1
|
Wang S, Shen C, Zhang S, Di H, Wang Y, Guan F. A Comprehensive Review of the Phytochemistry and Therapeutic Efficacy of Viola yedoensis Makino. Molecules 2025; 30:1922. [PMID: 40363729 PMCID: PMC12073729 DOI: 10.3390/molecules30091922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Viola yedoensis Makino (V. yedoensis), a perennial herb in the Violaceae family, is recognized for its violet flowers and has a longstanding role in ethnomedicine for treating various inflammatory diseases, such as boils, furuncles, carbuncles, and both acute and chronic hepatitis, among others. A comprehensive literature review was conducted utilizing resources including the Chinese Pharmacopoeia, Flora of China, Web of Science, PubMed, Baidu Scholar, Google Scholar, and China National Knowledge Infrastructure (CNKI). This paper serves as the inaugural comprehensive review of the latest findings regarding the botany, traditional applications, phytochemistry, pharmacological properties, quality control, and prospective uses of V. yedoensis. The objective is to provide a robust foundation for future research and to suggest novel avenues for exploring its potential applications. To date, 162 chemical constituents have been isolated from V. yedoensis, with flavonoids and coumarins identified as particularly abundant. These compounds exhibit promising activities, including anti-inflammatory, anti-pyretic, anti-viral, anti-tumor, anti-lung injury, anti-liver injury, anti-bacterial, anti-coagulant, anti-complement, and anti-oxidant properties. Despite considerable advancements in fundamental research on V. yedoensis, further investigations are required to elucidate the underlying mechanisms of action and to discover additional uncharacterized compounds. This review underscores the plant's significant development potential, highlighting the necessity for more in-depth exploration.
Collapse
Affiliation(s)
- Shuang Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (S.W.); (C.S.); (S.Z.); (H.D.)
| | - Congcong Shen
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (S.W.); (C.S.); (S.Z.); (H.D.)
| | - Shengyu Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (S.W.); (C.S.); (S.Z.); (H.D.)
| | - Han Di
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (S.W.); (C.S.); (S.Z.); (H.D.)
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (S.W.); (C.S.); (S.Z.); (H.D.)
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Feng Guan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (S.W.); (C.S.); (S.Z.); (H.D.)
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China
| |
Collapse
|
2
|
Cândido ES, Gasparetto LS, Luchi LV, Pimentel JP, Cardoso MH, Macedo ML, de la Fuente-Nunez C, Franco OL. Small and Versatile Cyclotides as Anti-infective Agents. ACS Infect Dis 2025; 11:386-397. [PMID: 39842000 PMCID: PMC11833872 DOI: 10.1021/acsinfecdis.4c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/24/2025]
Abstract
Plants provide an abundant source of potential therapeutic agents, including a diverse array of compounds, such as cyclotides, which are peptides known for their antimicrobial activity. Cyclotides are multifaceted molecules with a wide range of biological activities. Their unique topology forms a head-to-tail cyclic structure reinforced by a cysteine knot, which confers chemical and thermal stability. These molecules can directly target membranes of infectious agents by binding to phosphatidylethanolamine in lipid membranes, leading to membrane permeabilization. Additionally, they function as carriers and cell-penetrating molecules, demonstrating antiviral, antibacterial, antifungal, and nematicidal properties. The structure of cyclotides is also amenable to chemical synthesis, facilitating drug design through residue substitutions or grafting of bioactive epitopes within the cyclotide scaffold to enhance peptide stability. In this review, we explore the multifunctionality of these biomolecules as anti-infective agents, emphasizing their potential as a novel class of antimicrobial drugs.
