
McKee AC. The Neuropathology of Chronic Traumatic Encephalopathy: The Status of the Literature. Semin Neurol 2020; 40:359-369. [PMID: 32712946 DOI: 10.1055/s-0040-1713632] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic traumatic encephalopathy (CTE) is a tauopathy associated with repetitive mild head trauma, including concussion and asymptomatic subconcussive impacts. CTE was first recognized in boxers almost a century ago and has been identified more recently in contact sports athletes, military veterans exposed to blast, and victims of domestic violence. Like most neurodegenerative diseases, CTE is diagnosed conclusively by a neuropathological examination of brain tissue. CTE is characterized by the buildup of hyperphosphorylated tau (p-tau) in neurofibrillary tangles (NFTs), neurites, and, sometimes, astrocytes, surrounding small blood vessels in a patchy distribution at the sulcal depths of the cerebral cortex. In 2015, using the McKee proposed criteria for the neuropathological diagnosis of CTE, a consensus panel of expert neuropathologists confirmed CTE as a unique neurodegenerative disease with a pathognomonic lesion and published the preliminary NINDS (National Institute of Neurological Disorders and Stroke) criteria for CTE. Since that time, the NINDS criteria for CTE have been implemented and validated in multiple international publications. Using the NINDS criteria, the largest clinicopathological series of CTE to date was reported that included 177 former American football players, including 110 (99%) of 111 former National Football League players, 48 (91%) of 53 former college football players, and 3 (21%) of 14 former high school players. Studies have also shown a significant association between cumulative exposure to repetitive head trauma, as judged by the length of American football playing career, and risk for and severity of CTE. There is also a significant relationship of the length of football playing career with p-tau pathology, inflammation, white matter rarefaction, and age at death in CTE. While p-tau pathology, inflammation, white matter rarefaction, and arteriolosclerosis contribute to dementia in CTE, whether they also influence the behavioral and mood symptoms in CTE has yet to be determined. There have been several instances of aging-related tau astrogliopathy (ARTAG), a common astrocytic pathology in the elderly, misdiagnosed as CTE in the recent literature, provoking claims that CTE pathology is present in people not known to have experienced repetitive head trauma. Although ARTAG is often found in CTE, the pathognomonic lesion of CTE is a neuronal lesion consisting of NFTs and neurites, with or without p-tau immunoreactive astrocytes. Some authors consider β-amyloid (Aβ) to be a primary feature of CTE, yet the data indicate that CTE is a primary tauopathy, with Aβ deposition a function of age and inheritance of the ApoEe4 allele. Some authors also question the progressive nature of CTE pathology, although there is clear evidence in most individuals that p-tau pathology increases in density and affects more brain regions with survival. This review is intended to outline the status of the evidence-based literature regarding CTE neuropathology and to address the misrepresentations and confusions that have arisen in recent reviews and a letter of correspondence.
Collapse
Affiliation(s)
- Ann C McKee
- Boston University School of Medicine, Boston, Massachusetts.,Boston University Alzheimer's Disease Center, Boston, Massachusetts.,Chronic Traumatic Encephalopathy Center, Boston University, Boston, Massachusetts.,VA Boston Healthcare System, Boston, Massachusetts
| |
Collapse
|
41
|
Nolan A, De Paula Franca Resende E, Petersen C, Neylan K, Spina S, Huang E, Seeley W, Miller Z, Grinberg LT. Astrocytic Tau Deposition Is Frequent in Typical and Atypical Alzheimer Disease Presentations. J Neuropathol Exp Neurol 2020; 78:1112-1123. [PMID: 31626288 DOI: 10.1093/jnen/nlz094] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Typical Alzheimer disease (AD) features an amnestic syndrome that reflects the progression of pathology through specific neural networks. However, a subset of patients exhibits atypical onset with prominent language, behavioral, or visuospatial deficits that are not explained by current neuropathological staging schemes. Astrogliopathy featuring tau inclusions with thorn-shaped and granular fuzzy morphologies is common in the aging brain and collectively known as aging-related tau astrogliopathy (ARTAG). Prior studies have identified tau-positive thorn-shaped astrocytes in the white matter that associate with a primary progressive aphasia phenotype in an AD cohort. However, a possible contribution of ARTAG copathology to AD clinical heterogeneity has yet to be systematically examined. To investigate whether ARTAG pathology contributes to atypical presentations, we mapped the presence and density of ARTAG subtypes throughout cortical and subcortical regions in a well-characterized cohort of AD cases enriched for atypical presentations. In our cohort, ARTAG pathology is frequent and correlates with older age and higher Braak stage. ARTAG subtypes exhibit distinct distribution patterns with subpial and subependymal deposition occurring in the amygdala, while white and grey matter astrocytic deposition are distributed throughout cortical regions. However, ARTAG pathology is equally prevalent in cases with typical and atypical clinical presentations.
