1
|
Śliwa-Dominiak J, Czechowska K, Blanco A, Sielatycka K, Radaczyńska M, Skonieczna-Żydecka K, Marlicz W, Łoniewski I. Flow Cytometry in Microbiology: A Review of the Current State in Microbiome Research, Probiotics, and Industrial Manufacturing. Cytometry A 2025; 107:145-164. [PMID: 40028773 DOI: 10.1002/cyto.a.24920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/22/2024] [Accepted: 01/25/2025] [Indexed: 03/05/2025]
Abstract
Flow cytometry (FC) is a versatile and powerful tool in microbiology, enabling precise analysis of single cells for a variety of applications, including the detection and quantification of bacteria, viruses, fungi, as well as algae, phytoplankton, and parasites. Its utility in assessing cell viability, metabolic activity, immune responses, and pathogen-host interactions makes it indispensable in both research and diagnostics. The analysis of microbiota (community of microorganisms) and microbiome (collective genomes of the microorganisms) has become essential for understanding the intricate role of microbial communities in health, disease, and physiological functions. FC offers a promising complement, providing rapid, cost-effective, and dynamic profiling of microbial communities, with the added ability to isolate and sort bacterial populations for further analysis. In the probiotic industry, FC facilitates fast, affordable, and versatile analyses, helping assess both probiotics and postbiotics. It also supports the study of bacterial viability under stress conditions, including gastric acid and bile, improving insight into probiotic survival and adhesion to the intestinal mucosa. Additionally, the integration of Machine Learning in microbiology research has transformative potential, improving data analysis and supporting advances in personalized medicine and probiotic formulations. Despite the need for further standardization, FC continues to evolve as a key tool in modern microbiology and clinical diagnostics.
Collapse
Affiliation(s)
- Joanna Śliwa-Dominiak
- Research and Development Centre, Sanprobi, Szczecin, Poland
- Department of Biochemical Science, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| | | | - Alfonso Blanco
- Flow Cytometry Core Technology, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Katarzyna Sielatycka
- Research and Development Centre, Sanprobi, Szczecin, Poland
- Institute of Biology, Faculty of Exact and Natural Sciences, University of Szczecin, Szczecin, Poland
| | - Martyna Radaczyńska
- Research and Development Centre, Sanprobi, Szczecin, Poland
- Department of Biochemical Science, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| | - Karolina Skonieczna-Żydecka
- Research and Development Centre, Sanprobi, Szczecin, Poland
- Department of Biochemical Science, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| | - Wojciech Marlicz
- Research and Development Centre, Sanprobi, Szczecin, Poland
- Department of Gastroenterology, Faculty of Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Igor Łoniewski
- Research and Development Centre, Sanprobi, Szczecin, Poland
- Department of Biochemical Science, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
2
|
Tevlek A. Diagnostic use of circulating cells and sub-cellular bio-particles. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 192:19-36. [PMID: 39159788 DOI: 10.1016/j.pbiomolbio.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 08/21/2024]
Abstract
In the bloodstream or other physiological fluids, "circulating cells and sub-cellular bio-particles" include many microscopic biological elements such as circulating tumor cells (CTCs), cell-free DNA (cfDNA), exosomes, microRNAs, platelets, immune cells, and proteins are the most well-known and investigated. These structures are crucial biomarkers in healthcare and medical research for the early detection of cancer and other disorders, enabling treatment to commence before the onset of clinical symptoms and enhancing the efficacy of treatments. As the size of these biomarkers to be detected decreases and their numbers in body fluids diminishes, the detection materials, ranging from visual inspection to advanced microscopy techniques, begin to become smaller, more sensitive, faster, and more effective, thanks to developing nanotechnology. This review first defines the circulating cells and subcellular bio-particles with their biological, physical, and mechanical properties and second focuses on their diagnostic importance, including their most recent applications as biomarkers, the biosensors that are utilized to detect them, the present obstacles that must be surmounted, and prospective developments in the domain. As technology advances and biomolecular pathways are deepens, diagnostic tests will become more sensitive, specific, and thorough. Finally, integrating recent advances in the diagnostic use of circulating cells and bioparticles into clinical practice is promising for precision medicine and patient outcomes.
Collapse
Affiliation(s)
- Atakan Tevlek
- Department of Medical Biology, Faculty of Medicine, Atilim University, Ankara, 06836, Turkey.
| |
Collapse
|
3
|
Lingasamy P, Modhukur V, Mändar R, Salumets A. Exploring Immunome and Microbiome Interplay in Reproductive Health: Current Knowledge, Challenges, and Novel Diagnostic Tools. Semin Reprod Med 2023; 41:172-189. [PMID: 38262441 PMCID: PMC10846929 DOI: 10.1055/s-0043-1778017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The dynamic interplay between the immunome and microbiome in reproductive health is a complex and rapidly advancing research field, holding tremendously vast possibilities for the development of reproductive medicine. This immunome-microbiome relationship influences the innate and adaptive immune responses, thereby affecting the onset and progression of reproductive disorders. However, the mechanisms governing these interactions remain elusive and require innovative approaches to gather more understanding. This comprehensive review examines the current knowledge on reproductive microbiomes across various parts of female reproductive tract, with special consideration of bidirectional interactions between microbiomes and the immune system. Additionally, it explores innate and adaptive immunity, focusing on immunoglobulin (Ig) A and IgM antibodies, their regulation, self-antigen tolerance mechanisms, and their roles in immune homeostasis. This review also highlights ongoing technological innovations in microbiota research, emphasizing the need for standardized detection and analysis methods. For instance, we evaluate the clinical utility of innovative technologies such as Phage ImmunoPrecipitation Sequencing (PhIP-Seq) and Microbial Flow Cytometry coupled to Next-Generation Sequencing (mFLOW-Seq). Despite ongoing advancements, we emphasize the need for further exploration in this field, as a deeper understanding of immunome-microbiome interactions holds promise for innovative diagnostic and therapeutic strategies for reproductive health, like infertility treatment and management of pregnancy.