Collapse
Affiliation(s)
- Elizabete
de Souza Cândido
- Programa
de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso
do Sul 79117-900, Brazil
- Programa
de Pós-Graduação em Ciências Genômicas
e Biotecnologia, Universidade Católica
de Brasília, Brasília, Distrito Federal 71966-700, Brazil
| | - Liryel Silva Gasparetto
- Programa
de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso
do Sul 79117-900, Brazil
| | - Livia Veiga Luchi
- Programa
de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso
do Sul 79117-900, Brazil
| | - João Pedro
Farias Pimentel
- Programa
de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso
do Sul 79117-900, Brazil
| | - Marlon Henrique Cardoso
- Programa
de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso
do Sul 79117-900, Brazil
- Programa
de Pós-Graduação em Ciências Genômicas
e Biotecnologia, Universidade Católica
de Brasília, Brasília, Distrito Federal 71966-700, Brazil
- Laboratório
de Purificação de Proteínas e suas Funções
Biológicas, Universidade Federal
de Mato Grosso do Sul, Cidade Universitária, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Maria Lígia
Rodrigues Macedo
- Laboratório
de Purificação de Proteínas e suas Funções
Biológicas, Universidade Federal
de Mato Grosso do Sul, Cidade Universitária, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Cesar de la Fuente-Nunez
- Machine
Biology
Group, Departments of Psychiatry and Microbiology, Institute for Biomedical
Informatics, Institute for Translational Medicine and Therapeutics,
Perelman School of Medicine, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments
of Bioengineering and Chemical and Biomolecular Engineering, School
of Engineering and Applied Science, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, 19104, United
States
- Penn Institute
for Computational Science, University of
Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Octávio Luiz Franco
- Programa
de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso
do Sul 79117-900, Brazil
- Programa
de Pós-Graduação em Ciências Genômicas
e Biotecnologia, Universidade Católica
de Brasília, Brasília, Distrito Federal 71966-700, Brazil
| |
Collapse
|
3
|
Thonthula S, Sousa SD, Dubuis A, Boudah S, Mehta R, Singh A, Eilstein J, Tabet JC, John S, Roy D, Pannakal ST. Improved Skin Barrier Function Along with Hydration Benefits of Viola yedoensis Extract, Aesculin, and Schaftoside and LC-HRMS/MS Dereplication of Its Bio-Active Components. Int J Mol Sci 2024; 25:12770. [PMID: 39684479 DOI: 10.3390/ijms252312770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
The skin hydration level is a key factor that influences the physical and mechanical properties of the skin. The stratum corneum (SC), the outermost layer of the epidermis, is responsible for the skin's barrier function. In this study, we investigated the role of a unique composition of Viola yedoensis extract for its ability to activate CD44, a cell-surface receptor of hyaluronic acid, and aquaporin-3, a water-transporting protein, in human keratinocytes (HaCaT). An ELISA assay evaluating the protein expression levels of CD44, aquaporin-3 (AQP3), filaggrin, and keratin-10 revealed that V. yedoensis extract upregulated the levels of CD44 and AQP3 by 15% and 78%, respectively. Additionally, V. yedoensis extract demonstrated a comparative effect on water vapor flux in TEWL and lipid perturbation in DSC versus the reference, glycerin. In light of this new biological efficacy, a detailed phytochemical characterization was undertaken using an integrated LC-HRMS/MS-based metabolomics approach, which provided further insights on the chemistry of V. yedoensis. This led to the identification of 29 secondary metabolites, 14 of which are reported here for the first time, including esculetin, aesculin, apigenin and kaempferol C-glycosides, megastigmane glycosides, roseoside, platanionoside B, and an eriojaposide B isomer, along with the rare, calenduloside F and esculetin diglucoside, which are reported for the first time from the genus, Viola. Notably, two active components identified in the V. yedoensis extract, namely, aesculin and schaftoside, showed an upregulation of the protein expression of CD44 in HaCaT cells by 123% and 193% within 24 h of treatment, respectively, while aesculin increased AQP3 levels by 46%. Aesculin and schaftoside also significantly upregulated the expression of K-10 levels by 299% and 116%, which was considerably higher than sodium hyaluronate, the positive control. The rationale used to characterize the new structures is outlined along with the related biosynthetic pathways envisioned to generate roseoside and Eriojaposide B. These findings provide new molecular insights to deepen the understanding of how V. yedoensis extract, along with the biomarkers aesculin and schaftoside, restores the skin barrier and skin hydration benefits.