Collapse
Affiliation(s)
- Amber Nolan
- Department of Anatomic Pathology, University of California, San Francisco, CA; Memory and Aging Center, University of California, San Francisco, California; and Global Brain Health Institute based at University of California, San Francisco and Trinity College, Dublin, Ireland
| | - Elisa De Paula Franca Resende
- Department of Anatomic Pathology, University of California, San Francisco, CA; Memory and Aging Center, University of California, San Francisco, California; and Global Brain Health Institute based at University of California, San Francisco and Trinity College, Dublin, Ireland
| | - Cathrine Petersen
- Department of Anatomic Pathology, University of California, San Francisco, CA; Memory and Aging Center, University of California, San Francisco, California; and Global Brain Health Institute based at University of California, San Francisco and Trinity College, Dublin, Ireland
| | - Kyra Neylan
- Department of Anatomic Pathology, University of California, San Francisco, CA; Memory and Aging Center, University of California, San Francisco, California; and Global Brain Health Institute based at University of California, San Francisco and Trinity College, Dublin, Ireland
| | - Salvatore Spina
- Department of Anatomic Pathology, University of California, San Francisco, CA; Memory and Aging Center, University of California, San Francisco, California; and Global Brain Health Institute based at University of California, San Francisco and Trinity College, Dublin, Ireland
| | - Eric Huang
- Department of Anatomic Pathology, University of California, San Francisco, CA; Memory and Aging Center, University of California, San Francisco, California; and Global Brain Health Institute based at University of California, San Francisco and Trinity College, Dublin, Ireland
| | - William Seeley
- Department of Anatomic Pathology, University of California, San Francisco, CA; Memory and Aging Center, University of California, San Francisco, California; and Global Brain Health Institute based at University of California, San Francisco and Trinity College, Dublin, Ireland
| | - Zachary Miller
- Department of Anatomic Pathology, University of California, San Francisco, CA; Memory and Aging Center, University of California, San Francisco, California; and Global Brain Health Institute based at University of California, San Francisco and Trinity College, Dublin, Ireland
| | - Lea T Grinberg
- Department of Anatomic Pathology, University of California, San Francisco, CA; Memory and Aging Center, University of California, San Francisco, California; and Global Brain Health Institute based at University of California, San Francisco and Trinity College, Dublin, Ireland
| |
Collapse
|
42
|
Iverson GL, Gardner AJ, Shultz SR, Solomon GS, McCrory P, Zafonte R, Perry G, Hazrati LN, Keene CD, Castellani RJ. Chronic traumatic encephalopathy neuropathology might not be inexorably progressive or unique to repetitive neurotrauma. Brain 2020; 142:3672-3693. [PMID: 31670780 PMCID: PMC6906593 DOI: 10.1093/brain/awz286] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/01/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022] Open
Abstract
In the 20th century, chronic traumatic encephalopathy (CTE) was conceptualized as a neurological disorder affecting some active and retired boxers who had tremendous exposure to neurotrauma. In recent years, the two research groups in the USA who have led the field have asserted definitively that CTE is a delayed-onset and progressive neurodegenerative disease, with symptoms appearing in midlife or decades after exposure. Between 2005 and 2012 autopsy cases of former boxers and American football players described neuropathology attributed to CTE that was broad and diverse. This pathology, resulting from multiple causes, was aggregated and referred to, in toto, as the pathology ‘characteristic’ of CTE. Preliminary consensus criteria for defining the neuropathology of CTE were forged in 2015 and published in 2016. Most of the macroscopic and microscopic neuropathological findings described as characteristic of CTE, in studies published before 2016, were not included in the new criteria for defining the pathology. In the past few years, there has been steadily emerging evidence that the neuropathology described as unique to CTE may not be unique. CTE pathology has been described in individuals with no known participation in collision or contact sports and no known exposure to repetitive neurotrauma. This pathology has been reported in individuals with substance abuse, temporal lobe epilepsy, amyotrophic lateral sclerosis, multiple system atrophy, and other neurodegenerative diseases. Moreover, throughout history, some clinical cases have been described as not being progressive, and there is now evidence that CTE neuropathology might not be progressive in some individuals. Considering the current state of knowledge, including the absence of a series of validated sensitive and specific biomarkers, CTE pathology might not be inexorably progressive or specific to those who have experienced repetitive neurotrauma.