Collapse
Affiliation(s)
| | - Vijayachitra Modhukur
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Reet Mändar
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Quaranta G, Ianiro G, De Maio F, Guarnaccia A, Fancello G, Agrillo C, Iannarelli F, Bibbo S, Amedei A, Sanguinetti M, Cammarota G, Masucci L. "Bacterial Consortium": A Potential Evolution of Fecal Microbiota Transplantation for the Treatment of Clostridioides difficile Infection. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5787373. [PMID: 35978650 PMCID: PMC9377877 DOI: 10.1155/2022/5787373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022]
Abstract
Fecal microbiota transplantation (FMT) consists of infusion of feces from a donor to a recipient patient in order to restore the resident microbial population. FMT has shown to be a valid clinical option for Clostridioides difficile infections (CDI). However, this approach shows several criticalities, such as the recruiting and screening of voluntary donors. Our aim was to evaluate the therapeutic efficacy of a synthetic bacterial suspension defined "Bacterial Consortium" (BC) infused in the colon of CDI patients. The suspension was composed by 13 microbial species isolated by culturomics protocols from healthy donors' feces. The efficacy of the treatment was assessed both clinically and by metagenomics typing. Fecal samples of the recipient patients were collected before and after infusion. DNA samples obtained from feces at different time points (preinfusion, 7, 15, 30, and 90 days after infusion) were analyzed by next-generation sequencing. Before infusion, patient 1 showed an intestinal microbiota dominated by the phylum Bacteroidetes. Seven days after the infusion, Bacteroidetes decreased, followed by an implementation of Firmicutes and Verrucomicrobia. Patient 2, before infusion, showed a strong abundance of Proteobacteria and a significant deficiency of Bacteroidetes and Verrucomicrobia. Seven days after infusion, Proteobacteria strongly decreased, while Bacteroidetes and Verrucomicrobia increased. Metagenomics data revealed an "awakening" by microbial species absent or low concentrated at time T0 and present after the infusion. In conclusion, the infusion of selected bacteria would act as a trigger factor for "bacterial repopulation" representing an innovative treatment in patients with Clostridioides difficile infections.
Collapse
Affiliation(s)
- Gianluca Quaranta
- Department of Laboratory and Infectious Sciences, A. Gemelli University Hospital IRCCS, 00168 Rome, Italy
| | - Gianluca Ianiro
- Digestive Disease Center, A. Gemelli University Hospital IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Flavio De Maio
- Department of Laboratory and Infectious Sciences, A. Gemelli University Hospital IRCCS, 00168 Rome, Italy
| | - Alessandra Guarnaccia
- Department of Laboratory and Infectious Sciences, A. Gemelli University Hospital IRCCS, 00168 Rome, Italy
| | - Giovanni Fancello
- Department of Laboratory and Infectious Sciences, A. Gemelli University Hospital IRCCS, 00168 Rome, Italy
| | - Chiara Agrillo
- Department of Laboratory and Infectious Sciences, A. Gemelli University Hospital IRCCS, 00168 Rome, Italy
| | - Federica Iannarelli
- Department of Laboratory and Infectious Sciences, A. Gemelli University Hospital IRCCS, 00168 Rome, Italy
| | - Stefano Bibbo
- Digestive Disease Center, A. Gemelli University Hospital IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence and Department of Biomedicine, University Hospital Careggi (AOUC), 50139 Florence, Italy
| | - Maurizio Sanguinetti
- Department of Laboratory and Infectious Sciences, A. Gemelli University Hospital IRCCS, 00168 Rome, Italy
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Giovanni Cammarota
- Digestive Disease Center, A. Gemelli University Hospital IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Luca Masucci
- Department of Laboratory and Infectious Sciences, A. Gemelli University Hospital IRCCS, 00168 Rome, Italy
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
5
|
Handel AS, Muller WJ, Planet PJ. Metagenomic Next-Generation Sequencing (mNGS): SARS-CoV-2 as an Example of the Technology's Potential Pediatric Infectious Disease Applications. J Pediatric Infect Dis Soc 2021; 10:S69-S70. [PMID: 34951468 PMCID: PMC8755271 DOI: 10.1093/jpids/piab108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metagenomic next-generation sequencing (mNGS) has emerged as a potentially powerful tool in clinical diagnosis, hospital epidemiology, microbial evolutionary biology, and studies of host-pathogen interaction. The SARS-CoV-2 pandemic provides a framework for demonstrating the applications of this technology in each of these areas. In this Supplement, we review applications of mNGS within the discipline of pediatric infectious diseases.
Collapse
Affiliation(s)
- Andrew S Handel
- Department of Pediatrics, Division of Infectious Diseases, Stony Brook Children’s Hospital, Stony Brook, New York, USA,Corresponding Author:> Andrew S. Handel, MD, Department of Pediatrics, Division of Infectious Diseases, Stony Brook Children’s Hospital, 101 Nicolls Road, HSC-T11, Stony Brook, NY 11794, USA. E-mail:
| | - William J Muller
- Department of Pediatrics, Northwestern University, Chicago, Illinois, USA,Division of Pediatric Infectious Diseases, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Paul J Planet
- Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Department of Pediatrics, Perelman College of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA, and ,Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, USA
| |
Collapse
|