Collapse
Affiliation(s)
| | - Sandra De Sousa
- L'Oréal Research and Innovation, 93600 Aulnay-Sous-Bois, France
| | - Alexis Dubuis
- L'Oréal Research and Innovation, 93600 Aulnay-Sous-Bois, France
| | - Samia Boudah
- L'Oréal Research and Innovation, 93600 Aulnay-Sous-Bois, France
| | - Richa Mehta
- L'Oréal Research and Innovation, Bangalore 560067, India
| | - Akanksha Singh
- L'Oréal Research and Innovation, Bangalore 560067, India
| | - Joan Eilstein
- L'Oréal Research and Innovation, 93600 Aulnay-Sous-Bois, France
| | - Jean-Claude Tabet
- Faculty of Sciences and Engineering, Institut Parisien de Chimie Moléculaire, Sorbonne University, 75005 Paris, France
- Medicines and Health Technologies Department (DMTS), CEA, INRAE, MetaboHUB, Paris-Saclay University, 91190 Gif sur Yvette, France
| | - Sherluck John
- L'Oréal Research and Innovation, Bangalore 560067, India
| | - Dhimoy Roy
- L'Oréal Research and Innovation, Mumbai Maharashtra 410210, India
| | | |
Collapse
|
4
|
Chen X, Wang K, Qin T, Bai Y, Li Q, Guo A, Liao B, Zhang J. An ideal leaf spraying strategy of brown sugar for edible medicinal plants of Viola inconspicua. NPJ Sci Food 2024; 8:99. [PMID: 39572563 PMCID: PMC11582318 DOI: 10.1038/s41538-024-00343-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
The typical edible medicinal plants of Viola inconspicua were compared with leaf-green, biomass, metabolomes, and bacterial communities, after leaf-spraying water (A), brown sugar water (B), brown sugar, urea, and KH2PO4 water (C), or KH2PO4 and urea water (D). The plants sprayed with C solution presented relatively normal leaf-green and the highest biomass. In contrast of A group, B, C, and D groups were found with 72, 94, and 104 leaf differently accumulated metabolites (DAMs) and 105, 88, and 92 root DAMs, respectively. Typically, relative abundances of amino acids were elevated in C and D groups, while those of leaf flavonoids were increased in B group. Noticeably, leaf DAMs of C group versus A group had strong correlations with one to more phylum- or/and genus-dominant bacteria of C group. Taken together, leaf-spraying brown sugar, urea, and KH2PO4 water are ideal for holding leaf-green and biomass in V. inconspicua plants.
Collapse
Affiliation(s)
- Xuhan Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, 510006, Guangzhou, China
| | - Kemei Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, 510006, Guangzhou, China
| | - Ting Qin
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, 510006, Guangzhou, China
| | - Yachao Bai
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, 510006, Guangzhou, China
| | - Qi Li
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Aimin Guo
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, 510006, Guangzhou, China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China.
| | - Jun Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, 510006, Guangzhou, China.