Collapse
Affiliation(s)
- Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA.,Spaulding Rehabilitation Hospital and Spaulding Research Institute, Boston, Massachusetts, USA.,MassGeneral Hospital for Children™ Sports Concussion Program, Boston, Massachusetts, USA.,Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Boston, Massachusetts, USA
| | - Andrew J Gardner
- Hunter New England Local Health District, Sports Concussion Program, University of Newcastle, Callaghan, NSW, Australia.,Centre for Stroke and Brain Injury, School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Gary S Solomon
- Department of Neurological Surgery, Orthopaedic Surgery and Rehabilitation, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Vanderbilt Sports Concussion Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Paul McCrory
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre - Austin Campus, Heidelberg, Victoria Australia
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA.,Spaulding Rehabilitation Hospital and Spaulding Research Institute, Boston, Massachusetts, USA.,Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Boston, Massachusetts, USA
| | - George Perry
- College of Sciences, University of Texas, San Antonio; San Antonio, Texas, USA
| | - Lili-Naz Hazrati
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - C Dirk Keene
- Department of Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Rudolph J Castellani
- Department of Pathology, Anatomy and Laboratory Medicine, West Virginia University School of Medicine, Morgantown, USA.,Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, USA
| |
Collapse
|
43
|
Miki T, Yokota O, Haraguchi T, Ishizu H, Hasegawa M, Ishihara T, Ueno SI, Takenoshita S, Terada S, Yamada N. Factors associated with development and distribution of granular/fuzzy astrocytes in neurodegenerative diseases. Brain Pathol 2020; 30:811-830. [PMID: 32293067 PMCID: PMC7383906 DOI: 10.1111/bpa.12843] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Granular/fuzzy astrocytes (GFAs), a subtype of “aging‐related tau astrogliopathy,” are noted in cases bearing various neurodegenerative diseases. However, the pathogenic significance of GFAs remains unclear. We immunohistochemically examined the frontal cortex, caudate nucleus, putamen and amygdala in 105 cases composed of argyrophilic grain disease cases (AGD, N = 26), and progressive supranuclear palsy (PSP, N = 10), Alzheimer’s disease (AD, N = 20) and primary age‐related tauopathy cases (PART, N = 18) lacking AGD, as well as 31 cases bearing other various neurodegenerative diseases to clarify (i) the distribution patterns of GFAs in AGD, and PSP, AD and PART lacking AGD, (ii) the impacts of major pathological factors and age on GFA formation and (iii) immunohistochemical features useful to understand the formation process of GFAs. In AGD cases, GFAs consistently occurred in the amygdala (100%), followed by the putamen (69.2%) and caudate nucleus and frontal cortex (57.7%, respectively). In PSP cases without AGD, GFAs were almost consistently noted in all regions examined (90–100%). In AD cases without AGD, GFAs were less frequent, developing preferably in the putamen (35.0%) and caudate nucleus (30.0%). PART cases without AGD had GFAs most frequently in the amygdala (35.3%), being more similar to AGD than to AD cases. Ordered logistic regression analyses using all cases demonstrated that the strongest independent factor of GFA formation in the frontal cortex and striatum was the diagnosis of PSP, while that in the amygdala was AGD. The age was not significantly associated with GFA formation in any region. In GFAs in AGD cases, phosphorylation and conformational change of tau, Gallyas‐positive glial threads indistinguishable from those in tufted astrocytes, and the activation of autophagy occurred sequentially. Given these findings, AGD, PSP, AD and PART cases may show distinct distributions of GFAs, which may provide clues to predict the underlying processes of primary tauopathies.
Collapse
Affiliation(s)
- Tomoko Miki
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Osamu Yokota
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department of Psychiatry, Kinoko Espoir Hospital, Okayama, Japan.,Department of Laboratory Medicine and Pathology, Zikei Institute of Psychiatry, Okayama, Japan.,Department of Neurology, National Hospital Organization Minami-Okayama Medical Center, Okayama, Japan
| | - Takashi Haraguchi
- Department of Neurology, National Hospital Organization Minami-Okayama Medical Center, Okayama, Japan
| | - Hideki Ishizu
- Department of Laboratory Medicine and Pathology, Zikei Institute of Psychiatry, Okayama, Japan
| | - Masato Hasegawa
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Okayama, Japan
| | - Shu-Ichi Ueno
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Shintaro Takenoshita
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Seishi Terada
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Norihito Yamada
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
44
|
Arena JD, Smith DH, Lee EB, Gibbons GS, Irwin DJ, Robinson JL, Lee VMY, Trojanowski JQ, Stewart W, Johnson VE. Tau immunophenotypes in chronic traumatic encephalopathy recapitulate those of ageing and Alzheimer's disease. Brain 2020; 143:1572-1587. [PMID: 32390044 PMCID: PMC7241956 DOI: 10.1093/brain/awaa071] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/21/2020] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a risk factor for neurodegenerative disease, including chronic traumatic encephalopathy (CTE). Preliminary consensus criteria define the pathognomonic lesion of CTE as patchy tau pathology within neurons and astrocytes at the depths of cortical sulci. However, the specific tau isoform composition and post-translational modifications in CTE remain largely unexplored. Using immunohistochemistry, we performed tau phenotyping of CTE neuropathologies and compared this to a range of tau pathologies, including Alzheimer's disease, primary age-related tauopathy, ageing-related tau astrogliopathy and multiple subtypes of frontotemporal lobar degeneration with tau inclusions. Cases satisfying preliminary consensus diagnostic criteria for CTE neuropathological change (CTE-NC) were identified (athletes, n = 10; long-term survivors of moderate or severe TBI, n = 4) from the Glasgow TBI Archive and Penn Neurodegenerative Disease Brain Bank. In addition, material from a range of autopsy-proven ageing-associated and primary tauopathies in which there was no known history of exposure to TBI was selected as non-injured controls (n = 32). Each case was then stained with a panel of tau antibodies specific for phospho-epitopes (PHF1, CP13, AT100, pS262), microtubule-binding repeat domains (3R, 4R), truncation (Tau-C3) or conformation (GT-7, GT-38) and the extent and distribution of staining assessed. Cell types were confirmed with double immunofluorescent labelling. Results demonstrate that astroglial tau pathology in CTE is composed of 4R-immunoreactive thorn-shaped astrocytes, echoing the morphology and immunophenotype of astrocytes encountered in ageing-related tau astrogliopathy. In contrast, neurofibrillary tangles of CTE contain both 3R and 4R tau, with post-translational modifications and conformations consistent with Alzheimer's disease and primary age-related tauopathy. Our observations establish that the astroglial and neurofibrillary tau pathologies of CTE are phenotypically distinct from each other and recapitulate the tau immunophenotypes encountered in ageing and Alzheimer's disease. As such, the immunohistochemical distinction of CTE neuropathology from other mixed 3R/4R tauopathies of Alzheimer's disease and ageing may rest solely on the pattern and distribution of pathology.