| |
Collapse
|
5
|
Zhang X, Chen R, Shu H, Liang P, Qin T, Wang K, Guo A, Craik DJ, Liao B, Zhang J. Gene-guided identifications of a structure-chimeric cyclotide viphi I from Viola philippica: Potential functions against cadmium and nematodes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112185. [PMID: 38986912 DOI: 10.1016/j.plantsci.2024.112185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
The cyclic peptides, cyclotides, are identified mostly with 29-31-aa (amino acid residues) but rarely with ≥ 34-aa in plants. Viola philippica is a well-known medicinal plant but a rare metallophyte with cyclotides. A hypothesis was hence raised that the potential novel 34-aa cyclotide of Viola philippica would clearly broaden the structural and functional diversities of plant cyclotides. After homology-cloning the cyclotide precursor gene of VpCP5, a 34-aa cyclotide (viphi I) was identified to be larger than 22 other known cyclotides in V. philippica. It had a chimeric primary structure, due to its unusual loop structures (8 residues in loop 2 and 6 residues in loop 5) and aa composition (3 E and 5 R), by using phylogenetic analyses and an in-house cyclotide analysis tool, CyExcel_V1. A plasmid pCYC-viphi_I and a lab-used recombinant process were specially constructed for preparing viphi I. Typically, 0.12 or 0.25 mg ml-1 co-exposed viphi I could significantly remain cell activities with elevating Cd2+-exposed doses from 10-8 to 10-6 mol l-1 in MCF7 cells. In the model nematode Caenorhabditis elegans, IC50 values of viphi I to inhibit adult ratios and to induce death ratios, were 184.7 and 585.9 µg ml-1, respectively; the median lifespan of adult worms decreased from 14 to 2 d at viphi I doses ranging from 0.05 to 2 mg ml-1. Taken together, the newly identified viphi I exhibits functional potentials against cadmium and nematodes, providing new insights into structural and functional diversity of chimeric cyclotides in plants.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Guangdong Pharmaceutical University, School of Life Sciences and Biopharmaceutics, Guangzhou 510006, China.
| | - Ruohong Chen
- Sun Yat-sen University, School of Life Sciences, Guangzhou 510275, China.
| | - Haoyue Shu
- Sun Yat-sen University, School of Life Sciences, Guangzhou 510275, China.
| | - Peihui Liang
- Guangdong Pharmaceutical University, School of Life Sciences and Biopharmaceutics, Guangzhou 510006, China.
| | - Ting Qin
- Guangdong Pharmaceutical University, School of Life Sciences and Biopharmaceutics, Guangzhou 510006, China.
| | - Kemei Wang
- Guangdong Pharmaceutical University, School of Life Sciences and Biopharmaceutics, Guangzhou 510006, China.
| | - Aimin Guo
- Guangdong Pharmaceutical University, School of Life Sciences and Biopharmaceutics, Guangzhou 510006, China.
| | - David J Craik
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia.
| | - Bin Liao
- Sun Yat-sen University, School of Life Sciences, Guangzhou 510275, China.
| | - Jun Zhang
- Guangdong Pharmaceutical University, School of Life Sciences and Biopharmaceutics, Guangzhou 510006, China.
| |
Collapse
|
6
|
Siew ZY, Asudas E, Khoo CT, Cho GH, Voon K, Fang CM. Fighting nature with nature: antiviral compounds that target retroviruses. Arch Microbiol 2024; 206:130. [PMID: 38416180 DOI: 10.1007/s00203-024-03846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/29/2024]
Abstract
The human immunodeficiency virus (HIV) is a type of lentivirus that targets the human immune system and leads to acquired immunodeficiency syndrome (AIDS) at a later stage. Up to 2021, there are millions still living with HIV and many have lost their lives. To date, many anti-HIV compounds have been discovered in living organisms, especially plants and marine sponges. However, no treatment can offer a complete cure, but only suppressing it with a life-long medication, known as combined antiretroviral therapy (cART) or highly active antiretroviral therapy (HAART) which are often associated with various adverse effects. Also, it takes many years for a discovered compound to be approved for clinical use. Thus, by employing advanced technologies such as automation, conducting systematic screening and testing protocols may boost the discovery and development of potent and curative therapeutics for HIV infection/AIDS. In this review, we aim to summarize the antiretroviral therapies/compounds and their associated drawbacks since the discovery of azidothymidine. Additionally, we aim to provide an updated analysis of the most recent discoveries of promising antiretroviral candidates, along with an exploration of the current limitations within antiretroviral research. Finally, we intend to glean insightful perspectives and propose future research directions in this crucial area of study.
Collapse
Affiliation(s)
- Zhen Yun Siew
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia.
| | - Elishea Asudas
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Chia Ting Khoo
- School of Biosciences, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Gang Hyeon Cho
- School of Pharmacy, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Kenny Voon
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Chee-Mun Fang
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|