Collapse
Affiliation(s)
- John D Arena
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas H Smith
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Translational Neuropathology Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Garrett S Gibbons
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John L Robinson
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Virginia M -Y Lee
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - William Stewart
- Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Victoria E Johnson
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
45
|
Abstract
Astrocytes contribute to the pathogenesis of neurodegenerative proteinopathies as influencing neuronal degeneration or neuroprotection, and also act as potential mediators of the propagation or elimination of disease-associated proteins. Protein astrogliopathies can be observed in different forms of neurodegenerative conditions. Morphological characterization of astrogliopathy is used only for the classification of tauopathies. Currently, at least six types of astrocytic tau pathologies are distinguished. Astrocytic plaques (AP), tufted astrocytes (TAs), ramified astrocytes (RA), and globular astroglial inclusions are seen predominantly in primary tauopathies, while thorn-shaped astrocytes (TSA) and granular/fuzzy astrocytes (GFA) are evaluated in aging-related tau astrogliopathy (ARTAG). ARTAG can be seen in the white and gray matter and subpial, subependymal, and perivascular locations. Some of these overlap with the features of tau pathology seen in Chronic traumatic encephalopathy (CTE). Furthermore, gray matter ARTAG shares features with primary tauopathy-related astrocytic tau pathology. Sequential distribution patterns have been described for tau astrogliopathies. Importantly, astrocytic tau pathology in primary tauopathies can be observed in brain areas without neuronal tau deposition. The various morphologies of tau astrogliopathy might reflect a role in the propagation of pathological tau protein, an early response to a yet unidentified neurodegeneration-inducing event, or, particularly for ARTAG, a response to a repeated or prolonged pathogenic process such as blood-brain barrier dysfunction or local mechanical impact. The concept of tau astrogliopathies and ARTAG facilitated communication among research disciplines and triggered the investigation of the significance of astrocytic lesions in neurodegenerative conditions.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| |
Collapse
|
46
|
Castellani RJ, Smith M, Bailey K, Perry G, deJong JL. Neuropathology in Consecutive Forensic Consultation Cases with a History of Remote Traumatic Brain Injury. J Alzheimers Dis 2019; 72:683-691. [PMID: 31609691 DOI: 10.3233/jad-190782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Traumatic brain injury (TBI) is widely assumed to be causal in neurodegenerative disease, based on epidemiological surveys demonstrating an increased risk of Alzheimer disease (AD) following TBI, and on recent theories surrounding repetitive head movement. We tested this assumption by evaluating 30 consecutive forensic examinations in which neuropathology consultation was sought, and in which a history of remote TBI was uncovered during the course of the investigation. In this series, there was a high frequency of psychiatric co-morbidities (100%), remote contusion (90%), and seizures (63%). Extent of proteinopathy showed no differences with age-matched controls. A subset of the cases showed focal geographic tauopathy that correlated with older age at autopsy, but had no correlation with clinical signs, and was minimal in comparison with the encephalomalacia secondary to trauma. The results suggest that cerebral contusion and post-traumatic epilepsy may be over-represented in civilian TBI, while structural brain damage from trauma is the predominant cause of morbidity following TBI. We found no evidence that TBI initiates a progressive proteinopathy.
Collapse
Affiliation(s)
- Rudy J Castellani
- Department of Pathology, Anatomy, and Laboratory Medicine, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA.,Department of Pathology, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Margaret Smith
- Department of Pathology, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Kristi Bailey
- Department of Pathology, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - George Perry
- College of Sciences, University of Texas, San Antonio, San Antonio, TX, USA
| | - Joyce L deJong
- Department of Pathology, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| |
Collapse
|